
RESOLUTION 

In locating an earthquake or a petroleum drilling site there will be an uncertainty 
in location, say (Ax, Ay, Az) caused by measurement errors and the physical size 
of the target. In measuring a voltage there will be a measuring accuracy Au. 
The frequency of useful seismic waves will have a bandwidth Am. The time at 
which an earthquake occurs will have an uncertainty given by the duration of 
shaking At. A telescope of diameter Ad has at best a resolving power measured 
by a certain angular range AO. It is often desirable to make measurements in such 
a way as to reduce the quantities Ax, Ay, Az, Av, Am, At, Ad, and A0 to values as 
small as possible. These measures of resolution (which are called variances, 
tolerances, uncertainties, bandwidths, durations, spreads, spans, etc.) sometimes 
intereact with one another in such a way that any experimental modification which 
reduces one must necessarily increase another or some combination of the others. 
The purpose of this chapter is to discuss some of the commonly occurring situa- 
tions where such conflicting interactions occur. 

In this chapter we use At to denote the time duration of a signal. We use z 
to denote the amount of time which passes between sample points. In other 
chapters, At is synonymous with z, the sample interval. 
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4-1 TIME-FREQUENCY RESOLUTION 

The famous " uncertainty principle " of quantum mechanics resulted from observ- 
ations that subatomic particles behave like waves with wave frequency proportional 
to particle momentum. The classical laws of mechanics enable prediction of the 
future of a mechanical system by extrapolation from presently known position 
and momentum. But because of the wave nature of matter with momentum 
proportional to frequency, such prediction requires simultaneous knowledge of 
both the location and the frequency of a wave. A sinusoidal wave has a perfectly 
clearly determined frequency, but it is spread over the infinitely long time axis. 
At the other extreme is a delta function, which is nicely compressed to a point on 
the time axis but contains a mixture of all frequencies. A mathematical analysis 
of the uncertainty principle is thus an analysis relating functions to their Fourier 
transforms. 

Such an analysis begins by definitions of time duration and spectral band- 
width. The time duration of a damped exponential function is infinite if by dura- 
tion you mean the span of nonzero function values. However, for nearly all practi- 
cal purposes the time span is chosen as the time required for the amplitude to 
decay to e-' of its original value. For many functions the span is defined by the 
span between points on the time or frequency axis where the curve (or its envelope) 
drop to  half of the maximum value. The main idea is that the time span At or the 
frequency span Aw should be able to include most of the total energy but need not 
contain all of it. The precise definition of At and Aw is somewhat arbitrary and 
may be chosen to simplify analysis. The general statement is that for any function 
the time duration At and the spectral bandwidth A o  are related by 

Although it is easy to verify (4-1-1) in many special cases, it is not very easy to 
deduce (4-1-1) as a general principle. This has, however, been done by D. Gabor 
[Ref. 171. He chose to define At and A o  by second moments. 

A similar and perhaps more basic concept than the product of time and 
frequency spreads is the relationship between spectral bandwidth and rise time of 
a system response function. The rise time At of a system response is also defined 
somewhat arbitrarily, often as the time span between the time of excitation and 
the time at which the system response is half its ultimate value. In principle, a 
broad frequency response can result from a rapid decay time as well as from a 
rapid rise time. Tightness in the inequality (4-1-1) may be associated with situations 
in which a certain rise time is quicky followed by an equal decay time. Slackness 
in the inequality (4-1-1) may be associated with increasing inequality between rise 
time and decay time. Slackness could also result from other combinations of rises 
and falls such as random combinations. Many systems respond very rapidly 
compared to the rate at which they subsequently decay. Focusing our attention 
on such systems, we can now seek to derive the inequality (4-1-1) applied to rise 
time and bandwidth. The first step is to choose a definition for rise time. The 
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choice is determined not only for clarity and usefulness but also by the need to 
ensure tractability of the subsequent analysis. I have found a reasonable definition 
of rise time to be 

where b(t) is the response function under consideration. The numerator is just a 
normalizing factor. The denominator says we have defined At by the first negative 
moment. For example, if b(t) is a step function, then the denominator integral 
diverges, giving the desired At = 0 rise time. If b(t)2 grows linearly from zero to to 
and then vanishes, the rise time At is t,/2, again a reasonable definition. 

Although the Z transform method is a great aid in studying situations where 
divergence (as llt) plays a key role, it does have the disadvantage that it destroys 
the formal identity between the time domain and the frequency domain. Presum- 
ably this disadvantage is not fundamental since we can always go to a limiting 
process in which the discretized time domain tends to a continuum. In order to 
utilize the analytic simplicity of the Z transform we now consider the dual to the 
rise-time problem. Instead of a time function whose square vanishes identically 
at negative time we now consider a spectrum B(I/z)B(z) which vanishes at negative 
frequencies. We measure how fast this spectrum can rise after co = 0. We will find 
this to be related to the time duration At of the complex time function b,. More 
precisely, we will now define the lowest significant frequency component o = A o  
in the spectrum analogously to (4-1-2) to be 

Without loss of generality we can assume that the spectrum has been normalized 
so that the numerator integral is unity. In other words, the zero lag of the auto- 
correlation of b, is + 1. Then 

Now we recall the bilinear transform which gives us various Z transform expres- 
siens for (- io)-'. The one we ordinarily use is the integral (. . . 0,0,0.5, 1. , 1 ., . . .). 
We could also use -(... 1, 1, 1,0.5, 0,0,O. ..). The pole right on the unit circle 
at Z = 1 causes some nonuniqueness. Because l / io is an imaginary odd frequency 
function we will take the desired expansion to be the odd function of time given by 



Converting (4-1-4) to an integral on the unit circle in Z transform notation we have 

But since this integral selects the coefficient of Z0 of its argument we have 

where r, is the autocorrelation functioll of b,. This may be further expressed as 

The sum in (4-1-8) is like an integral representing area under the lrrl function. 
Imagine the 1 r, 1 function replaced by a rectangle function of equal area. This 
would define a Atauto for the 1 r, 1 function. Any autocorrelation function satisfies 
Ir,l < r, and we have normalized r, = 1. Thus, we extend the inequality (4-1-8) 
by 

Finally, we must relate the duration of a time function At to the duration of its 
autocorrelation At,,,,. Generally speaking, it is easy to find a long time function 
which has short autocorrelation. Just take an arbitrary short time function and 
convolve it by a long and tortuous all-pass filter. The new function is long, but 
its autocorrelation is short. If a time function has n nonzero points, then its auto- 
correlation has only 2n - 1 nonzero points. It is obviously impossible to get a 
long autocorrelation function out of a short time function. It is not even fair to 
say that the autocorrelation is twice as long as the original time function because the 
autocorrelation must lie under some tapering function. To construct a time func- 
tion with as long an autocorrelation as possible, the best thing to do is to concen- 
trate the energy in two lumps, one at each end of the time function. Even from this 
extreme example, we see that it is not unreasonable to assert that 

At  2 At,",, (4-1-10) 
inserting into (4-1-9) we have the uncertainty relation 

At A 0  2 1 (4-1-1 1) 

The more usual form of the uncertainty principle uses the frequency variable f = 2 0  7 - 3 
and a different definition of At, namely time duration rather than rise time. It is ' 

tn 

At Af 2 1 (At is duration) (4-1-12) 

The choice of a 271 scaling factor to convert rise time to duration is indicative of 
the approximate nature of the inequalities. 



EXERCISES 

1 Consider B(Z) = [I - (Z/Zo)"]/(l  - Z/Zo)  in the limit Zo goes to the unit circle. Sketch 
the time function and its squared amplitude. Sketch the frequency function and its 
squared amplitude. Choose Af and At. 

2 A time series made up of two frequencies may be written as 

b, = A cos wlt  + B sin o l t  + C cos w z  t  + D sin wz  t 

Given ol, wz , b o ,  bl ,  bz , bg show how to calculate the amplitude and phase angles of 
the two sinusoidal components. 

2)  $ Consider the frequency function graphed below. 

FIGURE E 4-1-3 

Describe the time function in rough terms indicating the times corresponding to l / f i ,  
l / f z ,  and l / f3 .  Try to avoid algebraic calculation. Sketch an approximate result. 

PROBLEM FOR RESEARCH 

Can you find a method of defining Aw and At of one-sided wavelets in such a way 
that for minimum-phase wavelets only the uncertainty principle takes on the equality 
sign ? 

4-2 TIME-STATISTICAL RESOLUTION 

If you flipped a coin 100 times, it is possible that you would get exactly 50 " heads " 
and 50 "tails." More likely it would be something between 60-40 and 40-60. 
Typically, how much deviation from 50 would you expect to see? The average 
(mean) value should be 50, but some other value is almost always obtained from 
a random sample. The other value is called the sample mean. We would like to 
know how much difference to expect between the sample mean and the true mean. 
The average squared difference is called the variance of the sample mean. For a 
very large sample, the sample mean should be proportionately much closer to the 
true mean than for a smaller sample. This idea will lead to an uncertainty relation 
between the probable error in the estimated mean and the size of the sample. Let 
us be more precise. 
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The "true value" of the mean could be defined by flipping the coin n times 
and conceiving of n going to infinity. A more convenient definition of"  true value " 
is that the experiment could be conceived of as having been done separately under 
identical conditions by an infinite number of people (an ensemble). Such an arti- 
fice will enable us to define a time-variable mean for coins which change with time. 

The utility of the concept of an ensemble is often subjected to serious attack 
both from the point of view of the theoretical foundations of statistics and 
from the point of view of experimentalists applying the techniques of statistics. 
Nonetheless a great body of geophysical literature uses the artifice of assuming 
the existence of an unobservable ensemble. The advocates of using ensembles (the 
Gibbsians) have the advantage over their adversaries (the Bayesians) in that their 
mathematics is more tractable (and more explainable). So, let us begin! 

A conceptual average over the ensemble, called an expectation, is denoted 
by the symbol E. The index for summation over the ensemble is never shown 
explicitly; every random variable is presumed to  have one. Thus, the true mean 
at time t may be defined as 

If the mean does not vary with time, we may write 

m = E(x,) (all t )  (4-2-2) 

Likewise, we may be interested in a property of x, called its variance which 
is a measure of variability about the mean defined by 

The x, random numbers could be defined in such a way that a or m or both is 
either time-variable or constant. If both are constant, we have 

When manipulating algebraic expressions the symbol E behaves like a summation 
sign, namely 

Notice that the summation index is not given, since the sum is over the ensemble, 
not time. 

Now let x, be a time series made up from (identically distributed, independ- 
ently chosen) random numbers in such a way that m and a do not depend on time. 
Suppose we have a sample of n points of x, and are trying to determine the value of 
m. We could make an estimate rh of the mean m with the formula 



A somewhat more elaborate method of estimating the mean would be to take a 
weighted average. Let wt define a set of weights normalized so that 

z W ,  = 1 (4-2-7) 

With these weights the more elaborate estimate & of the mean is 

& = C W , X ,  (4-2-8) 

Actually (4-2-6) is just a special case of (4-2-8) where the weights are w,  = lln; 
t = l , 2  ,..., n. 

Our objective in this section is to determine how far the estimated mean & 
is likely to be from the true mean m for a sample of length n. One possible defini- 
tion of this excursion Am is 

(Am)2 = E[(& - m)'] (4-2-9) 

= ~ { [ ( x  wt x,) - m]') (4-2-10) 

Now utilize the fact that m = m 1 wt = w t m  

Now the expectation symbol E may be regarded as a summation sign and brought 
inside the sums on t and s. 

(Am)2 = 1 1 wt W ,  E[(xt - m)(x, - m)] (4-2- 14) 
t S 

By the randomness of xt and xs the expectation on the right, that is, the sum over 
the ensemble, gives zero unless s = t. If s = t, then the expectation is the variance 
defined by (4-2-4). Thus we have 

Now let us examine this final result for n weights each of size lln. For this case, 
we get 
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This is the most important property of random numbers which is not intuitively 
obvious. For a zero mean situation it may be expressed in words: " n  random 
numbers of unit magnitude add up to a magnitude of about the square root of n." 

When one is trying to estimate the mean of a random series which has a 
time-variable mean, one faces a basic dilemma. If one includes a lot of numbers in 
the sum to get Am small, then m may be changing while one is trying to measure it. 
In contrast, riz measured from a short sample of the series might deviate greatly 
from the true m (defined by an infinite sum over the ensemble at any point in time). 
This is the basic dilemma faced by a stockbroker when a client tells him, " Since 
the market fluctuates a lot I'd like you to sell my stock sometime when the price is 
above the mean selling price." 

If we imagine that a time series is sampled every z seconds and we let At = nz 
denote the length of the sample then (4-2-18) may be written as 

It is clearly desirable to have both Am and At as small as possible. If the original 
random numbers x, were correlated with one another, for example, if x, were 
an approximation to a continuous function, then the sum of the n numbers 
would not cancel to root n. This is expressed by the inequality 

The inequality (4-2-20) may be called an uncertainty relation between accuracy 
and time resolution. 

In considering other sets of weights one may take a definition of At which is 
more physically sensible than z times the number of weights. For example, if the 
weights w,  are given by a sampled gaussian function as shown in Fig. 4-1. then 
At could be taken as the separation of half-amplitude points, 1/e points, the time 
span which includes 95 percent of the area, or it could be given many other 
" sensible" interpretations. Given a little slop in the definition of Am and At, it is 
clear that the inequality of (4-2-20) is not to be strictly applied. 

Given a sample of a zero mean random time series x,, we may define another 
series y ,  by y ,  = xt2. The problem of estimating the variance a2 = p  of x,  is 
identical to the problem of estimating the mean m of y,. If the sample is short, we 
may expect an error Ap in our estimate of the variance. Thus, in a scientific paper 
one would like to write for the mean 

but since the variance a2 often is not known either, it is necessary to use the 
estimated 6, that is 
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FIGURE 4-1 
Binomial coefficients tend to the gaussian 
function. Plotted are the coefficients of 
Z' in ( .5  + .5Z)20. 

Of course (4-2-23) really is not right because we really should add something to 
indicate additional uncertainty due to error in 8. This estimated error would 
again have an error, ad infinitum. To really express the result properly, it is neces- 
sary to have a probability density function to calculate all the E(xn) which are 
required. The probability function can be either estimated from the data or chosen 
theoretically. In practice, for a reason given in a later section, the gaussian function 
often occurs. In the exercises it is shown that 

Since At = nz, by squaring we have 

The inequality applies if the random numbers x,  are not totally unpredictable 
random numbers. If x, is an approximation to a continuous function, then it is 
highly predictable and there will be a lot of slack in the inequality. 

Correlation is a concept similar to cosine. A cosine measures the angle 
between two vectors. It is given by the dot product of the two vectors divided by 
their magnitudes 
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Correlation is the same sort of thing, except x and y are scalar random variables, 
so instead of having a vector subscript their subscript is the implicit ensemble 
subscript. Correlation is defined 

In practice one never has an ensemble. There is a practical problem when the 
ensemble average is simulated by averaging over a sample. The problem arises 
with small samples and is most dramatically illustrated for a sample with only 
one element. Then the sample correlation is 

regardless of what value the random number x or the random number y should 
take. In fact, it turns out that the sample correlation 2 will always scatter away 
from zero. 

No doubt this accounts for many false " discoveries." The topic of bias and 
variance of coherency estimates is a complicated one, but a rule of thumb seems 
to be to expect bias and variance of 2 on the order of 1/& for samples of size n. 

EXERCISES 

@ Suppose the mean of a sample of random numbers is estimated by a triangle weighting 
function, i.e., 

Find the scale factor s so that E(m) = m. Calculate Am. Define a reasonable At. 
Examine the uncertainty relation. 

$) A random series x, with a possibly time-variable mean may have the mean estimated 
by the feedback equation 

(a)  Express m, as a function of x,, x,-I, . . . , and not m,-l. 
(b) What is At, the effective averaging time? 
( c )  Find the scale factor b so that if m, = m, then E(m,) = m. 
( d )  Compute the random error Am = [E(m - m)2]1i2 [answer goes to o ( ~ / 2 ) ' ~ ~  as 8 

goes to zero]. 
( e )  What is (Am)' At in this case? 

3 Show that 

4 Define the behavior of an independent zero-mean-time series x,  by defining the proba- 
bilities that various amplitudes will be attained. Calculate E(xi), E(xi2), (AP)'. 



If you have taken a course in probability theory, use a gaussian probability density 
function for xi . HINT: 

and 

4-3 FREQUENCY-STATISTICAL RESOLUTION 

Observations of sea level for a long period of time can be summarized in terms of 
a few statistical averages such as the mean height m and the variance a2. Another 
important kind of statistical average for use on such geophysical time series is 
the power spectrum. Some mathematical models explain only statistical averages 
of data and not the data themselves. In order to recognize certain pitfalls and 
understand certain fundamental limitations on work with power spectra, we first 
consider an idealized example. 

Let xt be a time series made up of independently chosen random numbers. 
Suppose we have n of these numbers. We can then define the data sample poly- 
nomial X(Z) 

We can now make up a power spectral estimate R(z) from this sample of random 
numbers by 

The difference between this and our earlier definition of spectrum is that a potller 
spectrum has the divisor n to keep the expected result from increasing linearly 
with the somewhat arbitrary sample size n. 

The definition of power spectrum is the expected value of a ,  namely 

It might seem that a practical definition would be to let n tend to infinity in (4-3-2) 
Such a definition would lead us into a pitfall which is the main topic of the present 
section. Specifically, from Fig. 4-2 we conclude that R(z) is a much fuzzier 
function than R(Z), so that 

R(Z)# l ima(Z)  (4-3-4) 
n-a, 

To understand why this is so, we identify coefficients of like powers of Z in (4-3-2). 
We have 
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FIGURE 4-2 
Amplitude spectra [R(z) ] ' I2  of samples of n random numbers. These functions 
seem to oscillate over about the same range for n = 512 as they do for n = 32. 
As n tends to infinity we expect infinitely rapid oscillation. 

enabling us to write (4-3-2) for real time series x,  = E, as 
n -  1 

= Po + 2 1 ?, cos ko (4-3-6) 
k =  1 

Let us examine (4-3-6) for large n.  To do this, we will need to know some of the 
statistical properties of the random numbers. Let them have zero mean m = E(x,) 
= 0 and let them have known constant variance a2 = E ( x , ~ )  and recall our assump- 
tion of independence which means that E(x,x ,+ , )  = 0 if 0 # s. Because of random 
fluctuations, we have learned to expect that 3, will come out to be a2 plus a random 
fluctuation component which decreases with sample size as I/&, namely 

Likewise, PI should come out to be zero but the definition (4-3-5) leads us to expect 
a fluctuation component 
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FIGURE 4-3 
Positive lags of autocorrelation of 36 random numbers. 

For the kth correlation value k > 1 we expect a fluctuation of order 

n - k  a2 
P k =  +-- 

Jn (4-3-7c) 

Equation (4-3-7) for a particular set of random numbers is displayed in Fig. 4-3. 
Now one might imagine that as n goes to infinity the fluctuation terms vanish and 
(4-3-2) takes the limiting form R = c2. Such a conclusion is false. The reason is 

,- 

that although the individual fluctuation terms go as 1 1  J n  the summation in 
(4-3-6) contains n such terms. Luckily, these terms are randomly canceling one 
another so the sum does not diverge as &. We recall that the sum of n random 
signed numbers of unit magnitude is expected to add up to a random number in 
the range f &. Thus the sum (4-3-6) adds up to 

This is the basic result that a power spectrum estimated from the energy density 
of a sample of random numbers has a fluctuation from frequency to frequency 
and from sample to sample which is as large as the expected spectrum. 

It should be clear that letting n go to infinity does not take us to the theoreti- 
cal result = a2. The problem is that, as we increase n, we increase the frequency 
resolution but not the statistical resolution. To increase the statistical resolution 
we need to simulate ensemble averaging. There are two ways to do this: (1) Take 
the sample of n points and break it into k equal-length segments of nlk points each. 
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Compute an R(o) for each segment and then add all k of the R(co) together, or 
(2) form R(m) from the n-point sample. Of the n/2 independent amplitudes, 
replace each one by an average over its k nearest neighbors. Whichever method, 
(1) or (2), is used it will be found that Af = 0.5klnz and (Ap/p)2 = inverse of number 
of degrees of freedom averaged over = Ilk. Thus, we have 

If some of the data are not used, or are not used effectively, we get the usual 
inequality 

Thus we see that, if there are enough data available (n large enough), we can get 
as good resolution as we like. Otherwise, improved statistical resolution is at the 
cost of frequency resolution and vice versa. 

We are right on the verge of recognizing a resolution tradeoff, not only 
between Af and Ap but also with At = nz, the time duration of the data sample. 
Recognizing now that the time duration of our data sample is given by At = nz, 
we obtain the inequality 

This inequality will be further interpreted and rederived from a somewhat different 
point of view in the next section. 

In time-series analysis we have the concept of coherency which is analogous 
to the concept of correlation defined in Sec. 4-2. There we had for two random 
variables x and y that 

Now if x, and y, are time series, they may have a relationship between them which 
depends on time-delay, scaling, or even filtering. For example, perhaps Y(Z) = 
F(Z) X(Z) + N(Z) where F(Z) is a filter and n, is unrelated noise. The generalization 
of the correlation concept is to define coherency by 

Correlation is a real scalar. Coherency is complex and expresses the frequency 
dependence of correlation. In forming an estimate of coherency it is always essential 
to simulate some ensemble averaging. Note that if the ensemble averaging were to 
be omitted, the coherency (squared) calculation would give 

ICI2 = cc= ( x Y ) ( ~  Y) 
( X X ) (  FY) 

= i - 1  



FIGURE 4-4 
Model of random time series generation. 

x, = random numbers - - 

which states that the coherency squared is + 1 independent of the data. Because 
correlation scatters away from zero we find that coherency squared is biased 
away from zero. 

4-4 TIME-FREQUENCY-STATISTICAL RESOLUTION 

f, 
Filter 

Many time functions are not completely random from point to point but become 
more random when viewed over a longer time scale. A popular mathematical 
model embodying this concept is to make a so-called stationary time series by 
putting random numbers into a filter as depicted in Fig. 4-4. The input x, may be 
independent random numbers or white light. [The two terms mean nearly the same 
thing in practice but the first term is the stronger; it means that x, is in no way re- 
lated to x, if t # s, whereas white light means that E(x,x,) = 0 if t # s.] The output 
random time series y,  may vary rather slowly from point to point if ji is a low-pass 
filter. This is the usual case when we are modeling conti~iuous time functions. The 
random time series may be called a stationary random time series if neither the filter 
nor any property of the random numbers (such as m or a)  vary with time. Station- 
arity is often assumed even where it cannot be strictly true. 

This model will be useful later when we consider the problem of predicting 
a future point on y, from knowledge of past values. Now we will use the model 
to examine the estimation of the spectrum of y,  given a sample of n points of y , .  
To begin with, we have a very precise meaning for the spectrum of y , .  We have 

y ,  = random time series 
e 

and its conjugate 

Multiplying (4-4-1) by (4-4-2) we get 

but, from the previous section, we learned that E ( x X )  = a2. Considering a2 to be 
unity, we see that the expected power spectrum of the output Y is the energy 
spectrum of the filter F. The overall situation is depicted in Fig. 4-5. The interest- 



Amplitude spectrum of  white noise sample 

Unsmoothed power spectral estimate 
o f  data sample 

0 n 

FIGURE 4-5 
Spectral estimation. 

ing question is how well can we estimate the spectrum when we start with an 
n-point sample of y, . We will describe three computationally different methods, 
all having the same fundamental limitations. 

The first method uses a bank of filters as shown in Fig. 4-6. When random 
numbers excite the narrowband filter, the output is somewhat like a sine wave. It 
differs in one important respect. A sine wave has constant amplitude, but the out- 
put of a narrowband filter has an amplitude which swings over a range. This is 
illustrated in Fig. 4-7. If the bandwidth is narrow, the amplitude changes slowly. 
If the impulse response of the filter has duration At,,,,,, , then the output amplitude 
at time t will be randomly related to the amplitude at time t + Atfilter. Thus, 

FIGURE 4-6 
Spectral estimate of a random series. 
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FIGURE 4-7 
1,024 random numbers before and after narrowband filtering. The filter was 
(1 -Z)/[(l-Z/Zo)(l -Z/ZO)] where Zo = 1.02 e ' " I 5 .  

in statistical averaging, it is not the number of time points but the number of 
intervals Atfilter which enhance the reliability of the average. Consequently, the 
decay time of the integrator Atintegrator will generally be chosen to be greater than 
Atfilter = l/AJ The variability Ap of the output p decreases as Atintegrator increases. 
Since v, has independent values over time spans of about Atfilter = l/AA then 
the " degrees of freedom " smoothed over can be written Atintegrator/Atfilter = 

Af Atintegrator. The variability Ap/p is proportional to the inverse square root of 
the number of degrees of freedom, and so we get 

or, introducing the usual inequality, 

The inequality (4-4-4) indicates the three-parameter uncertainty which is funda- 
mental to estimating power spectra of random functions. Two other methods of 
estimating the spectrum of y, from a sample of length n are exactly the same as 
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the methods described in Sec. 4-3 as ways of estimating the spectrum of white 
light. In fact, (4-4-4) turns out to be the same as (4-3-9). 

The usual interpretation is that to attain a frequency resolution of Af and a 
relative accuracy of Ap/p a time sample of duration at least At 2 l/[Af(Ap/p)2] 
will be required. Although this sort of interpretation is generally correct, it will 
break down for highly resonant series recorded for a short time. Then the data 
sample may be predictable an appreciable distance off its ends so that the effective 
At is somewhat (perhaps appreciably) larger than the sample length. 

EXERCISES 

I It is popular to taper the ends of a data sample so that the data go smoothly to zero 
at the ends of the sample. Choose a weighting function and discuss in a semiquanti- 
tative fashion its effect on At, Af, and (Apl~)~.  

2 Answer the question of Exercise 1, where the autocorrelation function is tapered 
rather than the data sample. 

4-5 THE CENTRAL-LIMIT THEOREM 

The central-limit theorem of probability and statistics is perhaps the most important 
theorem in the fields of probability and statistics. A derivation of the central limit 
theorem explains why the gaussian probability function is so frequently encoun- 
tered in nature; not just in physics but also in the biological and social sciences. 
No experimental scientist should be unaware of the basic ideas behind this theorem. 
Although the result is very deep and is even today the topic of active research, we 
can get to the basic idea quite easily. 

One way to obtain random integers from a known probability function is to 
write integers on slips of paper and place them in a hat. Draw one slip at a time. 
After each drawing replace the slip in the hat. The probability of drawing the inte- 
ger i is given by the ratio ai of the number of slips containing the integer i divided 
by the total number of slips. Obviously the sum over i of ai must be unity. Another 
way to get random integers is to throw one of a pair of dice. Then all ai equal zero 
except a, = a, = a, = a4 = a, = a6 = &. The probability that the integer i will 
occur on the first drawing and the integer j will occur on the second drawing is 
a ia j  . If you draw two slips or throw a pair of dice, then the probability that the 
sum of i and j equals k is readily seen to be 

Since this equation is a convolution, we may look into the meaning of the Z 
transform 
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FIGURE 4-8 
The complex numbers aceiak added 
together. 

AIm A 

* 
w = O  Re A 

In terms of Z transforms the probability that i plusj equals k is simply the coeffici- 
ent of Z k  in 

Obviously, if we add n of the random numbers, the probability that the sum of 
them equals k is given by the coefficient of Z k  in 

The central-limit theorem of probability says that as n goes to infinity the poly- 
nomial G(Z) goes to a special form, almost regardless of the specific polynomial 
A(Z). The specific form is such that a graph of the coefficients of G(Z)  comes 
closer and closer to fitting under the envelope of the bell-shaped gaussian function. 
Let us see why this happens. Our development will lack a mathematical rigor 
because the theorem is not always true. There are pathological A functions which 
do not result in G tending to gaussian. Despite the fact that some of the patholog- 
ical functions sometimes turn up in applications, we will not take the time here to 
look at such instances. 

Consider the size of A(Z) for real o. If co = 0, the sum of the terms of A(Z) 
may be visualized in the complex plane as a sum of vectors akeiwk all pointing in 
the positive real direction. If o # 0 the vectors point in different directions. This 
is shown in Fig. 4-8. 

In raising ~ ( e ' " )  to the nth power, the values of cu of greatest concern are 
those near o = 0 where A is largest-because in any region where A is small An 
will be extremely small. Near o = 0 or Z = 1 we may expand A ( Z )  in a power 
series in o 
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Note that the coefficients of this power series are proportional to the moments mi 
of the probability function; that is 

When we raise A(Z) to the nth power we will make the conjecture that only the 
given first three terms of the power series expansion will be important. (This 
assumption clearly fails if any of the moments of the probability function are 
infinite.) Thus, we are saying that as far as G is concerned the only important 
things about A are its mean value m = m, and its second moment m,. If this is 
really so, we may calculate G by replacing A with any function B having the same 
mean and same second moment as A.  We may use the simplest function we can 
find. A good choice is the so called binomial probability function given by 

Let us verify its first moment 

Now let us verify its second moment 

Hence, a should be chosen so that 
2 m2 = m + a2 (4-5-17) 



FIGURE 4-9 
Coefficients of [Zm(Z" + 2-")/2In. 

Of course, we cannot expect that m and a will necessarily turn out to be integers; 
therefore (4-5-1 1) will not necessarily be a Z transform in the usual sense. It does 
not really matter; we simply interpret (4-5-1 1) as saying: 

1 The probability of drawing the number m + a is one-half. 
2 The probability of m - a is one-half. 
3 The probability of any other number is zero. 

Now, raising (2" + Z-") to the nth power gives a series in powers of Z" whose 
coefficients are symmetrically distributed about Z to the zero power and whose 
magnitudes are given by the binomial coefficients. A sketch of the coefficients of 
B(Z)" is given in Fig. 4-9. 

We will now see how, for large n, the binomial coefficients asymptotically 
approach a gaussian. Approaching this limit is a bit tricky. Obviously, the sum 
of n random integers will diverge as A. Likewise the coefficients of powers of Z 
in (3 + 213)" individually get smaller while the number of coefficients gets larger. 
We recall that in time series analysis we used the substitution Z = ei" A'. We 
commonly chose At = 1, which had the meaning that data points were given at 
integral points on the time axis. In the present probability theory application of 
Z transforms, the choice At = 1 arises from our original statement that the numbers 
chosen randomly from the slips of paper were integers. Now we wish to add n of 
these random numbers together; and so, it makes sense to rescale the integers to 
be integers divided by ,/;. Then we can make the substitution -2 = ri" A' = eiwtJ'. 

The coefficient of Zk  now refers to the probability of drawing the number k / , / i .  
Raising (2" + 2-712 to the nth power to find the probability distribution for the 
sum of n independently chosen numbers, we get 

am ' - - (cos 3) 



Using the first term of the series expansion for cosine we have 

Using the well-known fact that (1 + xln)" -+ex, we have for large n 

[B(Z)In w e - ~ 2 ~ 2 1 2  (4-5- 18) 

The probability that the number t will result from the sum is now found by 
inverse Fourier transformation of (4-5-18). The Fourier transform of the gaussian 
(4-5-18) may be looked up in a table of integrals. It is found to be the gaussian 

4-6 CONFIDENCE INTERVALS 

It is always important to have some idea of the size and influence of random errors. 
It is often important to be able to communicate this idea to others in the form of 
a statement such as 

In a matter of any controversy you may be called upon to define a probability 
that the true mean lies in your stated interval; in other words, what is your confidence 
that m lies in the interval 

Before you can answer questions about probability, it is necessary to make some 
assumptions and assertions about the probability functions which control your 
random errors. The assertion that errors are independent of one another is your 
most immediate hazard. If they are not, as is often the case, you may be able to 
readjust the numerical value of n to be an estimate of the number of independent 
errors. We did something like this in time series analysis when we took n to be 
not the number of points on the time series but the number of intervals of length 
Atfi,,,, . The second big hazard in trying to state a confidence interval is the com- 
mon assumption that, because of the central-limit theorem and for lack of better 
information, the errors follow a gaussian probability function. If in fact the data 
errors include blunders which arise from human errors or blunders from transient 
electronic equipment difficulties, then the gaussian assumption can be very wrong 
and can lead you into serious errors in geophysical interpretation. Some useful 
help is found in the field of nonparametric statistics (see, for example, Ref. [18]). 

To begin with, it is helpful to rephrase the original question into one involv- 
ing the median rather than the mean. The median m, is defined as that value which 
is expected to be less than half of the population and greater than the other half. 
In many-if not most-applications the median is a ready, practical substitute for 



the arithmetic mean. The median is insensitive to a data point, which, by some 
blunder, is near infinity. In fact, median and mean are equal when the prob- 
ability function is symmetrical. For a sample of n numbers (xi, i = 1,2, . . . , n), 
the median m, may be estimated by reordering the numbers from smallest to largest 
and then selecting the number in the middle as the estimate of the median A,. 
Specifically, let the reordered xi be denoted by xi where xi I xi + , . Then we have 
A, = xi,, . Now it turns out that without knowledge of the probability density 
function for the random variables x i  we will still be able to compute the proba- 
bility that the true median m, is contained in the interval 

For example, set a = 1 and N = 100, the assertion is that we can now calculate 
the probability that the true median m, lies between the 40th and the 60th percentile 
of our data. The trick is this : Define a new random variable 

The step function equals + 1 if x > m, and equals 0 if x < m,. The new random 
variable y takes on only values of zero and one with equal probability; thus we 
know its probability function even though we may not know the probability 
function for the random variable x. Now define a third random variable s as 

Since each y ,  is zero or one, then s must be an integer between zero and n. Further- 
more, the probability that s takes the value j is given by the coefficient of ~j of 
(f + 212)". Now the probability that s lies in the interval n/2 - a& < s < n/2 + 
or& is readily determined by adding the required coefficients of z ~ ,  and this 
probability is by definition equal to the probability that the median m, lies in the 
interval (4-6-1). For cc = 1 and large n this probability works out to about 95 
percent. 


