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Causal decon 
spikes here.

We spike here.
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See vplot movie

Shot waveforms varying with
the amount of pre-causal time.
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Ricker wavelet

First bubble

2 3 4

τ
from 1001 GoM seismograms
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AfterBefore
Notice polarity alternation.

Yilmaz & Cumro shot profile #33
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Why does this work?

Deconvolve with the right wavelet.

Then seismogram polarity becomes clear.
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Why does this work?

Deconvolve with the right wavelet.

Then seismogram polarity becomes clear.

Why does conventional decon fail?

Ricker wavelets have no causal inverse.
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Generally equivalent terms and concepts

Blind decon
Predictive decon
Causal decon
Autoregression,  Yule&Walker 1927
Minimum-phase decon,  MIT GAG 1954
Wiener-Levinson-Burg decon, Toeplitz
Kolmogoroff decon  (1939)

    (in my textbook FGDP 1974)
    (the code is in my book PVI 1992)

t, N2

ω, N log N
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I adapt Kolmogoroff to “mostly causal” inverse.
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real signal
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analytic signal
Imaginary part is 90 degree phase shifted.

FT               step weight               IFT

even

odd

Hilbert Transform
David Hilbert 1862-1943

imaginary

imaginary
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S̄ = elog S̄ = eŪ

S = elog S̄+iΦ = eŪ+iΦ = eU

S̄ is a given amplitude spectrum.
Φ is an unknown phase.
sτ = FT−1[S] is the shot waveform.
uτ = FT−1[U ] is “lag-log” parameter space.
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Hilbert

40 years later 
Kolmogorov
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Log spectrum

                                               even                   

 0                   0                           0                      

0                   0                         odd                    

0                   0                           0                    

(causal)

IFT               step weight               FT

Andrey Kolmogorov 1903-1987          
David Hilbert 1862-1943

Ū Ū
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uτ
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Kolmogoroff-Wiener theorem (about 1940):

“If lag-log space uτ is causal, then shot sτ is too.”

S = elog S̄+iΦ = eŪ+iΦ = eU

S̄ is a given amplitude spectrum.
Φ is an unknown phase.
sτ = FT−1[S] is the shot waveform.
uτ = FT−1[U ] is “lag-log” parameter space.
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Kolmogoroff-Wiener theorem (about 1940):

“If lag-log space uτ is causal, then shot sτ is too.”

S = elog S̄+iΦ = eŪ+iΦ = eU

With this theorem you can do deconvolution
by spectral factorization

(and more!)

So let’s prove it.
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Kolmogoroff-Wiener theorem (about 1940):
“If lag-log space is causal then shot is too.”

Given a causal time function (1, u1, u2, u3, · · · ) with
Z = eiω∆t, the Z-transform U(Z) = 1 + u1Z + u2Z2 +
u3Z3+· · · is secretly a Fourier series. Exponentiate U(Z)
by writing eU(Z(ω)) for all ω then Fourier transforming.

Another exponential is eU = 1+U+U 2/2!+U 3/3!+· · · .
Inserting U into eU gives us a new polynomial (infinite se-
ries) with no powers of 1/Z. It always converges because
of the powerful influence of the denominator factorials.
Thus we have shown that the “exponential of a causal is
a causal”.
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In Fourier space,

the wavelet is eU ;

its inverse is e−U .

Thursday, May 24, 2012



18

1. Large valued lags in uτ affect only large lags in the
wavelet IFT(eU) or the decon filter IFT(e−U). Why?
Put U = 1 + Z10 into eU .

Main facts about lag-log u(t) space
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1. Large valued lags in uτ affect only large lags in the
wavelet IFT(eU) or the decon filter IFT(e−U). Why?
Put U = 1 + Z10 into eU .

2. Small valued lags in uτ affect mainly the small lags
in the wavelet and the decon filter.

Main facts about lag-log u(t) space
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0

Ricker wavelet

First bubble

2 3 4

τ
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1. Large valued lags in uτ affect only large lags in the
wavelet IFT(eU) or the decon filter IFT(e−U). Why?
Put U = 1 + Z10 into eU .

2. Small valued lags in uτ affect mainly the small lags
in the wavelet and the decon filter.

3. The bubble is at the large lags; the Ricker wavelet is
at the small.

Main facts about lag-log u(t) space
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1. Large valued lags in uτ affect only large lags in the
wavelet IFT(eU) or the decon filter IFT(e−U). Why?
Put U = 1 + Z10 into eU .

2. Small valued lags in uτ affect mainly the small lags
in the wavelet and the decon filter.

3. The bubble is at the large lags; the Ricker wavelet is
at the small.

4. We are going to mess with the small lags.
Ricker has no phase. No odd part, no phase.

Main facts about lag-log u(t) space

Here comes the innovation.
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The innovation

Identify the odd part of the lag-log space.

Weight it down at small lags.

That gives even response (Ricker-like) at small lags.
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Why does it work?

Deconvolve with the right wavelet.

Then seismogram polarity becomes clear.
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Before

Yilmaz & Cumro shot profile #33
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No parameter tuning
(allow 60ms precursor)

I simply did
one filter,
all traces.

There are also the
usual issues
estimating spectra.
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What’s good about this

Predictive deconvolution makes the assumption that
the inverse source wavelet is causal, 
which is untrue for Ricker wavelets.

Thus marine seismology is ripe for a revolution, 
after which polarity should be routinely observable.

It’s a starting solution and 
a regularization for inverse theory.
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CONCLUSION (1)
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What’s bad about this

It makes the false assumption that 
a white output is desirable.

It ignores sparseness 
as a characteristic of much real data.

It makes the false assumption that
echo data may be gained before filtering.
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CONCLUSION (1I)
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That’s all there is to it!

The code is listed in the article.
(six lines added to the textbook code)

Enjoy!
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p.s.   If you make any examples, I’d love to see them.
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The end...
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The end...

The last practice talk for this talk 
is available at youtube.com

http://sep.stanford.edu/sep/jon/
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