
MATRICES A N D  MULTICHANNEL TIME SERIES 

Familiarity with matrices is essential to computer modeling in both physical and 
social sciences. As this is a big subject covered by many excellent texts at all levels, 
our review will be a quick one. We focus on those properties required in the suc- 
ceeding chapters. We avoid proofs, and although constructions given should be 
useful in most situations, there will be occasional matrices (which we will dismiss 
as pathological cases) in which our constructions will fail. In practice, the user 
should always check computed results. Unfortunately, the so-called pathological 
cases arise in practice far more often than might be expected. When matrix 
difficulties arise, the first tendency of the scientist is to use a higher-precision 
arithmetic. In the author's experience, physically meaningful calculations rarely 
require high precision. When higher precision seems to be needed, it is often be- 
cause something is happening physically which shows that the problem being solved 
is a poorly posed problem. If a slight change in the problem should not make a 
drastic change in the answer, then it may happen that a different organization of 
the calculations will obviate the need for high precision. Anyway, our discussion 
here will focus on the nonpathological cases, but the reader is warned that patho- 
logical cases will certainly be encountered in practice and when they are they will 
be a stern test. of the reader's mathematical knowledge and physical insight. 



5-1 REVIEW OF MATRICES 

A set of simultaneous equations may be written as 

where A is a square matrix (nonsquare matrices are taken up in Chap. 6 on least 
squares) and x and b are column vectors. In a 2 x 2 case, (5-1-la) becomes 

Equation (5-1-lb) has a simple geometric interpretation. The two columns of the 
matrix and the column b are regarded as vectors in a plane. Equation (5-1-lb) says 
x, times the first column vector plus x, times the second column vector equals the 
b column vector. Difficulty arises when the two column vectors of the matrix 
point in the same direction. Unless b just happens to be that direction, no solution 
x,,  x, is possible. The same thing may be said about the general case. A solution 
x to equation (5-1-la) exists if b lies in the space spanned by the columns of A. 
In most practical situations the matrix A and the column b arise from independent 
considerations so that it is often reasonable to require the columns of A to span a 
space which will contain an arbitrary b vector. If A is an n x n matrix, then its 
columns are required to span an n-dimensional space. In particular, the n-dimen- 
sional parallelopiped with edges given by the columns of A should not have a zero 
volume. Such a volume is given by the determinant of A. 

Another set of simultaneous equations which arises frequently in practice is 
the so-called homogeneous equations 

This set always has the solution x = O  which is often called the trivial solution. 
For (5-1-2) to have nontrivial solution values for x the determinant of A should 
vanish, meaning that the columns of A do not span an n-dimensional space. We will 
return later to the subject of actually solving sets of simultaneous equations. 

A most useful feature of matrices is that their elements may be not only 
numbers but that they may be other matrices. Viewed differently, a big matrix may 
be partitioned into smaller submatrices. A surprising thing is that the product of 
two matrices is the same whether there are partitions or not. Study the identity 

In terms of summation notation, the left-hand side of (5-1-3) means 

whereas the right-hand side means 



Equations (5-1-4) and (5-1-5) are obviously the same; this shows that this parti- 
tioning of a matrix product is merely rearranging the terms. Partitioning does not 
really do anything at all from a mathematical point of view, but it is extremely 
important from the point of view of computation or discussion. 

We now utilize matrix partitioning to develop the bordering method of matrix 
inversion. The bordering method is not the fastest or the most accurate method 
but it is quite simple, even for nonsymmetric complex-valued matrices, and it also 
gives the determinant and works for homogeneous equations. The bordering 
method proceeds by recursion. Given the inverse to a k x k matrix, the method 
shows how to find the inverse of a (k+ 1) x (k+ 1) matrix, which is the same 
old k x k matrix with an additional row and column attached to its borders. 
Specifically, A, e, f, g, and A-' are taken to be known in (5-1-6). The task is to 
find W, x, y, and z. 

The first thing to do is multiply the partitions in (5-1-6) together. For the first 
column of the product we obtain 

A choice of W of 

leads to (5-1-7) being satisfied identically. This leaves x still unknown, but we may 
find it by substituting (5-1-9) into (5-1-8) 

Now, to get the column unknowns y and z, we compute the second column of the 
product (5- 1-6) 

Ay+fi=O (5-1-11) 

ey+gz = 1 (5-1-12) 

Multiply (5-1-1 1) by A-I 

This gives the column vector y within a scale factor z. To get the scale factor, we 
insert (5-1-13) into (5-1-12) 



FIGURE 5-1 
A Fortran computer program for matrix 40 
inversion based .on the bordering 
method. 

SUBROUTINE CMAINE (N , B ,A) 
A=MATRIX INVERSE OF B 
COMPLEX B,A,C,R,DE'L 
DIMENSION A(N,N),B(N,N),R(~o~),c(~~~) 
DO 10 I=l,N 
DO 10 J=l,N 
A(I ,J)=O. 
DO 40 L=l,N 
DEL=B (L , L) 
DO 30 I=l,L 
C(I)=O. 
R(I)=O. 
DO 20 J=l,L 
C (I)=C(I)+A(I, J)*B(J,L) 
R(I)=R(I)+B(L,J)*A(J,I) 
DEL=DEL-B(L, I)*C (I) 
C (L)=-1. 
R (L)=-1. 
DO 40 I=l,L 
c (I)=c (I) IDEL 
DO 40 J=l,L 
A(I,J)=A(I, J)+C(I)*R(J) 
RETURN 
END 

It may, in fact, be shown that the determinant of the matrix being inverted is given 
by the product over all the bordering steps of the denominator of (5-1-14). Thus, 
if at any time during the recursion the denominator of (5-1-14) goes to zero, the 
matrix is singular and the calculation cannot proceed. 

Let us summarize the recursion: One begins with the upper left-hand corner of 
a matrix. The corner is a scalar and its inverse is trivial. Then it is considered 
to be bordered by a row and a column as shown in (5-1-6). Next, we find the 
inverse of this 2 x 2 matrix. The process is continued as long as one likes. A typical 
step is first compute z by (5-1-14) and then compute A-' of one larger size by 

[eA-' ! - 11 (5-1-15) 
zeros : 

where (5-1-1 5) was made up from (5-1-9), (5- 1- lo), and (5- 1- 13). A Fortran com- 
puter program to achieve this is shown in Fig. 5-1. 

It is instructive to see what becomes of A-' if A is perturbed steadily in such 
a way that the determinant of A becomes singular. If the element g in the matrix 
of (5-1-6) is moved closer and closer to eA-If, then we see from (5-1-14) that z 
tends to infinity. What is interesting is that the second term in (5-1-15) comes to 
dominate the first, and the inverse tends to infinity times the product of a column 
c with a row r. 

The usual expressions AA-I = I  or A-'A = I  in the limit of small z - l  tend to 

Acr =z- l1  (5-1-16) 
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In the usual case (rank A = n - 1, not rank A < n - 1) where neither c nor r vanish 
identically, (5- 1- 16) and (5- 1-17) in the limit z- ' = 0 become 

In summary, then, to solve an ordinary set of simultaneous equations like 
(5-1-l), one may compute the matrix inverse of A by the bordering method and 
then multiply (5-1-1) by A- ' obtaining 

In the event b vanishes, we are seeking the solution to homogeneous equations and 
we expect that z will explode in the last step of the bordering process. (If it happens 
earlier, one should be able to rearrange things.) The solution is then given by the 
column c in (5- 1 - 18). 

The row homogeneous equations of (5-1-19) was introduced because such a 
set arises naturally for the solution to the row eigenvectors of a nonsymmetric 
matrix. In the next section, we will go into some detailed properties of eigenvectors. 
A column eigenvector c of a matrix A is defined by the solution to 

where A is the so-called eigenvalue. At the same time, one also considers a row 
eigenvector equation 

To have a solution for (5-1-21) o'r (5-1-22), one must have det(A - 11) =O. After 
finding the roots A j  of the polynomial det(A - M), one may form a new matrix A' 
for each Aj  by 

then the solution to 

arises from the column c at the last step of the bordering. It is the column eigen- 
vector. Likewise, the row eigenvector is the row in the last step of the bordering 
algorithm. 

EXERCISES 

1 Indicate the sizes of all the matrices in equations (5-1-7) to (5-1-14) 
2 Show how (5-1-15) follows from (5-1-9), (5-1-10), (5-1-13), and (5-1-14). 
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5-2 SYLVESTER'S MATRIX THEOREM 

Sylvester's theorem provides a rapid way to calculate functions of a matrix. 
Some simple functions of a matrix of frequent occurrence are A-' and AN(for N 
large). Two more matrix functions which are very important in wave propagation 
are eA and A ' /~ .  Before going into the somewhat abstract proof of Sylvester's 
theorem, we will take up a mumerical example. Consider the matrix 

It will be necessary to have the column eigenvectors and the eigenvalues of this 
matrix; they are given by 

Since the matrix A is not symmetric, it has row eigenvectors which differ from the 
column vectors. These are 

We may abbreviate equations (5-2-2) through (5-2-5) by 

The reader will observe that r or c could be multiplied by an arbitrary scale factor 
and (5-2-6) would still be valid. The eigenvectors are said to be normalized if scale 
factors have been chosen so that r, c, = 1 and r, c, = 1 .  It will be observed that 
r, c, = 0 and r, c, = 0, a general result to be established in the exercises. 

Let us consider the behavior of the matrix c,r,. 

Any power of this matrix is the matrix itself, for example its square. 
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This property is called idempotence (Latin for self-power). I t  arises because 
(clrl)(clrl) = cl(rl cl)rl = clrl. The same thing is of course true of c2r2. Now 
notice that the matrix clrl is "perpendicular" to the matrix c2r2, that is 

since r2 and c2 are perpendicular. 
Sylvester's theorem says that any function f of the matrix A may be written 

f(A) = f(2l)clrl +f(22)c2r2 

The simplest example is f(A) =A 

Another example is 

The inverse is 

The identity matrix may be expanded in terms of the eigenvectors of the matrix A. 

Before illustrating some more complicated functions let us see what it takes to prove 
Sylvester's theorem. We will need one basic result which is in all the books on 
matrix theory, namely, that most matrices (see exercises) can be diagonalized. In 
terms of our 2 x 2 example this takes the form 

where 

Since a matrix commutes with its inverse, (5-2-9) implies 



Postmultiply (5-2-8) by the row matrix and premultiply by the column matrix. 
Using (5-2- lo), we get 

Equation (5-2-11) is (5-2-7) in disguise, as we can see by writing (5-2-11) as 

Now to get A2 we have 

Using the orthonormality of clrl and c2r2 this reduces to 

A2 = A12c1r1 + A22~2r2 

It is clear how (5-2-1 1) can be used to prove Sylvester's theorem for any polynomial 
function of A. Clearly, there is nothing peculiar about 2 x 2 matrices either. This 
works for n x n. Likewise, one may consider infinite series functions in A. Since 
almost any function can be made up of infinite series, we can consider also trans- 
cendental functions like sine, cosine, exponential. 

Exponentials arise naturally as the solutions to differential equations. Con- 
sider the matrix differential equation 

One may readily verify the power series solution 

This is the power series definition of an exponential function. If the matrix A is 
one of that vast majority which can be diagonalized, then the exponential can be 
more simply expressed by Sylvester's theorem. For the numerical example we have 
been considering, we have 

The exponential matrix is a solution to the differential equation (5-2-12) without 
regard to boundaries. It frequently happens that physics gives one a differential 
equation 
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subject to two boundary conditions on either of y,  or y, or a combination. One 
may verify that 

is the solution to (5-2-13) for arbitrary constants k ,  and k ,  . Boundary conditions 
are then used to determine the numerical values of k ,  and k ,  . Note that k ,  and k2 
are just y,(x = 0 )  and y2(x = 0).  

An interesting situation arises with the square root of a matrix. A 2 x 2 
matrix like A will have four square roots because there are four possible combi- 
nations for choice of plus or minus signs on ,/G and JG. In general, an n x n 
matrix has 2" square roots. An important application arises in a later chapter, 
where we will deal with the differential operator (k2 + d 2 / d ~ 2 ) 1 1 2 .  The square root 
of an operator is explained in very few books and few people even know what it 
means. The best way to visualize the square root of this differential operator is to 
relate it to the square root of the matrix M where 

The right-hand matrix is a second difference approximation to a second partial 
derivative. Let us define 

M = k21 + T 

Clearly we wish to consider M generalized to a very large size so that the end 
effects may be minimized. In concept, we can make M as large as we like and for 
any size we can get 2M square roots. In practice there will be only two square roots 
of interest, one with the plus roots of all the eigenvalues and the other with all the 
minus roots. How can we find these "principal value'' square roots? An impor- 
tant case of interest is where we can use the binomial theorem so that 

The result is justified by merely squaring the assumed square root. Alternatively, 
it may be justified by means of Sylvester's theorem. It should be noted that on 
squaring the assumed square root one utilizes the fact that I and T commute. 
We are led to the idea that the square root of the differential operator may be 
interpreted as 



provided that k is not a function of x. If k is a function of x, the square root of 
the differential operator still has meaning but is not so simply computed with the 
binomial theorem. 

EXERCISES 

1 Premultiply (5-2-66) by rl and postmultiply (5-2-6c) by c2,  then subtract. Is h1 f h2 a 
necessary condition for rl and c2 to be perpendicular? Is it a sufficient condition? 

2 Show the Cayley-Hamilton theorem, that is, if 

then 

3 Verify that, for a general 2 x 2 matrix A, for which 

where hl and h2 are eigenvalues of A. What is the general form for c2r2? 
4 For a symmetric matrix it can be shown that there is always a complete set of eigen- 

vectors. A problem sometimes arises with nonsymmetric matrices. Study the matrix 

as E --t 0 to see why one eigenvector is lost. This is called a defective matrix. (This 
example is from T. R. Madden.) 

5 A wide variety of wave-propagation problems in a stratified medium reduce to the 
equation 

What is the x dependence of the solution when ab is positive? When ab is negative? 
Assume a and b are independent of x. Use Sylvester's theorem. What would it take 
to get a defective matrix? What are the solutions in the case of a defective matrix? 

6 Consider a matrix of the form I + vvT where v is a column vector and vT is its transpose. 
Find (I + vvT)-' in terms of a power series in vvT. [Note that ( v v ~ ) ~  collapses to vvT 
times a scaling factor, so the power series reduces considerably.] 

7 The following "cross-product" matrix often arises in electrodynamics. Let 
B =(Bx, By, Bz) 

(a) Write out elements of I + U2. 
(b) Show that U(I + U2) = 0 or U3 = -U. 
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(c) Let v be an arbitrary vector. In what geometrical directions do Uv, UZv, and 
(I + U2)v point? 

( d )  What are the eigenvalues of U. [HINT: Use part (b).] 
(e) Why cannot U be canceled from U3 = -U? 
(f) Verify that the idempotent matrices of U are 

clrl = ( I  + U2) 

5-3 MATRIX FILTERS, SPECTRA, AND FACTORING 

Two time series can be much more interesting than one because of the possibility 
of interactions between them. The general linear model for two series is depicted 
in Fig. 5-2 

The filtering operation in the figure can be expressed as a matrix times vector 
operation, where the elements of the matrix and vectors are Z transform poly- 
nomials. That is, 

One fact which is obvious but unfamiliar is that a matrix with polynomial elements 
is exactly the same thing as a polynomial with matrix coefficients. This is illus- 
trated by the example : 

Now we can address ourselves to the inverse problem; given a filter B and the 
outputs Y how can we find the inputs X? The solution is analogous to that of 
single time series. Let us regard B(Z) as a matrix of polynomials. One knows, for 
example, that the inverse of any 2 x 2 matrix 

W Y l  

FIGURE 5-2 
Two time series x ,  and x2 input to a 
matrix of four filters illustrates the 
general linear model of multichannel -xz  + YZ 
filtering. 
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Consequently Y = BX may be solved for X as X = B-'Y where 

The denominator is a scalar. We have treated scalar denominators before. If all 
the zeros lie outside the unit circle, we can use an ordinary power series for the 
inverse; otherwise, it is not minimum-phase and we use a Laurent series. 

When one generalizes to many time series, the numerator matrix is the so- 
called adjoint matrix and the denominator is the determinant. The adjoint matrix 
can be formed without the use of any division operations. In other words, elements 
in the adjoint matrix are in the form of sums of products. For this reason, we may 
say that the criterion for a minimum-phase matrix wavelet is that the determinant 
of its Z transform has no zeros inside the unit circle. 

Equation (5-3-1) is a useful description of Fig. 5-2 in most applications. 
However in some applications (where the filter is an unknown to be determined), 
a transposed form of (5-3-1) is more useful. If b12 was interchanged with b2, in 
Fig. 5-2, we could use the " row data " expression 

Now that we have generalized the concept of filtering from scalar-valued time 
series to vector-valued series, it is natural to generalize the idea of spectrum. For 
vector-valued time functions, the spectrum is a matrix called the spectral matrix 
and it is given by 

i t  will be noticed that the vector times vector operation defining (5-3-3) is an 
" outer product" rather than the more usually occurring "inner product." The 
diagonals of the spectral matrix R contain the usual auto-spectrum of each channel. 
Off-diagonals contain the cross spectrum. Because (5-3-3) is an outer product, the 
matrix is singular. Now, instead of taking [Yl(Z) Y2(Z)] to have a time function 
with a finite amount of energy, let us suppose the filter inputs to (5-3-2), namely 
(xl(t), x2(t)) are made up of random numbers, independently drawn from some 
probability function at every point in time. In this case, y,(t) and y2(t) are random 
time series and their spectral matrix is defined like (5-3-3) but taking an expectation 
(average over the ensemble). We have 

R(o) = E  - [ Y ,  Y2] [ 21 
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substituting from (5-3-2) 

Now, grouping the ensemble summation with the random variables, we get 

Next, we explicitly introduce the assumption that the random numbers x,(t) are 
drawn independently of x2(t), thus E(~,(l/z)X,(z)) = 0 and the assumption that 
xi(t) is white E[xi(t)xi(t + s)] = 0 if s # 0 and of unit variance E [ x ~ ( ~ ) ~ ]  = 1. Thus 
(5-3-4) becomes 

Of course, in practice the spectral matrix must be estimated, say R, from finite 
samples of data. This means that ensemble summation must be simulated. If the 
ensemble sum in (5-3-4) is simulated by summation over one point (no summation), 
then (5-3-4) is a singular matrix like (5-3-3). As discussed earlier, the accuracy of 
the elements of the spectral matrix improves with the square root of the number of 
ensemble elements summed over. 

Single-channel spectral factorization gives insight into numerous important 
problems in mathematical physics. We have seen that the concepts of filter and 
spectrum extend in quite a useful fashion to multichannel data. It was only natural 
that a great deal of effort should have gone to spectral factorization of multichannel 
data. This effort has been successful. However, in retrospect, from the point of 
view of computer modeling and interpretation of observed waves, it must be 
admitted that multichannel spectral factorization has not been especially useful. 
Nevertheless a brief summary of results will be given. 

The root method The author extended the single-channel root method to the 
multichannel case [Ref. 191. The method is even more cumbersome in the multi- 
channel case. A most surprising thing about the solution is that it includes a much 
broader result: that a polynomial with matrix coefficients may be factored. For 
example, 

14 -11 
factors 6 ways to 
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The Toeplitz method The only really practical method for finding an invertible 
matrix wavelet with a given spectrum is the multichannel Toeplitz method. The 
necessary algebra is developed in a later section on multichannel time series pre- 
diction. 

The explog and Hilbert transform methods A number of famous mathematicians 
including Norbert Wiener have worked on the problem from the point of view of 
extending the exp-log or the Hilbert transform method. The principal stumbling 
block is that exp(A + B) does not equal exp(A) exp(B) unless A and B happen 
to commute, that is, AB = BA. This is usually not the case. Although many 
difficult papers have appeared on the subject (some stating that they solved the 
problem), the author is unaware of anyone who ever wrote a computer program 
which works at  fast Fourier transform speeds as does the single-channel Hilbert 
transform method. 

EXERCISES 

1 Think up a matrix filter where the two outputs yl(t) and yz(t) are the same but for a 
scale factor. Clearly X cannot be recovered from Y. Show that the determinant of the 
filter vanishes. Find another example in which the determinant is zero at one frequency 
but nonzero elsewhere. Explain in the time domain in what sense the input cannot 
be recovered from the output. 

2 Given a thermometer which measures temperature plus or times pressure and a pressure 
gage which measures pressure plus times the time rate of change of the temperature, 
find the matrix filter which converts the observed series to temperature and pressure. 
[HINT: Use either the time derivative approximation 1 - Z or 2(1- Z)/(l + Z).] 

3 Let 

Identify coefficients of powers of Z in B(Z)A(Z) = I, to recursively develop the co- 
efficients of A(Z) = [B(Z)]-l. 

4 Express the inverse of 

in a Taylor or Laurent series as is necessary. 
[':" 3 

5 The determinant of a polynomial with matrix cofficients may be independent of Z. 
Applied to matrix filters, this may mean that an inverse filter may have only a finite 
number of powers in Z instead of the infinite series one always has with scalar filters. 
What is the most nontrivial example you can find? 

5-4 MARKOV PROCESSES 

A Markov process is another mathematical model for a time series. Until now it 
has found little use in geophysics, but we will include it anyway because it might 
become useful and it is easily explained with the methods previously developed. 



Suppose that x, could take on only integer values. A given value is called a 
state. As time proceeds, transitions are made from the jth state to the ith state 
according to a probability matrix pij .  The system has no memory. The next state 
is probabilistically dependent on the current state but independent of the previous 
states. The classic example is of a frog in a lily pond. As time goes by, the frog 
jumps from one lily pad to another. He may be more likely to jump to a near one 
than to a far one. He may prefer big to small pads, and he doesn't remember the 
last pad he was on. The state of the system is the number of the pad the frog 
currently occupies. The transitions are his jumps. 

To begin with, one defines a state probability ni(k), the probability that the 
system will occupy state i after k transitions if its state is known at k = 0. We also 
define the transition matrix Pij . Then 

n(k + 1) = Pn(k) (5-4- 1) 

The initial-state probability vector is n(0). Since the initial state is known, then 
n(0) is all zeros except for a one (I) in the position corresponding to the initial state. 
For example, see the state-transition diagram of Fig. 5-3. 

The diagram corresponds to the probability matrix 

Since at each time a transition must occur, we have that the sum of the elements in 
a column must be unity. In other words, the row vector [l 1 1 11 is an eigen- 
vector of P with unit eigenvalue. Let us define the Z transform of the probability 
vector as 

n ( z )  = ~ ( o )  + z ~ ( I )  + z2n(2) + . . (5-4-2) 

In terms of Z transforms (5-4-1) becomes 

Thus we have expressed the general solution to the problem as a function of the 
matrix P times an initial-state vector. There will be values of Z for which the 

FIGURE 5-3 
An example of a state-transition 
diagram. 



inverse matrix to (I - ZP) does not exist. These values Zj are given by det(1 - ZjP) 
= 0 or det(P - Z j  'I) = 0. Clearly the z;' are the eigenvalues of P. Utilizing 
Sylvester's theorem, then, we have 

Some modification to (5-4-4) is required if there are repeated eigenvalues. Equation 
(5-4-4) is essentially a partial fraction expansion. A typical term has the form 

Thus coefficients at successive powers of Z decline with time in the form (Z,:')'. 
It is clear that, if probabilities are to be bounded, the roots l /Z j  must be inside the 
unit circle (recall minimum phase). We have already shown that one of the roots 
2, is always unity. This leads to the " steady-state " solution I t  = 1. In our 
particular example, one can see by inspection that the steady-state probability 
vector is 10 0 0 1IT SO the general solution is of the form 

Finally, a word of caution must be added. Occasionally defective matrices 
arise (incomplete set of eigenvectors) and for these the Sylvester theorem does not 
apply. In such cases, the solutions turn out to contain not only terms like 2,:' 
but also terms like tZ-t and t22-'. It is the same situation as that applying to 
ordinary hfferential equations with constant coefficients. Ordinarily, the solutions 
are of the form (ri)' where ri is the ith root of the indicia/ equation but the presence 
of repeated roots gives rise to solutions like trit. A mathematical survey of the 
subject is given by Seneta [Ref. 201. 


