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INTRODUCTION

Motivation

In the context of this paperimage synthesisis the process of transforming an uncorrelated
image to one with the same textural qualities as a known “traning image” (TI for short). The
traditional applications of image synthesis have been in computer graphics, but same ideas
will prove useful for earth scientists, due to the nature of their experimental measurements.

To create the synthesized image (SI for short), we first compute some of the TI’s key
one-point and two-point statistics and then impose these statistics on the SI. To overcome
the difficulties in estimation induced by scale variance, our method utilizes the “Laplacian
Pyramid” decomposition, a simple and well known tool for multiscale image analysis.

The Laplacian Pyramid

The general class of linear transform decomposes an image into various components by mul-
tiplication with a set of transform functions. Some examples are the Discrete Fourier and Dis-
crete Cosine Transforms, the Singular Value Decomposition, and finally, the Wavelet Trans-
form, of which the Laplacian Pyramid and other subband transforms are simple ancestors.

Real-world digital images are in general both scale-variant and highly nonstationary in
space. They contain a variety of objects and features (lines, shapes, patterns, edges) at differ-
erent scales, orientations, and spatial locations; features which the ideal image transformation
should independently extract into easily manipulable components (?).

The Laplacian Pyramid decomposition, originally developed by Burt and Adelson (?), is
illustrated in Figure 1 for a two-level pyramid. The following pseudocode describes the simple
process for a pyramid with an arbitrary number of levels.
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g = makeGaussianFilt ()

do( i = 0 : nScales-1 ) {
l i = g∗ fi
hi = fi − l i
fi +1 = subSamp2( l i )

}

output: fnScales,h1 · · ·hnScales

Notice from the pseudocode that the pyramid consists ofnScales “highpass” bandshi and
a “lowpass” band,fnScales. Thehi contain most of the image’s important textural features, at
different scales. The Laplacian Pyramid is named as such because the process of computing
hi by subracting a blurred copyfi from fi is equivalent to convolvingfi with (approximately)
the Laplacian of the Gaussian blurring filter.

+
-

l 0

h 0

f
0

f
1 l 1 f

2

+
-

h 1

BLUR SUBSAMP BLUR SUBSAMP

Figure 1: Decomposition step for two-level Laplacian Pyramid. The finished pyramid consists
of the two “highpass” bands,h0 andh1, and the “lowpass” band,f2. lapl-pyr-decomp[NR]

The reconstruction step for a two-level Laplacian Pyramid proceeds in preditictable fac-
tion, and is illustrated in figure 2. The following pseudocode describes the process for a
pyramid with an arbitrary number of scales.
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g = makeGaussianFilt ()

do( i = nScales:-1:2 ) {
l i −1 = g∗upSamp2( fi )
fi −1 = hi + l i −1

}

output: f0

The functionupSamp2() simply inserts zeros between the samples offi , raising its size by
a factor of two.
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Figure 2: Reconstruction step for two-level Laplacian Pyramid. The process begins with the
two “highpass” bands,h0 andh1, and the “lowpass” band,f2, and then perfectly reconstructs
the starting image,f0. lapl-pyr-recon[NR]

Statistics Matching

Image synthesis is the process of first measuring the key statistics which characterize the
texture of the TI, and then imposing these statistics on the SI. Below we describe the procedure
used to perform the matching of the key statistics used to characterize the TI: the histogram
and the autocovariance.
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• Histogram Matching

The process of modifying the histogram of an image to best match the histogram of an-
other image is a mature subject with many optimized approaches already in the literature
(?). Since our code is in MATLABT M, we rely on the canned routinehisteq() . Given
standardized input and “target” images,histeq() works by finding the point transfor-
mation which minimizes the error between the CDF’s of the target image and of the
transformation of a flat histogram.

• Autocovariance Matching

The autocovariance of a functionh(x, y) is the inverse Fourier Transform of its ampli-
tude spectrum:

C(x, y) = F −1
{H (kx,ky)H∗(kx,ky)} (1)

The amplitude spectrum of a 2-D function contains much of its pertinent spatial correla-
tion information, and hence, much of its structure. The goal is to force another function,
g(x, y), to possess a similar structure ash(x, y), without directly copying. First write
g(x, y) as follows:

g(x, y) = F −1
{|A|ei φ

} (2)

Our approach is simple; substitute the Fourier Transform ofC(x, y) for the amplitude
of the Fourier Transform ofg(x, y):

gout(x, y) = F −1
{|F {C(x, y)}|ei φ

} (3)

The amplitude spectrum of a function contains the “textural” features of an image
(shapes, trends, orientations), while the phase spectrum localizes these features in space.
Note that in creatinggout(x, y) from g(x, y), the phase is left unchanged. Ifg(x, y) is a
random image, it will have the general appearence ofh(x, y), with a different (random)
phase.

Algorithm

Now that the foundation for the Laplacian Pyramid and statistics matching has been laid, we
present our algorithm for texture synthesis. In a statistical context, the goal is to compactly
parameterize the TI’s textural features in terms of a set of statistics, and then to impart these
statistics on an uncorrelated image, thus producing an SI with a similar texture. However, as
mentioned above, the TI’s textural features are generally scale-variant, making the character-
ization of all features at once quite difficult. Ideally, the subbands of the Laplacian Pyramid
each contain unique image features at different scales.

The following pseudocode paints a clearer picture of the procedure. The SI (synthImg )
begins as a random image.
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synthImg = makeRandomImg()

synthPyr = makeLPyr(synthImg)

trainPyr = makeLPyr(trainImg)

do( i = 1 : Niter) {

synthPyr = matchCovariance(synthPyr,trainPyr)

synthPyr = matchHistogram(synthPyr,trainPyr)

}

synthImg = reconLPyr( synthPyr)

output: synthImg

The SI begins as random numbers. We decompose both the TI and the SI into their respec-
tive Laplacian Pyramids, and iterate, performing the aforementioned covariance and histogram
matching technique between corresponding subbands of each pyramid. Finally, the synthetic
pyramid is reconstructed and output.

RESULTS

Figure 3: This method does a mar-
velous job of synthesizing the sepele
bark image. Though it obviously
has features with different characteris-
tic size, the image is roughly stationary
upon inspection, and its spatial features
are not sharply localized in space, and is
thus quite easy to synthesize.sepele
[NR]

training

 Range: [67, 159] 
 Dims: [128, 128] 

synthesis

 Range: [67, 159] 
 Dims: [128, 128] 
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Figure 4:Excellent performance. Both
the texture of the wood and the lin-
eations along its length are synthesized
seamlessly. wood [NR]

training

 Range: [0, 255] 
 Dims: [128, 128] 

synthesis

 Range: [0, 255] 
 Dims: [128, 128] 

Figure 5:This image is simply param-
eterized in terms of two-point statistics,
which our algorithm uses, hence the ex-
cellent synthesis of the herringbone fab-
ric image. This result effectively main-
tains the vertical homogeneity property
of the TI. herringbone[NR]

training

 Range: [0, 255] 
 Dims: [128, 128] 

synthesis

 Range: [0, 255] 
 Dims: [128, 128] 

Figure 6: The result is quite good.
Many (not all) of the solid black areas
in the output look like squares, and the
relative density of squares is quite simi-
lar. rand-squares[NR]

training

 Range: [0, 255] 
 Dims: [128, 128] 

synthesis

 Range: [0, 255] 
 Dims: [128, 128] 
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Figure 7: At a first glance, one might
expect a similarly striking result as the
herringbone fabric synthesis. Unfortu-
nately, the method was nowhere near as
successful, though we don’t character-
ize this result as a failure, either. The
differences between this image and the
herringbone are subtle: lower contrast
in most regions, less regularity within
patches of constant weave, some resid-
ual curvature in the lower portion of the
image. fabric [NR]

training

 Range: [0, 255] 
 Dims: [128, 128] 

synthesis

 Range: [5.15, 255] 
 Dims: [128, 128] 

Figure 8:Our method performs surpris-
ingly poorly on this image. The com-
plexity of the localization is severe; for
instance, the randomly placed patches of
constant gray are localized within indi-
vidual bricks, and must be so in the SI.
brick [NR]

training

 Range: [10, 255] 
 Dims: [128, 128] 

synthesis

 Range: [10, 255] 
 Dims: [128, 128] 

Figure 9: The simplistic appearence
of this image is misleading, for it is
highly difficult to synthesize. The fea-
tures which we must synthesize are the
edges, which occur at a multitude of dif-
ferent orientations. polygons [NR]

training

 Range: [0, 255] 
 Dims: [128, 128] 

synthesis

 Range: [0, 255] 
 Dims: [128, 128] 


