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SPECTRAL FACTORIZATION 

As we will see, there is an infinite number of time functions with any given spectrum. 
Spectral factorization is a method of finding the one time function which is also 
minimum phase. The minimum-phase function has many uses. It, and it alone, 
may be used for feedback filtering. It will arise frequently in wave propagation 
problems of later chapters. It arises in the theory of prediction and regulation for 
the given spectrum. We will further see that it has its energy squeezed up as close 
as possible to t = 0. It determines the minimum amount of dispersion in viscous 
wave propagation which is implied by causality. It finds application in two-dimen- 
sional potential theory where a vector field magnitude is observed and the com- 
ponents are to be inferred. 

This chapter contains four computationally distinct methods of computing 
the minimum-phase wavelet from a given spectrum. Being distinct, they offer 
separate insights into the meaning of spectral factorization and minimum phase. 

3-1 ROOT METHOD 

The time function (2, 1) has the same spectrum as the time function (1, 2). The 
autocorrelation is (2, 5, 2). We may utilize this observation to explore the multi- 
plicity of all time functions with the same autocorrelation and spectrum. It would 
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seem that the time reverse of any function would have the same autocorrelation 
as the function. Actually, certain applications will involve complex time series; 
therefore we should make the more precise statement that any wavelet and its 
complex-conjugate time-reverse share the same autocorrelation and spectrum. Let 
us verify this for simple two-point time functions. The spectrum of (b,, b,) is 

The conjugate-reversed time function (ti,, 6,) with Z transform Br(Z) = 6, + 6,Z 
has a spectrum 

We see that the spectrum (3-1-1) is indeed identical to (3-1-2). Now we wish to 
extend the idea to time functions with three and more points. Full generality may 
be observed for three-point time functions, say B(Z) = b, + b,Z + b2z2.  First, 
we call upon the fundamental theorem of algebra (which states that a polynomial 
of degree n has exactly n roots) to write B(Z) in factored form. 

Its spectrum is 

Now, what can we do to change the wavelet (3-1-3) which will leave its 
spectrum (3- 1-4) unchanged ? Clearly, b, may be multiplied by any complex num- 
ber of unit magnitude. What is left of (3-1-4) can be broken up into a product of 
factors of form (Zi - l/Z)(Zi - Z). But such a factor is just like (3-1-1). The time 
function of (Zi - Z) is (Zi , - l), and its complex-conjugate time-reverse is (- 1, Zi). 
Thus, any factor (Zi - Z) in (3-1-3) may be replaced by a factor ( - 1 + ZiZ). In a 
generalization of (3-1-3) there could be N factors [(Zi - Z), i = 1, 2, . . . , N)]. Any 
combination of them could be reversed. Hence there are 2N different wavelets which 
may be formed by reversals, and all of the wavelets have the same spectrum. Let us 
look off the unit circle in the complex plane. The factor (Zi - Z) means that Zi is 
a root of both B(Z) and R(Z). If we replace (Zi - Z) by (- 1 + ZiZ) in B(Z), we 
have removed a root at Zi from B(Z) and replaced it by another at Z = l /Zi.  The 
roots of R(Z) have not changed a bit because there were originally roots at both 
Zi and l/Zi and the reversal has merely switched them around. Summarizing the 
situation in the complex plane, B(Z) has roots Zi which occur anywhere, R(Z) must 



FIGURE 3-1 
Roots of B(l /Z)  B(Z). 

have all the roots Zi and, in addition, the roots l / z i .  Replacing some particular 
root Zi by l/Zi changes B(Z) but not R(Z). The operation of replacing a root at 
Zi by one at l/Zi may be written as 

The multipyling factor is none other than the all-pass filter considered in an earlier 
chapter. With that in mind, it is obvious that B'(Z) has the same spectrum as B(Z). 
In fact, there is really no reason for Zi to be a root of B(Z). If Zi is a root of B(Z), 
then B'(Z) will be a polynomial; otherwise it will be an infinite series. 

Now let us discuss the calculation of B(Z) from a given R(Z). First, the roots 
of R(Z) are by definition the solutions to R(Z) = 0. If we multiply R(Z) by ZN 
(where R(Z) has been given up to degree N), then Z~R(Z)  is a polynomial and the 
solutions Zi to Z N ~ ( Z )  = 0 will be the same as the solutions of R(Z) = 0. Finding 
all roots of a polynomial is a standard though difficult task. Assuming this to have 
been done we may then check to see if the roots come in the pairs Zi and l /Zi .  
If they do not, then R(Z) was not really a spectrum. If they do, then for every 
zero inside the unit circle, we must have one outside. Refer to Fig. 3-1. Thus, 
if we decide to make B(Z) be a minimum-phase wavelet with the spectrum R(Z), 
we collect all of the roots outside the unit circle. Then we create B(Z) with 

This then summarizes the calculation of a minimum-phase wavelet from a 
given spectrum. When N is large, it is computationally very awkward compared 
to methods yet to be discussed. The value of the root method is that it shows 
certain basic principles. 

I Every spectrum has a minimum-phase wavelet which is unique within a 
complex scale factor of unit magnitude. 
2 There are infinitely many time functions with any given spectrum. 
3 Not all functions are possible autocorrelation functions. 



The root method of spectral factorization was apparently developed by 
economists in the 1920s and 1930s. A number of early references may be found in 
Wold's book, Stationary Time Series [Ref. 101. 

EXERCISES 

I How can you find the scale factor bN in (3-1-6)? 
2 Compute the autocorrelation of each of the four wavelets (4,0, -I), (2, 3, -2), 

(-2, 39% (LO, -4). 
3 A power spectrum is observed to fit the form P(w) = 38 + 10 cos u - 12 cos 2w. 

What are some wavelets with this spectrum? Which is minimum phase? [HINT: 

cos 2w = 2 cos2 w - 1 ; 2 cos o = Z + 1/Z; use quadratic formula.] 
4 Show that if a wavelet b, = (bo , bl , . . . , 6,) is real, the roots of the spectrum R come in 

the quadruplets Zo , l/Zo, z o ,  and l/Zo. Look into the case of roots exactly on the 
unit circle and on the real axis. What is the minimum multiplicity of such roots? 

3-2 ROBINSON'S ENERGY DELAY THEOREM [Ref. 111 

We will now show that a minimum-phase wavelet has less energy delay than any 
other one-sided wavelet with the same spectrum. More precisely, we will show 
that the energy summed from zero to  any time t for the minimum-phase wavelet is 
greater than or equal to  that of any other wavelet with the same spectrum. Refer 
t o  Fig. 3-2. 

We will compare two wavelets P, ,  and Pout which are identical except for 
one zero, which is outside the unit circled for Pout and inside for P i , .  We may 
write this as 

POU,(Z) = (b  + sZ)P(Z)  

Pi,(Z) = ( s  + bZ)P(Z) 

where b is bigger than s and P is arbitrary but of degree n. Next we tabulate the terms 
in question. 

n Time 

FIGURE 3-2 
Percent of total energy in a filter between time 0 and time t. 



SPECTRAL FACTORIZATION 53 

The difference, which is given in the right-hand column, is clearly always positive. 
To prove that the miminum-phase wavelet delays energy the least, the pre- 

ceding argument is repeated with each of the roots until they are all outside the 
unit circle. 

t 

EXERCISE 

I Do the foregoing minimum-energy-delay proof for complex-valued b, s, and P. 
[CAUTION: Does Pi, = (s + bZ)P or Pin = (S + bZ)P?] 

Pout 

3-3 THE TOEPLITZ METHOD 

The Toeplitz method of spectral factorization is based on special properties of 
Toeplitz matrices [Ref. 121. In this chapter we introduce the Toeplitz matrix to 
perform spectral factorization. In later chapters we will refer back several times 
to the algebra described here. When one desires to predict a time series, one can 
do this with a so-called prediction filter. This filter is found as the solution to 
Toeplitz simultaneous equations. Norman Levinson, in his explanatory appendix 
of Norbert Wiener's Time Series, first introduced the Toeplitz matrix to engineers; 
however, it had been widely known and used previously in the field of econometrics. 
It is only natural that it should appear first in economics because there the data 
are observed at discrete time points, whereas in engineering the idea of discretized 
time was rather artificial until the advent of digital computers. The need for pre- 
diction in economics is obvious. In seismology, it is not the prediction itself but 
the error in prediction which is of interest. Reflection seismograms are used in 
petroleum exploration. Ideally, the situation is like radar where the delay time is 
in direct proportion to physical distance. This is the case for the so-called primary 
reflections. A serious practical complication arises in shallow seas where large 
acoustic waves bounce back and forth between the sea surface and the sea floor. 
These are called multiple reflections. A mechanism for separation of the primary 
waves from the multiple reflections is provided by prediction. A multiple reflection 
is predictable from earlier echoes, but a primary reflection is not predictable from 
earlier echoes. Thus, the useful information is carried in the part of the seismo- 
gram which is not predictable. An oil company computer devoted to interpreting 

Pin Pkt - E n  
t 

2 (Pkt -pi%) 
k = O  
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seismic exploration data typically solves about 100,000 sets of Toeplitz simultaneous 
equations in a day. 

Another important application of the algebra associated with Toeplitz 
matrices is in high-resolution spectral analysis. This is where a power spectrum is 
to be estimated from a sample of data which is short (in time or space). The con- 
ventional statistical and engineering knowledge in this subject is based on assump- 
tions which are frequently inappropriate in geophysics. The situation was fully 
recognized by John P. Burg who utilized some of the special properties of Toeplitz 
matrices to  develop his maximum-entropy spectral estimation procedure described 
in a later chapter. 

Another place where Toeplitz matrices play a key role is in the mathematical 
physics which describes layered materials. Geophysicists often model the earth by 
a stack of plane layers or by concentric spherical shells where each shell or layer 
is homogeneous. Surprisingly enough, many mathematical physics books do not 
mention Toeplitz matrices. This is because they are preoccupied with forward 
problems; that is, they wish to calculate the waves (or potentials) observed in a 
known configuration of materials. In geophysics, we are interested in both forward 
problems and in inverse problems where we observe waves on the surface of the 
earth and we wish to deduce material configurations inside the earth. A later 
chapter contains a description of how Toeplitz matrices play a central role in such 
inverse problems. 

We start with a time function x, which may or may not be minimum phase. 
Its spectrum is computed by R(Z) = ~ ( ~ / z ) x ( z ) .  As we saw in the preceding sec- 
tions, given R(Z) alone there is no way of knowing whether it was computed from 
a minimum-phase function or a nonminimum-phase function. We may suppose 
that there exists a minimum phase B(Z) of the given spectrum, that is, R(Z) = 

B(l/Z) B(Z). Since B(Z) is by hypothesis minimum phase, it has an inverse 
A(Z) = l/B(Z). We can solve for the inverse A(Z) in the following way: 

To solve for A(Z), we identify coefficients of powers of 2. For the case where, for 
example, A(Z) is the quadratic a, + a ,Z  + a2Z2 ,  the coefficient of Z0 in (3-3-2) 
is 

The coefficient of Z' is 

and the coefficient of z2 is 
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Bringing these together we have the simultaneous equations 

It should be clear how to generalize this to a set of simultaneous equations of 
arbitrary size. The main diagonal of the matrix contains r, in every position. The 
diagonal just below the main one contains r, everywhere. Likewise, the whole 
matrix is filled. Such a matrix is called a Toeplitz matrix. Let us define a; = a,/a,. 
Recall by the polynomial division algorithm that 6 ,  = llii,. Define a positive 
number 2; = lla, G o .  Now, dividing the vector on each side of (3-3-4) by a,, we 
get the most popular form of the equations 

This gives three equations for the three unknowns a;, a;, and v. To put (3-3-5) 
in a form where standard simultaneous equations programs could be used one 
would divide the vectors on both sides by v. After solving the equations, we get 
a, by noting that it has magnitude I / &  and its phase is arbitrary, as with the root 
method of spectral factorization. 

At this point, a pessimist might interject that the polynomial A(Z) = a,+ 
a,Z + a , z 2  determined from solving the set of simultaneous equations might 
not turn out to be minimum phase, so that we could not necessarily compute B(Z) 
by B(Z)  = l / A ( Z ) .  The pessimist might argue that the difficulty would be especially 
likely to occur if the size of the set (3-3-5) was not taken to be large enough. 
Actually experimentalists have known for a long time that the pessimists were 
wrong. A proof can now be performed rather easily, along with a description of 
a computer algorithm which may be used to solve (3-3-5). 

The standard computer algorithms for solving simultaneous equations require 
time proportional to n3  and computer memory proportional to n2. The Levinson 
computer algorithm [Ref. 131 for Toeplitz matrices requires time proportional to 
n2 and memory proportional to n. First notice that the Toeplitz matrix contains 
many identical elements. Levinson utilized this special Toeplitz symmetry to 
develop his fast method. 

The method proceeds by the approach called recursion. That is, given the 
solution to the k x k set of equations, we show how to calculate the solution to the 
(k + 1) x (k + 1) set. One must first get the solution for k = 1 ; then one repeatedly 
(recursively) applies a set of formulas increasing k by one at each stage. We will 
show how the recursion works for real-time functions (r ,  = r - , )  going from the 
3 x 3 set of equations to the 4 x 4 set, and leave it to the reader to work out the 
general case. 

Given the 3 x 3 simultaneous equations and their solution ai 



then the following construction defines a quantity e given r3 (or r3 given e) 

The first three rows in (3-3-7) are the same as (3-3-6); the last row is the new defi- 
nition of e. The Levinson recursion shows how to calculate the solution a' to the 
4 x 4 simultaneous equations which is like (3-3-6) but larger in size. 

The important trick is that from (3-3-7) one can write a " reversed" system 
of equations. (If you have trouble with the matrix manipulation, merely write out 
(3-3-8) as simultaneous equations, then reverse the order of the unknowns, and 
then reverse the order of the equations.) 

The Levinson recursion consists of subtracting a yet unknown portion c ,  of (3-3-9) 
from (3-3-7) so as to get the result (3-3-8). That is 

To make the right-hand side of (3-3-10) look like the right-hand side of (3-3-8), we 
have to get the bottom element to vanish, so we must choose c3 = e/v. This 
implies that v' = u - c3 e = v - e2/zj = v[l - ( e / ~ ) ~ ] .  Thus, the solution to the 
4 x 4 system is derived from the 3 x 3 by 

We have shown how to calculate the solution of the 4 x 4 Toeplitz equations 
from the solution of the 3 x 3 Toeplitz equations. The Levinson recursion consists 
of doing this type of step, starting from 1 x 1 and working up to n x n. 

Let us reexamine the calculation to see why A(Z) turns out to be minimum 
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COMPLEX R, A, C , E , BOT , CONJG 
C(l)=-1. ; R(l)=l. ; A(l)=l. ; V(l)=l. 

200 DO 220 J=2,N 
A(J)=O. 
E=O. 
DO 210 I=2,J 

210 E=E+R(I) *A(J-I+1) 
C (J)=E/V (J-1) 

FIGURE 3-3 V(J)=V(J-1)-E*CONJG(C (J) ) 
A computer program to do the Levinson JH= (J+l) / 2  

DO 220 I=l,JH recursion. It is assumed that the input rk BOT=A(J-1+1)-c (J) *CONJG (A(I) ) 
have been normalized by division by ro . A(I)=A(I)-C(J)*CONJG(A(J-1+1)) 
The complex arithmetic is optional. 220 A(J-I+~)=BoT 

phase. First, we notice that u = l/Z, a, and u' = lliida6 are always positive. Then 
from (3-3-13) we see that - 1 < e/u < + 1. (The fact that c = e/u is bounded by 
unity will later be shown to correspond to the fact that reflection coefficients for 
waves are so bounded.) Next, (3-3-12) may be written in polynomial form as 

A ' ( Z ) = A ( Z ) - ( ~ / V ) Z ~ A ( ~ / Z )  (3-3-14) 

We know that z3 has unit magnitude on the unit circle. Likewise (for real time 
series), the spectrum of A(Z) equals that of A(l/Z). Thus (by the theorem of adding 
garbage to a minimum-phase wavelet) if A(Z) is minimum phase, then A1(Z) will 
also be minimum phase. In summary, the following three statements are equivalent: 

1 R(Z) is of the form X 
2 Ickl < 1. 
3 A(Z) is minimum phase. 

If any one of the above three is false, then they are all false. A program for the 
calculation of a, and c, from r, is given in Fig. 3-3. In Chap. 8, on wave propagation 
in layers, programs are given to compute r, from a, or c,. 

EXERCISES 

I The top row of a 4 x 4 Toeplitz set of simultaneous equations like (3-3-8) is (1, a, ;Ik, a). 
What is the solution ak? 

2 How must the Levinson recursion be altered if time functions are complex? Specific- 
ally, where do  complex conjugates occur in (3-3-1 I), (3-3-12), and (3-3-13)? 

3 Let A,(Z) denote a polynomial whose coefficients are the solution to  an  m x m set of 
Toeplitz equations. Show that if Bk(Z) = Z k A k ( Z - ' )  then 

2  n  

- 2 j R(Z)B.(Z)Z -" dm n 5 m vn a n m  - 
27l 0 

which means that the polynomial Bm(Z) is orthogonal to polynomial Z n  over the unit 
circle under the positive weighting function R. Utilizing this result, state why B, is 
orthogonal to B, ,  that is, 

1 2 n  

V .  6.. = - I R ( z l B . ( z ) ~ .  (i) dw 
2.rr 0 

(HINT: First consider n I m, then all n.) 



Toeplitz matrices are found in the mathematical literature under the topic of poly- 
nomials orthogonal on the unit circle. The author especially recommends Atkinson's 
book (Ref. 14). 

3-4 WHITTLE'S EXP-LOG METHOD [Ref. 151 

In this method of spectral factorization we substitute power series into other power 
series. Thus, like the root method, it is good for learning but not good for comput- 
ing. We start with some given autocorrelation r ,  where 

If I RI > 2 on the unit circle then a scale factor should be divided out. Insert this 
power series into the power series for logarithms. 

U ( Z )  = In R(Z) 

Of course, in practice this would be a lot of effort, but it could be done in a syste- 
matic fashion with a computer program. Now define U,' by dropping negative 
powers of Z from U ( Z )  

Insert this into the power series for the exponential 

The desired minimum-phase wavelet is B(Z);  its spectrum is R(Z).  To see why 
this is so, consider the following identities. 

- 1 uo 
= exp + z u,zk + + x ukz*)  

2 - 0 0  + 1 

00 

= exp (5 + 2 ukzk) exp (; + 1 U k ~ k )  
2 -00  1 

= exp [ u + (;)I exp I u + (z)] 


