
ONE-SIDED FUNCTIONS 

All physical systems share the property that they do not respond before they are 
excited. Thus the impulse response of any physical system is a one-sided time 
function (it vanishes before t = 0). In system theory such a filter function is called 
realizable. In wave propagation this property is associated with causality in that 
no wave may begin to arrive before it is transmitted. The lag-time point t = 0 
plays a peculiar and an important role. For this reason, many subtle matters will 
be much more clearly understood with sampled time than with continuous time. 
When a filter responds at and after lag time t = 0, we will say the filter is realizable 
or causal. The word causal is appropriate in physics where stress may cause (prac- 
tically) instantaneous strain and vice versa, but one should revert to the more 
precise words realizable or one-sided when using filter theory to describe economic 
or social systems where simultaneity is quite different from cause and effect. 

2-1 INVERSE FILTERS 

To understand causal filters better, we now take up the task of undoing what a 
causal filter has done. Consider that the output y ,  of a filter b,  is known but the 
input x ,  is unknown. See Fig. 2-1. 



FIGURE 2-1 
Sometimes the input to a filter is un- 
known. 

This is the problem that one always has with a transducerlrecorder system. 
For example, the output of a seismometer is a wiggly line on a piece of paper from 
which the seismologist may wish to determine the displacement, velocity, or 
acceleration of the ground. To undo the filtering operation of the filter B(Z), we 
will try to find another filter A(Z) as indicated in Fig. 2-2. 

To solve for the coefficients of the filter A(Z), we merely identify coefficients 
of powers of Z in B(Z)A(Z) = 1. For B(Z), a three-term filter, this is 

X ( Z )  = unknown 

(ao + alZ + a, z2 + a3 Z3 + . . .)(bo + b,Z + b2 Z2) = 1 (2-1-1) 

The coefficients of ZO, Z', Z2, . . . in (2-1-1) are 

From (2-1-2) one may get a, from bo. From (2-1-3) one may get a, from a, and 
the 6,. From (2-1-4) one may get a, from a,, a,, and the b, . Likewise, in the 
general case a, may be found from a,-, , a,-, , and the b, . Specifically, from 
(2-1-7) the a, may be determined recursively by 

B ( Z )  

Consider the example where B(Z) = 1 - 212; then, by equations like (2-1-2) 
to (2-1-7), by the binomial theorem, by polynomial division, or by Taylor's power 
series formula we obtain 

Y ( Z )  = known - b 

1 z z2 2 3  
A ( Z )  = = 1 + - + - + - +... (2-1-9) 

1 - 212 2 4 8  

FIGURE 2-2 x ( Z )  
The filter A ( Z )  is inverse to the filter -- B ( Z )  J A ( z )  ( x ( Z )  



FIGURE 2-3 
Factoring the polynomial B(Z) breaks the filter into many two-term filters. Each 
one should have a bounded inverse. 

We see that there are an infinite number of filter coefficients but that they drop off 
rapidly in size so that approximation in a computer presents no problem. The 
situation is not so rosy with the filter B(2) = 1 - 22. Here we obtain 

X * 

The coefficients of the series increase without bound. The outputs of the filter 
A(2) depend infinitely strongly on inputs of the infinitely distant past. [Recall that 
the present output of A(2) is a, times the present input x, plus a, times the previous 
input x,-,, etc., so a, represents memory of n time units earlier.] The implication 
of this is that some filters B(2) will not have useful finite approximate inverses 
A(Z) determined from (2-1-2) to  (2-1-8). We now seek ways to identify the good 
filters from the bad ones. With a two-pulse filter, the criterion is merely that the first 
pulse in B(2) be larger than the second. A more mathematical description of the 
state of affairs results from solving for the roots of B(Z), that is, find values of 2, 
for which B(2,) = 0. For the example 1 - 212 we find Z0 = 2. For the example 
1 - 22,  we find 2, = 3. The general case for wavelets with complex coefficients 
is that, if the solution value 2, of B(Z,) = 0 lies inside the unit circle in the complex 
plane, then l/B(Z) will have coefficients which blow up; and if the root lies outside 
the unit circle, then the inverse l/B(Z) will be bounded. 

Recalling earlier discussion that a polynomial B(Z) of degree N may be 
factored into N subsystems and that the ordering of subsystems is unimportant 
(see Fig. 2-3), we suspect that if any of the N roots of B(2) lies inside the unit 
circle we may have difficulty with A(2). Actual proof of this suspicion relies on a 
theorem from complex-variable theory about absolutely convergent series. The 
theorem is that the product of absolutely convergent series is convergent, and 
conversely the product of any convergent series with a divergent series is divergent. 
Another proof may be based upon the fact that a power series for l/B(Z) converges 
in a circle about the origin with a radius from the origin out to the first pole [the 
zero of B(2) of smallest magnitude]. Convergence of A(2) on the unit circle means, 
in terms of filters, that the coefficients of A(2) are decreasing. Thus, if all the 
zeros of B(2) are outside the unit circle, we will get a convergent filter from (2-1-8). 

Can anything at  all be done if there is one root or  more inside the circle? 
An answer is suggested by the example 
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Equation (2-1-1 1) is a series expansion in 112, that is, a Taylor series about infinity. 
It converges from Z = cn all the way in to a circle of radius 112. This means that 
the inverse converges on the unit circle where it must, if the coefficients are to be 
bounded. In terms of filters it means that the inverse filter must be one of those 
filters which responds to future inputs and hence is not physically realizable but 
may be used in computer simulation. 

In the general case, then, one must factor B(Z) into two parts: B(Z) = 

Bout(Z)Bin(Z) where Bout contains roots outside the unit circle and Bin contains the 
roots inside. Then the inverse of Bout is expressed as a Taylor series about the origin 
and the inverse of Bin is expressed as a Taylor series about infinity. The final 
expression for l/B(Z) is called a Laurent expansion for l/B(Z), and it converges 
on a ring surrounding the unit circle. Cases with zeros exactly on the unit circle 
present special problems. Sometimes you can argue yourself out of the difficulty 
but at other times roots on or even near the circle may mean that a certain computing 
scheme won't work out well in practice. 

Finally, let us consider a mechanical interpretation. The stress (pressure) in 
a material may be represented by x, , and the strain (volume change) may be repre- 
sented by y, .  The following two statements are equivalent; that is, in some situ- 
ations they are both true, and in other situations they are both false: 

STATEMENT A The stress in a material may be expressed as a linear combination of 
present and past strains. Likewise, the strain may be deduced from present and 
past stresses. 

STATEMENT B The filter which relates stress to strain and vice versa has all poles 
and zeros outside the unit circle. 

EXERCISES 

1 Find the filter which is inverse to (2 - 5 Z  + 22'). You may just drop higher-order 
powers of Z,  but an exact expression for the coefficients of any power of Z is preferred. 
(Partial fractions is a useful, though not necessary, technique.) Sketch the impulse 
response. 

2 Show that multiplication by (1 - Z )  in discretized time is analogous to time differ- 
entiation in continuous time. Show that dividing by (1 - Z )  is analogous to inte- 
gration. What are the limits on the integral? 

3 Describe a general method for determining A(Z) and B(Z) from a Taylor series of 
B(Z)/A(Z) = Co + C I Z  + C2 Z2 + . . . + Cm Zm where B(Z) and A(Z) are polynomials 
of unknown degree n and m, respectively. Work out the case C(Z) = 4 -2Z - 
$ZZ - &Z3 - &Z4 - - . Don't try this problem unless you are quite familiar with 
determinants. [HINT : Identify coefficients of B(Z) = A(Z)C(Z) .I 

2-2 MINIMUM PHASE 

In Sec. 2-1 we learned that knowledge of convergence of the Taylor series of 
l/B(Z) on J Z J  - 1 is equivalent to knowledge that B(Z) has no roots inside the 
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FIGURE 2-4 - * 
Real and imaginary parts of the Z trans- w 

form 1 - Z/ (1.25 e'2"13). 

unit circle. Now we will see that these conditions are also equivalent to a certain 
behavior of the phase of B(Z) on the unit circle. 

Let us consider the phase shift of the two-term filter 

By definition, phase is the arctangent of the ratio of the imaginary part to the real 
part. 

A graph of phase as a function of frequency looks radically different for p c 1 
than for p > 1. See Fig. 2-4 for the case p > 1. 

AIm B 

/- \ 

FIGURE 2-5 
Phase of the two-term filter of Fig. 2-4. 



FIGURE 2-6 
The phase of a two-term minimum- 
phase filter. 

The phase is the arctangent of Im B/Re B. The easiest way to keep track of 
the phase is in the complex B plane. This is shown in Fig. 2-5. 

Thus phase as a function of frequency is shown in Fig. 2-6. Notice that the 
phase 4 at o = 0 is the same as the phase at  o = 2n. This follows because the real 
and imaginary parts are periodic with 271. The situation will be different when 
there is a zero inside the unit circle; that is, p < 1. The real and imaginary parts 
are shown in Fig. 2-7 and the complex plane in Fig. 2-8. 

The phase 4 increases by 27r as o goes from zero to 2n because the circular 
path surrounds the origin. The phase curve is shown in Fig. 2-9. The case p > 1 
where 4(o)  = 4 ( o  + 27r) has come to be called minimum phase or minimum delay. 

Now we are ready to  consider a complicated filter like 

(Z - c,)(Z - c2) . . 
B(Z) = (2-2-1) 

(Z - a,)(Z - a,) . . 
By the rules of complex-number multiplication the phase of B(Z) is the sum of the 
phases in the numerator minus the sum of the phases in the denominator. Since we 
are discussing realizable filters the denominator factors must all be minimum 
phase, and so the denominator phase curve is a sum of curves like Fig. 2-6. The 
numerator factors may or may not be minimum phase. Thus the numerator phase 
curve is a sum of curves like either Fig. 2-6 or Fig. 2-9. If any factors at  all are like 
Fig. 2-9, then the total phase will resemble Fig. 2-9 in that the phase at w = 2n will 
be greater than the phase at o = 0. Then the filter will be nonminimum phase. 

2-3 FILTERS IN PARALLEL 

We have seen that in a cascade of filters the filter polynomials are multiplied 
together. One might conceive of adding two polynomials A(Z) and G(Z) when they 
correspond to filters which operate in parallel. See Fig. 2-10. 

When filters operate in parallel their Z transforms add together. We have 
seen that a cascade of filters is minimum phase if, and only if, each element of the 
product is minimum phase. Now we will see a sufficient (but not necessary) 
condition that the sum A(Z) + G(Z) be minimum phase. First of all, let us assume 
that A(Z) is minimum phase. Then we may write 
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FIGURE 2-7 
Real and imaginary parts of the two- 
term nonminimum-phase filter, 
1 - 1.25 Z e ~ ' ~ " ' ~ .  

FIGURE 2-8 
Phase in complex plane. 

FIGURE 2-9 
The phase of a two-term nonminimum-phase filter. 
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In X ( Z )  Y ( Z )  = [ A  ( Z )  + G (Z)1 X ( Z )  
b Out 

FIGURE 2-10 
Filters operating in parallel. 

The question of whether A ( Z )  + G ( Z )  is minimum phase is now reduced to deter- 
mining whether A ( Z )  and 1 + G ( Z ) / A ( Z )  are both minimum phase. We have 
assumed that A ( Z )  is minimum phase. Before we ask whether 1 + G ( Z ) / A ( Z )  is 
minimum phase we need to be sure that it's causal. Since l / A ( Z )  is expandable in 
positive powers of Z  only, then G ( Z ) / A ( Z )  is also causal. We will next see that a 
sufficient condition for 1 + G ( Z ) / A ( Z )  to be minimum phase is that the spectrum of 
A  exceeds that of G  at all frequencies. In other words, for any real o, 1 A  I > ( GI. 
Thus, if we plot the curve of G ( Z ) / A ( Z )  in the complex plane, for real 0 < o I 2n 
it lies everywhere inside the unit circle. Now if we add unity-getting 1 + G(Z)/ 
A ( Z ) ,  the curve will always have a positive real part. See Fig. 2-1 1. Since the 
curve cannot enclose the origin, the phase must be that of a minimum-phase 
function. In words, "You can add garbage to  a minimum-phase wavelet if you do  
not add too much." This somewhat abstract theorem has an immediate physical 
consequence. Suppose a wave characterized by a minimum phase A ( Z )  is emitted 
from a source and detected at a receiver some time later. At a still later time an 
echo bounces off a nearby object and is also detected at  the receiver. The receiver 
sees the signal Y ( Z )  = A ( Z )  + Z  " a A ( Z )  where n measures the delay from the first 
arrival to the echo and a  represents the amplitude attenuation of the echo. To see 
that Y ( Z )  is minimum phase, we note that the magnitude of Zn is unity and that the 
reflection coefficient a  must be less than unity (to avoid perpetual motion) so that 
Z n a A ( Z )  takes the role of G ( Z ) .  Thus a minimum-phase wave along with its echo is 
minimum phase. We will later consider wave propagation situations with echoes of 
the echoes ad infiniturn. 

FIGURE 2-1 1 
Phase of a positive real function lies 
between f 4 2 .  



EXERCISES 

1 Find two nonrninimum-phase wavelets whose sum is minimum phase. 
2 Let A(Z) be a minimum-phase polynomial of degree N. Let A'(Z) = ZN2(1/Z) .  Locate 

in the complex Z plane the roots of A'(Z). A'(Z) is called maximum phase. [HINT: Work 
the simple case A(Z) = a. + alZ first.] 

3 Suppose A(Z) is maximum phase and that the degree of G(Z) is less than or equal to 
the degree of A(Z). Assume 1 A I > I GI. Show that A(Z) + G(Z)  is maximum phase. 

4 Let A(Z) be minimum phase. Where are the roots of A(Z) + cZNA( l /Z)  in the three 
cases I c 1 < 1, I c 1 > 1, I c 1 = 1 ? ( H I N T :  The roots of a polynomial are continuous 
functions of the polynomial coefficients.) 

2-4 POSITIVE REAL FUNCTIONS 

Two similar types of functions called admittance functions Y(Z)  and impedance 
functions I(Z) occur in many physical problems. In electronics, they are ratios of 
current to voltage and of voltage to current; in acoustics, impedance is the ratio of 
pressure to velocity. When the appropriate electrical network or acoustical region 
contains no sources of energy, then these ratios have the positive real property. To 
see this in a mechanical example, we may imagine applying a known force F(Z) and 
observing the resulting velocity V(Z) .  In filter theory, it is like considering that 
F(Z) is input to a filter Y(Z)  giving output V(Z) .  We have 

This filter Y(Z) is obviously causal. Since we believe we can do it the other way 
around, that is, prescribe the velocity and observe the force, there must exist a 
convergent causal I(Z) such that 

F(Z) = I(Z) V(Z)  (2-4-2) 

Since Y and I  are inverses of one another and since they are both presumed bounded 
and causal, then they both must be minimum phase. 

First, before we consider any physics, note that if the complex number a + ib 
has a positive real part a, then the real part of (a + ib)-' namely a/(a2 + b2) is also 
positive. Taking a + ib to represent a value of Y ( Z )  or I(Z) on the unit circle, we 
see the obvious fact that if either Y or I  has the positive real property, then the 
other does, too. 

Power dissipated is the product of force times velocity, that is 

This may be expressed in terms of Z transforms as 

1 
Power = - coeff of Z0 of V 

2 
(2-4-4) 

= j+, [v($ F(Z)  + F ( $ )  v(z)] dm 22.n -, 
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Using (2-4-1) to eliminate V(Z) we get 

1 1 += 
Power = - - J F (i) [ Y (i) + Y(z)] F(Z) dco 

2271 -, 

We note that Y(Z) + Y(1IZ) looks superficially like a spectrum because the coeffi- 
cient of Zk equals that of Z-k, which shows the symmetry of an autocorrelation 
function. Defining 

(2-4-4) becomes 

' /+ 'R(Z)F(~)F(Z)dw (2-4-6) Power = - - 
2271 - A  

The integrand is the product of the arbitrary positive input force spectrum 
and R(Z). If the power dissipation is expected to be positive at all frequencies (for 
all FF), then obviously R(Z) must be positive at all frequencies; thus R is indeed a 
spectrum. Since we have now discovered that Y(Z) + Y(l/Z) must be positive for 
all frequencies, we have discovered that Y(Z) is not an arbitrary minimum-phase 
filter. The real part of both Y(Z) and Y(I/Z) is 

Since the real part of the sum must be positive, then obviously the real part of each 
of the equal parts must be positive. 

Now if the material or mechanism being studied is passive (contains no 
energy sources) then we must have positive dissipation over a time gate from 
minus infinity up to any time t. Let us find an expression for dissipation in such a 
time gate. For simplicity take both the force and velocity vanishing before t = 0. 
Let the end of the time gate include the point t = 2 but not t = 3. 

Define 

To find the work done over all time we may integrate (2-4-6) over all frequencies. 
To find the work done in the selected gate we may replace F by F' and integrate over 
all frequencies, namely 
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All functions of time + 4 

One-sided functions of time 
7 C 

(causal) 

Having finite energy 
4 

(realizable) 

I Admittance or 

FIGURE 2-12 
Important classes of time functions. 

As we have seen, this integral merely selects the coefficient of Z0 of the integrand. 
Let us work this out. First, collect coefficients of powers of Z in R(Z)F'(Z). We 
have 

To obtain the coefficient of Z0 in F'(l/Z)[R(Z) Ff(Z)] we must multiply the top row 
above by f b ,  the second row by f; and the third row by f;. The result can be 
arranged in a very orderly fashion by 

Not only must the 3 x 3 quadratic form (2-4-9) be positive (i.e., W, 2 0 for 
arbitrary&) but all t x t similar quadratic forms W, must be positive. 

In conclusion, the positive real property in the frequency domain means that 
Y(Z) + Y(l /Z)  is positive for any real and the positive real property in the time 
domain means that all t x t matrices like that of (2-4-9) are positive definite. 
Figure 2-12 summarizes the function types which we have considered. 
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Narrowband 

W 

FIGURE 2-13 
Spectra of various filters. 

EXERCISES 

1 In mechanics we have force and velocity of a free unit mass related by dvldt = f o r  
u = j'_, f dt. Compute the power dissipated as a function of frequency if integration 
is approximated by convolution with ( . 5 ,  l . ,  I . ,  I . ,  . . .). [HINT: Expand (1 + Z ) /  
2(1 - Z )  in positive powers of 2.1 

2 Construct an example of a simple function which is minimum phase but not positive 
real. 

2-5 NARROW-BAND FILTERS 

Filters are often used to modify the spectrum of given data. With input X(Z), 
filter B(Z), and output Y(Z) we have Y(Z) = B(Z)X(Z) and the Fourier conjugate 
F(l/Z) = B(l/Z)X(l/Z). Multiplying these two relations together we get 

which says that the spectrum of the input times the spectrum of the filter equals the 
spectrum of the output. Filters are often characterized by the shape of their 
spectra. Some examples are shown in Fig. 2-13. 

We will have frequent occasion to deal with sinusoidal time functions. A 
simple way to represent a sinusoid by Z transforms is 



FIGURE 2-14 
The time function associated with a simple pole just outside the unit circle at 
Zo = 1 .1  etnls. 

The time function associated with this Z transform is eiWot, but it is "turned on " at 
t = 0. Actually, the left-hand side of (2-5-1) contains a pole exactly on the unit 
circle, so that the series sits on the borderline between convergence and divergence. 
This can cause paradoxical situations [you could expand (2-5-1) so that the sinusoid 
turns off at t = 0] which we will avoid by pushing the pole from the unit circle to a 
small distance E outside the unit circle. Let 2, = (1 + &)eiW0. Then define 

The time function corresponding to B(Z) is zero before t = 0 and is e -  i"Ot/(l + &It 
after t = 0. It is a sinusoidal function which decreases gradually with time accord- 
ing to (1 + &)-'. The coefficients are shown in Fig. 2-14. 
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It is intuitively obvious, although we will prove it later, that convolution with the 
coefficients of (2-5-2), which are sketched in Fig. 2-14, is a narrow-banded filtering 
operation. If the pole is chosen very close to the unit circle, the filter bandpass 
becomes narrower and narrower and the coefficients of B(Z) drop off more and 
more slowly. To actually perform the convolution it is necessary to truncate, that 
is, to drop powers of Z beyond a certain practical limit. It turns out that there is a 
very much cheaper method of narrow-band filtering than convolution with the 
coefficients of B(Z). This method is polynomial division by A(Z). We have for the 
output Y(Z) 

Multiply both sides of (2-5-4) by A(Z) 

Y(Z)A (2) = X(Z) (2-5-5) 

For definiteness, let us suppose the x, and y, vanish before t = 0. Now identify 
coefficients of successive powers of Z. We get 

Y3a0-k yzal +yla2 + y o a ,  = x 3  

etc. 

A general equation is 

Solving for yk we get 

Equation (2-5-8) may be used to solve for y, once y, -, , y, - ,  , . . . are known. Thus 
the solution is recursive, and it will not diverge if the a ,  are coefficients of a mini- 
mum-phase polynomial. In practice the infinite limit on the sum is truncated 
whenever you run out of coefficients of either A(Z) or Y(Z). For the example we 
have been considering, B(Z) = l/A(Z) = l/(1 - Z/Z,), there will be only one term 
in the sum. Filtering in this way is called feedbackfifiltering, and for narrowband 
filtering it will be vastly more economical than filtering by convolution, since there 



are much fewer coefficients in A(Z) than B(Z) = l/A(Z). Finally, let us examine the 
spectrum of B(Z). We have 

and 

1 - 2 cos (w - 0,) 
= 1 +  

(1 + E ) ~  I + &  

1 2 -- 2 
= 1 +  + - [l - cos (u, - u,,)] 

1 + E  1 + E  

sin 
2 

To a good approximation this function may be thought of as I/[&' + (w - u,,)']. 
A plot of (2-5-9) is shown in Fig. 2-15. 

Now it should be apparent why this is called a narrowband filter. It amplifies 
a very narrow band of frequencies and attenuates all others. The frequency window 
of this filter is said to be Ao FZ 22 in width. The time window is At = I/&, the damp- 
ing time  ons st ant of the damped sinusoid b, . 

One practical disadvantage of the filter under discussion is that although its 
input may be a real time series its output will be a complex time series. For many 
applications a filter with real coefficients may be preferred. 

One approach is to follow the filter [l ,  eiwO/(l + E)] by the time-domain, 
complex conjugate filter [l, e- iWO/(l + E)]. The composite time-domain operator is 
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4 

FIGURE 2-15 
Spectrum associated 
at Z ,  = (1 + E) e i w O .  

with a single pole 

now [I,  (2 cos coO)/(l + E), 1 / ( 1  + E ) ~ ]  which is real. [Note that the complex 
conjugate in the frequency domain is B ( l / Z )  but in the time domain it is B(Z)  = 

6 ,  + &,Z + . . -3. The composite filter may be denoted by B(z)B(z). The spectrum 
of this filter is [~(z)B(i~z)][B(z)~(i/z)]. One may quickly verify that the spectrum 
of B(Z)  is like that of B(Z) ,  but the peak is at -ao instead of +coo.  Thus, the 
composite spectrum is the product of Fig. 2-15 with itself reversed along the fre- 
quency axis. This is shown in Fig. 2-16. 

EXERCISES 

1 A simple feedback operation is y, = (1 - ~ ) y , - ~  + X, . This operation is called leaky 
integration. Give a closed form expression for the output yr if X I  is an impulse. What 
is the decay time 7 of your solution (the time it takes for y, to drop to  e-'yo)? For 
small E, say = 0.1, .001, or 0.0001, what is T ? 

2 How far from the unit circle are the poles of 1/(1 - .I Z $  .9 Z Z ) ?  What is the decay 
time of the filter and its resonant frequency? 

3 Find a three-term real feedback filter to pass 59-61 Hz on data which are sampled at 
500 pointslsec. Where are the poles? What is the decay time of the filter? 

2-6 ALL-PASS FILTERS 

In this section we consider filters with constant unit spectra, that is, B ( Z ) B ( I I Z )  = 1 .  
In other words, in the frequency domain B(Z)  takes the form ei4(") where 4 is real 
and is called the phase shift. Clearly BB = 1 for all real 4. It  is an easy matter to  
construct a filter with any desired phase shift; one merely Fourier transforms 
ei4(") into the time domain. If 4(w) is arbitrary, the resulting time function is 
likely to  be two-sided. Since we are interested in physical processes which are 
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1 
Spectrum 

FIGURE 2-16 
Spectrum of a two-pole filter where one pole is like Fig. 2-15 and the other is at the 
conjugate position. 

causal, we may wonder what class of functions 4(o) corresponds to one-sided time 
functions. The easiest way to proceed is to begin with a simple case of a single- 
pole, single-zero all-pass filter. Then more elaborate all-pass filters can be made up 
by cascading these simple filters. Consider the filter 

Note that this is a simple case of functions of the form Z N A ( 1 / Z ) / ~ ( Z ) ,  where A ( Z )  
is a polynomial of degree N or less. Now observe that the spectrum of the filter p ,  
is indeed a frequency-independent constant. The spectrum is 

Multiply top and bottom on the left by Z .  We now have 



FIGURE 2-17 
The pole of the all-pass filter lies outside 
the unit circle and the zero is inside. 
They lie on the same radius line. 

It is easy to show that P(l/Z)P(Z) = 1 for the general form P(Z) = zNA(I/Z)/ 
A(Z). If Z, is chosen outside the unit circle, then the denominator of (2-6-1) can be 
expanded in positive powers of Z and the expansion is convergent on the unit 
circle. This means that causality is equivalent to Z, outside the unit circle. Setting 
the numerator of P(Z) equal to zero, we discover that the zero Z = 1/2, is then 
inside the unit circle. The situation is depicted in Fig. 2-17. To see that the pole and 
zero are on the same radius line, express Z0 in polar form r ,  e i 4 ~ .  

From Sec. 2-2 (on minimum phase) we see that the numerator of P is not 
minimum phase and its phase is augmented by 2n as w goes from 0 to 2n. Thus the 
average group delay d4/do is positive. Not only is the average positive but, in fact, 
the group delay turns out to be positive at every frequency. To see this, first note 
that 

The phase of the all-pass filter (or any complex number) may be written as 

Since I PI = 1 the real part of the log vanishes; and so, for the all-pass filter (only) 
we may specialize (2-6-5) to 
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Using (2-6-4) the group delay is now found to  be 

The numerator of (2-6-7) is a positive real number (since I Z, I > l), and the de- 
nominator is of the form A(l/Z)A(Z), which is a spectrum and also positive. Thus 
we have shown that the group delay of this causal all-pass filter is always positive. 

Now if we take a filter and follow it with an all-pass filter, the phases add and 
the group delay of the composite filter must necessarily be greater than the group 
delay of the original filter. By the same reasoning the minimum-phase filter must 
have less group delay than any other filter with the same spectrum. 

In summary, a single-pole, single-zero all-pass filter passes all frequency 
components with constant gain and a phase shift which may be adjusted by the 
placement of a pole. Taking Z, near the unit circle causes most of the phase shift 
to be concentrated near the frequency where the pole is located. Taking the pole 
further away causes the delay to be spread over more frequencies. Complicated 
phase shifts or group delays may be built up by cascading several single-pole filters. 

EXERCISES 

1 An example of an all-pass filter is the time function p, = (3, - 2 ,  -8, - & - .). Calcu- 
late a few lags of its autocorrelation by summing some infinite series. 

2 Sketch the amplitude, phase, and group delay of the all-pass filter ( 1  - ZoZ)/ (Zo - Z )  
where Zo = ( 1  + &)eiWo and E is small. Indicate important parameters on the curve. 

3 Show that the coefficients of an all-pass, phase-shifting filter made by cascading 
(1 - Zo Z) / (Zo - 2) with ( 1  - Zo Z) / (Zo - Z )  are real. 

4 A continuous time function is the impulse response of a continuous-time, all-pass 
filter. Describe the function in both time domain and frequency domain. Interchange 
the words time and frequency in your description of the function. What is a physical 
example of such a function? What happens to the statement: "The group delay of an 
all-pass filter is positive."? 

5 A graph of the group delay ~ ~ ( 0 )  in equation (2-6-7) shows T ,  to be positive for all w .  
What is the area under T ,  in the range 0 < w < 27r. ( H I N T :  This is a trick question you 
can solve in your head.) 

2-7 NOTCH FILTER AND POLE ON PEDESTAL 

In some applications it is desired to reject a very narrow frequency band leaving 
the rest of the spectrum little changed. The most common example is 60-Hz noise 
from power lines. Such a filter can easily be made with a slight variation on the 
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Narrowband All-pass Notch Constant Pole on 
pedestal 

FIGURE 2-18 
Pole and zero locations for some simple filters. Circles are unit circles in the 
Z plane. Poles are marked by X and zeros by 0. 

all-pass filter. In the all-pass filter the pole and zero have an equal (logarithmic) 
relative distance from the unit circle. All we need to do is to put the zero closer to 
the circle. In fact, there is no reason why we should not put the zero right on the 
circle. Then the frequency at  which the zero is located is exactly canceled from the 
spectrum of input data. If the undesired frequency need not be completely rejected, 
then the zero can be left just inside or outside the circle. As the zero is moved 
farther away from the circle, the notch becomes less deep until finally the zero is 
farther from the circle than the pole and the notch has become a hump. The result- 
ing filter which will be called pole on pedestal is in many respects like the narrowband 
filter discussed earlier. Some of these filters are illustrated in Figs. 2-18 and 2-19. 
The difference between the pole-on-pedestal and the narrowband filters is in the 
asymptotic behavior away from a,. The former is flat, while the latter continues to 
decay with increasing I a - ao, I .  This makes the pole on pedestal more convenient 
for creating complicated filter shapes by cascades of single-pole filters. 

Narrowband filters and sharp cutoff filters should be used with caution. 
An ever-present penalty for such filters is that they do not decay rapidly in time. 
Although this may not present problems in some applications, it will do so in 
others. Obviously, if the data collection duration is shorter or comparable to the 
impulse response of the narrowband filter, then the transient effects of starting up 
the experiment will not have time to die out. Likewise, the notch should not be 
too narrow in a 60-Hz rejection filter. Even a bandpass filter (easier to implement 
with fast Fourier transform than with a few poles) has a certain decay rate in the 
time domain which may be too slow for some experiments. In radar and in reflection 
seismology the importance of a signal is not related to its strength. Late-arriving 
echoes may be very weak, but they contain information not found in earlier echoes. 
If too sharp a frequency characteristic is used, then filter resonance from early 
strong arrivals may not have decayed sufficiently by the time that the weak late 
echoes arrive. 

EXERCISES 

I Consider a symmetric (nonrealizable) filter which passes all frequencies less than 
coo with unit gain. Frequencies above oo are completely attenuated. What is the rate 
of decay of amplitude with time for this filter? 
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FIGURE 2-19 
Amplitude vs. frequency for narrowband filter (NB) and pole-on-pedestal filter 
(PP). Each has one pole at Zo = 1.2 eix13. A second pole at Zo = 1.2 e-'"I3 

enables the filters to be real in the time domain. 

2 Waves spreading from a point source decay in energy as the area on a sphere. The 
amplitude decays as the square root of the energy. This implies a certain decay in 
time. The time-decay rate is the same if the waves reflect from planar interfaces. 
To what power of time t do the signal amplitudes decay? For waves backscattered to 
the source from point reflectors, energy decays as distance to the minus fourth power. 
What is the associated decay with time? 

3 Discuss the use of the filter of Exercise 1 on the data of Exercise 2. 
4 Design a single-pole, single-zero notch filter to reject 59 to 61 Hz on data which are 

sampled at 500 points per second. 

2-8 THE BILINEAR TRANSFORM 
Z transforms and Fourier transforms are related by the relations Z = ei" and 
io = In Z. A problem with these relations is that simple ratios of polynomials in Z 
do not translate to ratios of polynomials in o and vice versa. The approximation 
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is easily solved for Z as 

These approximations are often useful. They are truncations of the exact power 
series expansions 

and 

For a Z transform B(Z) to be minimum phase, any root Z, of 0 = B(Z,) 
should be outside the unit circle. Since 2, = exp{i[Re (w,) + i Im (o,)]) and 
IZO I = e-'m(oo), it means that for minimum phase Im (a,) should be negative. 
(In other words, coo is in the lower half-plane.) Thus it may be said that Z = ei" 
maps the exterior of the unit circle to the lower half-plane. By inspection of 
Figs. 2-20 and 2-21, it is found that the bilinear approximation (2-8-1) or (2-8-2) 
also maps the exterior of the unit circle into the lower half-plane. 

Thus, although the bilinear approximation is an approximation, it turns out 
to exactly preserve the minimum-phase property. This is very fortunate because if a 
stable differential equation is converted to a difference equation via (2-8-l), the 
resulting difference equation will be stable. (Many cases may be found where the 
approximation of a time derivative by multiplication with 1 - Z would convert a 
stable differential equation into an unstable difference equation.) 

A handy way to remember (2-8-1) is that -iw corresponds to time differen- 
tiation of a Fourier transform and (1 - Z) is the first differencing operator. The 
(1 + 2) in the denominator gets things "centered" at Z1I2. 

To see that the bilinear approximation is a low-frequency approximation, 
multiply top and bottom of (2-8-1) by Z-'I2 

= - 2i sin u/2 
cos w/2 

G = 2 tan 012 (2-8-5) 

Equation (2-8-5) implicitly refers to a sampling rate of one sample per second. 
Taking an arbitrary sampling rate At, the approximation (2-8-5) becomes 

o At z 2 tan u At12 (2-8-6) 

This approximation is plotted in Fig. 2-22. Clearly, the error can be made as small 
as one wishes merely by sampling often enough; that is, taking At small enough. 
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FIGURE 2-20 E 4 2 m  + .693i iZ 

Some typical points in the Z-plane, the F 2 2 m  - .693i - i$ 
o-plane, and the &-plane. 

% plane 

w plane 

w plane 

FIGURE 2-21 
The points of Fig. 2-20 displayed in the Z plane, the w plane, and the &-plane. 
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FIGURE 2-22 
The accuracy of the bilinear trans- 
formation approximation. 

From Fig. 2-22 we see that the error will be only a few percent if we choose At 
small enough so that omax At 5 1 .  Readers familiar with the folding theorem will 
recall that it gives the less severe restraint o,,,At < n. Clearly, the folding theorem 
is too generous for applications involving the bilinear transform. 

Now, by way of example, let us take up the case of a pole 11-io at  zero 
frequency. This is integration. For reasons which will presently be clear, we will 
consider the slightly different pole 

where E is small. Inserting the bilinear transform, we get 

By inspection of (2-8-8) we see that the time-domain function is real, and as E goes 
to zero it takes the form (.5, 1, 1, 1, . . .). (Taking E positive forces the step to go out 
into positive time, whereas E negative would cause the step to rise at negative time.) 
The properties of this function are summarized in Fig. 2-23. It is curious to note 
that if time domain and frequency domain are switched around, we have the quadra- 
ture filter described in Fig. 1-17. 



FIGURE 2-23 
Properties of the integration operator. 

EXERCISE 

I In the solution to diffusion problems, the factor F(w) = I/(-iw)"* often arises as a 
multiplier. To see the equivalent convolution operation, find a causal, sampled-time 
representationI; of F ( o )  by identification of powers of Z in 

Solve numerically for fo through f7. 


