
Fitting while whitening nonstationary residuals

Jon Claerbout
http: // sep. stanford. edu/ sep/ jon/ decfit. pdf

ABSTRACT

While fitting a model to given data, I simultaneously whiten nonstationary resid-
uals in both data space and model space. Last year we learned how, in the
presence of nonstationary noise in multidimensional space how to solve three
classes of problems: (1) deconvolution, (2) missing data, and (3) simulating data
with the nonstationary spectrum of given data. This year I extend that class of
problems to general model m building for data fitting, ∆m = FT AT A(Fm−d).
In space of any dimension we need only store A, a Prediction Error Filter (PEF)
in the zone of the transition from the filtered to the unfiltered. I propose nine
test cases and projects.

INTRODUCTION

Multidimensional PEFs are powerful data analysis tools that can deal effectively with
spatially aliased data. Most of the time-series literature (perhaps all of its textbooks)
presume data spectra are time invariant (a.k.a. stationary) while most applications
involve spectra that change in time and space. Hence there is a strong need for
nonstationary tools. Textbook theory (GIEE) tells us that PEF output tends to
spectrally white. We design here a time variable PEF (TV-PEF) that pushes output
towards a steady white even while the input spectrum varies. Statistical theory tells
us we need Independent Identically Distributed (IID) residuals. In signal and image
estimation practice the statistical term “IID” means that signals and images are
spectrally white (the leading “I”) and of uniform variance (the “ID”). Here deals
only with the first “I”. The approach here is “streaming,” meaning that the entire
data volume need not be kept in memory—it all flows through the box that I define
here. Whether your entire process allows streaming naturally depends on whether
your F operator in 0 ≈ Fm− d allows it.

We also overcome a fundamental conundrum. Inverse theory, invented by math-
ematicians, says it will guide us to the “best” solution, but first we must supply a
good deal of statistical information about the “best” solution. Whoa! Additionally,
we must supply a good deal of statistical information about the misfit of theory and
experiment. Hold your horses! If we haven’t seen a solution yet, how can we know
the statistics of the misfit of models to data?

We’re pragmatic people. Let us not be so fussy. We can always begin by guessing



Claerbout 2 Fitting while whitening residuals

that the data misfit statistics will resemble the data statistics. Since we study seis-
mic image estimation it seems reasonable to start with the assumption that the data
variance, decreasing as it does with t−2, matches the data residual variance. That’s
for the time domain. Likewise for space. In this paper we work only with multidi-
mensional filtering, which amounts to weighting in the multidimensional frequency
domain.

In principle, PEFs whiten signals [GIEE]. We are just starting out. We’d like to
know the PEF that whitens the ultimate fitting residuals that we don’t have yet.
So, let us change the PEF at every iteration. By whitening our current residuals we
whiten our final residuals. This is more proper than guessing that the final residual
spectrum is the same as the data spectrum! (Theory states that iteration-variable
weighting harms some solvers, while others are immune.) What happens to people
who use suboptimal weights and PEFs? They do not use their data “efficiently” (a
statistical term). We are ready to go, wondering if we might consistently outperform
our forebears in iteration count as well as solution quality. Even if not, we remain
enthusiastic. The tool here handles both nonstationarity and spatial aliasing,
massive issues in seismic imaging.

BEGIN IN ONE DIMENSION

Begin with 1.5 pages of review of work I did last year with Sergey. Suppose we have
a PEF that represents all previous moments in time. Call it ā = (1, ā1, ā2, ā3, · · · ).
Say that ā represents data values (d1, d2, d3, · · · , d98). We seek to define the a that
represents that data with an appended data value d99.

Consider the regression:
0
0
0
0
0

 ≈


d99 d98 d97 d96

γ · · ·
· γ · ·
· · γ ·
· · · γ




1
a1

a2

a3

 − γ


0
1
ā1

ā2

ā3

 (1)

The top row says we are trying to fit a new data point d99. The bottom block says
the new PEF a should be pretty similar to the PEF that fit earlier data, ā. The
parameter γ should be big enough that the new data point d99 does not change a
very much. Rewrite equation (1) as

0
0
0
0

 ≈


dn dn−1 dn−2

γ 0 0
0 γ 0
0 0 γ


 a1

a2

a3

 −


−dn+1

γ ā1

γ ā2

γ ā3

 (2)

or, in a shortened block-matrix notation, we have the residual to minimize

0 ≈ r =

[
dT

γ I

]
a −

[
−dn+1

γ ā

]
, (3)



Claerbout 3 Fitting while whitening residuals

where I is the identity matrix and

d =

 dn

dn−1

dn−2

 , a =

 a1

a2

a3

 ,

For decades Bernard “Bernie” Widrow (Wikipedia) attacked problems of this
nature by defining a quadratic form and finding its gradient. Then he repeatedly made
small steps down the gradient (not up). How big are the small steps? Experience
teaches. The quadratic form is rT r. We take its derivative to find the search direction.

∆a = − (some constant)
∂

∂aT

∣∣∣∣
a=ā

rT r (4)

Form the transpose of the residual (3) and then differentiate by aT . (By aT we mean
the complex conjugate transpose of a.)

∂rT

∂aT
=

∂

∂aT

{
aT [d γI] − [−dn+1 γā]

}
= [d γI] (5)

and multiply that onto r from (3) keeping in mind that dT ā is a scalar.

∆a ∝ ∂rT

∂aT
r = [d γI]

{[
dT

γ I

]
a −

[
−dn+1

γ ā

]}
(6)

= d(dT a) + γ2a + ddn+1 − γ2ā (7)

∆a ∝ ∂rT

∂aT

∣∣∣∣
a=ā

r = (dT ā + dn+1) d (8)

It is certainly surprising that the analytic solution to the regression (1) compu-
tationally amounts to a single step of the optimization strategy (8), a strategy so
crude as to be absent from textbooks. Yet that is so (REFER TO SEP REPORT)1

Experimentalists will first notice that (1) demands we supply a not-given constant γ
while (8) and its coming equivalent (9) demands a not-given constant λ.

Now we recast (8) so as to best understand how to choose the not-given step size.
The expression (dT ā + dn+1) in (8) is the prediction error. The prediction filter a
takes data to predicted data, so it has no physical units. The parameter we define for
the aggressiveness of PEF adaptation will be unit free. The gradient (8) has units of
data squared so it needs a normalizing factor of the same units such as a local data
variance σ̂2

d. Now we choose a dimensionless parameter λ that we will learn from
experience. I put λ in the denominator so the larger the value of λ the slower the
adaptation rate. Thus λ represents something like the size of the statistical averaging
region measured in pixels. I would begin experimentation with λ = 100.

∆a = a− ā = − 1

λ

(
prediction error

σ̂2
d

)
d (9)

1http://sep.stanford.edu/sep/jon/streamingSergey.pdf



Claerbout 4 Fitting while whitening residuals

We likely wish to define local variance σ̂2
d with the same averaging region that we are

defining the PEFs, so

σ̂d2
t

=
λ− 1

λ
σ̂d2

t−1
+

1

λ
d2

t (10)

Perhaps the divisor in equation (9) should scale by σrσd instead of σ2
d. Experience

will show.

It is almost obvious how and why Equation (9) works. It adds a little piece of
data d to the filter ∆a. That same little piece of data is going into the filter and
d · d > 0. Whether that piece should be scaled positively or negatively depends on
the polarity of the prediction error (which depends on dn+1). Stunningly simple, is it
not? And the cost is near nothing.

APPLYING THE ADJOINT OF A STREAMING FILTER

Those of us with a long history of filtering think of a filter adjoint as running the
filter backwards. That view arises with recursive filters whose adjoint must indeed
run backwards. With nonrecursive filters, such as prediction error, there is a more
basic view. In a (nonrecursive) linear operator program, the inputs and outputs can
be exchanged to produce the adjoint. For example the pseudocode below applies a
filter “a” to data “d” to get a residual “r”.

do it = na, nt {
do ia = 1, na {

if operator itself
y(it) += x(it-ia+1) × a(ia) # one output y(t) pulls

if adjoint
x(it-ia+1) += y(it) × a(ia) # one input y(t) pushes

}
}

Observe the time axis runs forward for both the operator and its adjoint AT . To
update a model requires both a PEF A and its adjoint. Define

r = (Fm− d) (11)

q = A(Fm− d) (12)

s = AT A(Fm− d) (13)

∆m = FT AT A(Fm− d) (14)

You take care of F and r. I next give you pseudocode for s = AT Ar.



Claerbout 5 Fitting while whitening residuals

do it = na, nt {
do ia = 1, na {

q(it) += r(it-ia+1) × a(ia) # pull
}

do ia = 1, na {
s(it-ia+1) += q(it) × a(ia) # push
}

Using equation (9), update filter a(ia=1,na)
}

Notice that the program also works when the time axis is run backwards. In two
dimensions, either or both the axes may be run backwards. Flipping axes flips the
region in which statistics are gathered.

AVERAGING IN TIME AND SPACE

A streaming 1-D prediction filter is an average of earlier prediction filters, however
these earlier filters need not be all saved in memory. Since they vary smoothly we
may simply use the most recent one. Take the ā of one dimension. In two dimensions,
for example time and space, it becomes some average of its previous value on each of
those two axes.

ā(t, x) = cos2 θ a(t−∆t, x) + sin2 θ a(t, x−∆x) (15)

where θ is an adjustable parameter for the user to specify the shape of the region for
gathering statistics. With equation (15), equation (9) becomes

a(t, x) = ā(t, x) − 1

λ

(
prediction error

σ̂2
d

)
d (16)

Sweeping across the x axis for all t requires in memory all PEFs at x−∆x, but only
the one PEF at t−∆t. In 3-D it looks like we will need a plane of PEFs. In higher
dimensional spaces we need store PEFs only in the zone of the transition from the
filtered to the unfiltered. Thus in 5-D we need to store a 4-D volume of PEFs. Don’t
let that trouble you though. Since the PEFs are all smoothly variable they could be
linearly interpolated from a sparse mesh. PEFs on the previous trace a(t, x − ∆x)
might be smoothed symmetically on the time axis so the region of averaging expands
from a quadrant to a halfspace.

PEFS FOR BOTH FITTING AND STYLING

Having PEF A on the regularization and PEF B on the fitting, the gradient is

∆m = FT BT Br + ε2AT Am (17)



Claerbout 6 Fitting while whitening residuals

which may be coded as we did equations (11)-(14). Naturally, the PEF B is applicable
only on those data-space axes that are regularly sampled such as along a marine cable.

We have ignored preconditioning. It’s important for covering large gaps such as
at cable ends. But in most applications we have more modest goals such as data
sampling irregularities and gaps the size of streamer separations. Furthermore, the
speed of this method might render preconditioning irrelevant even on larger gaps.

Big stoppers for conventional analysis are two: (1) nonstationarity (2) spatial
aliasing. Our PEFs can handle both.

CONCLUSIONS AND FUTURE WORK

The theory and programming sketch above seems fairly complete and ready to run.
Some of us may use cgstep while new students use sepsolve. Here are some pre-
liminary tests, some of them pathfinders of textbook value.

1. Extend a shot gather: We should see conflicting dips extended appropriately
off the cable ends. We could always try preconditioning (polynomial division),
but because the new methods are ultra fast they alone might compensate for
lack of preconditioning?

2. Velocity transform: It’s always fun to transform (t, x) to (τ, s). Do we au-
tomatically get sharp resolution? Can we obtain more sparsity in model space
simply by introducing softclip? This is really promising and should be easy to
test. Is it relevant or irrelevant to estimate off-end traces in data space?

3. Streaming interpolation while stacking Could we regularize and interpo-
late data, then add it into the final image without ever storing the interpolated
data? Start by assuming one of every three traces is missing.

4. Flip flop shooting In multistreamer seismic data acquisition left- and rightside
guns fire alternating pops. How is this paper relevant?

5. Madagascar: Should be a pleasing demonstration of nonstationarity. There
are a few spikes in the interior, and many around the periphery but code exists
to mask out those data values.

6. Vesuvius: Are we correct to expect different PEFs on different sides of the
mountain? Textbook method lacks weights, but they are easy to include. Text-
book also coarse binned the given high density data partly to reduce noise but
mainly to speed computation. Is coarse binning still necessary?

7. Galilee: To avoid all the noise we could use the solution from the book to make
noise-free data. On the real data, large noise is the main issue. It would be
delightful should we discover replacing the data residual by its softclip solves
the problem of nonstationary model with bursty noise.



Claerbout 7 Fitting while whitening residuals

8. Flipping axes: Running a time or space axis backwards flips the quadrant in
which statistics are gathered. What are the disadvantages and possible advan-
tages? When should we be running both ways?

9. Deep learning: Start from the assumption that one of the above projects
works well. By testing a wide range of shapes and sizes (λ and θ) we should gain
insights about the appropriate choice. Nonstationary filters adapt to changing
changing spectra, but they don’t know how slow (big size) to adapt. Can we
quantify it, teaching them to learn? See Bernard Widrow at Wikipedia.

SIGNAL GRIDDING

Old thoughts

A universal problem in applied geophysics is signals (time functions) on irregular
(x, y)-space axes. Denote the signals dt(x, y). With L being linear interpolation and
A being a regularizer, the gridding problem might be posed as a collection of many
2-D regressions, each with the same operator.[

L
A

]
[· · ·mtmt+1mt+2 · · · ] ≈

[
· · ·dtdt+1dt+2 · · ·

· · ·0 · · ·

]
(18)

Write the collection of desired solutions as M = [· · ·mtmt+1mt+2 · · · ] and likewise
for D. The analytic solution to the regression (18) is M = (LT L + ε2AT A)−1LT D.
Iterative solvers easily give a solution for any one of the mt, but we had no sensible
way to come up with the inverse of the 2-D operator (LT L + ε2AT A)−1. Given it, we
would easily have mt for all t, though in principle it’s a full, dense matrix, so most
likely would be approximated by a low order product of L’s and A’s which starts to
look like solving the original regression at each t.

New thoughts

Let us try another approach. Define m = [· · ·mtmt+1mt+2 · · · ] as a 3-D (t, x, y)
space. Like equations (17) and (11)-(14) we may deduce PEFs B and A and the
gradient ∆m

∆m = LT BT B(Lm− d) + ε2AT Am (19)

Naturally, the PEF B is nontrivial only on data-space axes that are regularly sampled.
Equation (19) is fundamentally better than (18) because we do not impose the PEFs
but find them. Additionally, in (19) all the operators are local, suitable for streaming.
Admittedly, we are iterating 2-D operators over the entire t-space. We recall the cost
of finding PEFs is merely double the cost of applying them. But surely, this cannot
fill big data gaps in (x, y) without iterating (19). I would first try ε = 1.



Claerbout 8 Fitting while whitening residuals

As for the time axis, in principle we handle it with an infinitesimal adaptation
rate, though in practice we’d find some other way to the limit. I won’t understand
this until I code it.


