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Motivation

• Mixed-domain methods interpolate wavefields to

account for laterally varying velocities. Can we

interpolate phases instead?
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Motivation

• Mixed-domain methods interpolate wavefields to

account for laterally varying velocities. Can we

interpolate phases instead?

• Interpolating phases will allow arbitrary velocity

variations and a faster and simpler algorithm
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Overview of PSPI (I)

Extrapolate with V1 Extrapolate with V2 Extrapolate with Vn

Wavefield at depth step N
in F−K domain
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Overview of PSPI (II)

In ω-k space:

WN+1
l = WNeikzl

∆z

where:

WN : Wavefield at depth N

Vl: l-th Reference velocity

WN+1
l : Wavefield at depth N + 1 continued with Vl

and

kzl
=

√
ω2

V 2
l
− |k|2 is the dispersion relation
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Overview of PSPI (III)

Extrapolate with V1 Extrapolate with V2 Extrapolate with Vn

Inverse FFT Inverse FFT Inverse FFT

in F−K domain
Wavefield at depth step N

Wavefield at depth step N+1
in F−K domain

Forward FFT

Complex wavefield interpolationComplex wavefield interpolation
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Overview of PSPI (IV)

In ω-x space:

wN+1(j) =
nv∑
l=1

σlwN
l (j)

where:

σl: interpolation factor

wN+1
l (j): wavefield in ω-x at location j
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Overview of Extended Split-step

Extrapolate with V1 Extrapolate with V2 Extrapolate with Vn

Inverse FFT Inverse FFT Inverse FFT

in F−K domain
Wavefield at depth step N

Wavefield at depth step N+1
in F−K domain

Forward FFT

Split−step V1 Split−step V2 Split−step Vn

Complex wavefield interpolation

Split−step V1 Split−step V2 Split−step Vn
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Overview of Split-step Correction

The split-step correction is given by:

e
i
(

ω
V − ω

Vl

)
∆z

,

where V is the true velocity is applied before the

interpolation and is intended to compensate, to a first

order, for the difference between V and Vl.
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The Idea of Interpolating Phases (I)

In Phase shift extrapolation for V (z):

WN+1 = WNeiθz

In V (x, z) find an “equivalent” phase such that:

WN+1 = WNeiθzeq
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The Idea of Interpolating phases (II)

For any two complex numbers z1 = Aθ1 and z2 = Aθ2:

Φ(
z1 + z2

2
) =

θ1 + θ2

2
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The Idea of Interpolating phases (II)

For any two complex numbers z1 = Aθ1 and z2 = Aθ2:

Φ(
z1 + z2

2
) =

θ1 + θ2

2

and

Amp(
z1 + z2

2
) =

A√
2

√
1 + cos(θ2 − θ1) 6= A
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The Proposed Algorithm

Wavefield Extrapolation with Arbitrary Velocities in ω-K
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Basic Concept

• Assume that as many reference velocities as spatial

locations are used at each depth step.
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Basic Concept

• Assume that as many reference velocities as spatial

locations are used at each depth step.

• nv = nx.

• No split-step correction is required.

• No need for high-order approximation of the dispersion

relation.
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Basic Concept

• Assume that as many reference velocities as spatial

locations are used at each depth step.

• nv = nx.

• No split-step correction is required.

• No need for high-order approximation of the dispersion

relation.

• Wavefield interpolation is replaced by selection.
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Wavefield Selection

Each row is a wavefield extrapolated with the indicated

velocity.
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Extrapolated Wavefield in ω-x

The selection process in the ω-x is given by:

wN+1(j) =
nv∑
l=1

wN+1
l (j)δlj

where

wN+1
l : lth row in the array of extrapolated wavefields.

δlj: Kronecker delta to select the j = l component.
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Extrapolated Wavefield in ω-K

The equivalent equation in the ω-K domain is:

WN+1 =
nv∑
l=1

WN+1
l ⊗ e−ikx∆xl

where

∆xl = (l − 1)∆x/nx

⊗: circular convolution

One spatial index is used to simplify the notation.
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Extrapolated Wavefield in ω-K (II)

The extrapolated wavefield in ω-K is then:

WN+1(j) =
nv∑
l=1

∑
m=〈nx〉

WN+1
l (m)e−ikx(j−m)∆xl
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Extrapolated Wavefield in ω-K (II)

The extrapolated wavefield in ω-K is then:

WN+1(j) =
nv∑
l=1

∑
m=〈nx〉

WN+1
l (m)e−ikx(j−m)∆xl

Replacing WN+1
l in terms of WN and rearranging terms:

WN+1(j) =
nx∑

m=1

WN(m)
nv∑
l=1

e−ikzl
(m)∆z+kx(m̃j)∆xl
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Extrapolated Wavefield in ω-K (II)

The extrapolated wavefield in ω-K is then:

WN+1(j) =
nv∑
l=1

∑
m=〈nx〉

WN+1
l (m)e−ikx(j−m)∆xl

Replacing WN+1
l in terms of WN and rearranging terms:

WN+1(j) =
nx∑

m=1

WN(m)
nv∑
l=1

e−ikzl
(m)∆z+kx(m̃j)∆xl

where m̃j = mod(j − m,nx)
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Extrapolated Wavefield in ω-K (III)

Written as a dot product:

WN+1(j) =
nx∑

m=1
WN(m)fj(m) = WN · fj.
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Extrapolated Wavefield in ω-K (III)

Written as a dot product:

WN+1(j) =
nx∑

m=1
WN(m)fj(m) = WN · fj.

The vector fj is independent of the data and contains the

velocity information:

fj =
nv∑
l=1

e−ikzl
(m)∆z+kx(m̃j)∆xl.
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Practical Implementation (I)

• The algorithm as described is cubic in the model

dimensions.
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Practical Implementation (I)

• The algorithm as described is cubic in the model

dimensions.

WN+1(j) =
nx∑

m=1

WN(m)
nv∑
l=1

e−ikzl
(m)∆z+kx(m̃j)∆xl

gabriel@sep.stanford.edu SEP120 page 311-317 17



Practical Implementation (II)

• The algorithm can be made essentially quadratic by

realizing that:

? Velocities can be binned to within their assumed

accuracy.

? The vertical wavenumber can be precomputed, since it

does not depend on velocity.

gabriel@sep.stanford.edu SEP120 page 311-317 18



Modified Wavefield Selection

This time each row is an extrapolated wavefield with the

indicated binned velocity.
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Modified Wavefield in ω-x

The selection process to calculate the wavefield in ω-x is

now:

wN+1 =
nv∑
l=1

wN+1
l

∑
p

δpl.
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Modified Wavefield in ω-x

The selection process to calculate the wavefield in ω-x is

now:

wN+1 =
nv∑
l=1

wN+1
l

∑
p

δpl.

l: velocity index.

p: index to select spatial locations with the same velocity.
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Modified Wavefield in ω-K

In the ω-K domain:

WN+1(j) =
nx∑

m=1
WN(m)

nv∑
l=1

(
e−ikzl

(m)∆z∑
p

e−ikx(m̃j)∆xp
)
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Extrapolated Wavefield

Conceptually, the result is the same that we obtained

before:

WN+1(j) = WN · fj,

gabriel@sep.stanford.edu SEP120 page 311-317 22



Extrapolated Wavefield

Conceptually, the result is the same that we obtained

before:

WN+1(j) = WN · fj,

only this time the vector fj is given by

fj =
nv∑
l=1

(
e−ikzl

(m)∆z∑
p

e−ikx(m̃j)∆xp
)
.
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Remarks

• The algorithm, as presented, is essentially quadratic in

the model dimensions. Too slow for 3-D prestack

depth migration.
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Remarks

• The algorithm, as presented, is essentially quadratic in

the model dimensions. Too slow for 3-D prestack

depth migration.

• No significant approximations have been made.

• The cost comes from considering every wavefield trace

in the computation of every other one.

gabriel@sep.stanford.edu SEP120 page 311-317 23



Speculative Ideas on Improving Efficiency

• Subsample the wavefield used for the computation of

each wavefield trace at the next depth step.
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Speculative Ideas on Improving Efficiency

• Subsample the wavefield used for the computation of

each wavefield trace at the next depth step.

• Compute only a subsampled version of the wavefield

and interpolate.

• Interpolate phases two by two.
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Subsample the Input Wavefield

• For the computation of each wavefield trace at the

N + 1 depth step use only, say, the even wavefield

traces of the wavefield at the N depth step.
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Subsample the Input Wavefield

• For the computation of each wavefield trace at the

N + 1 depth step use only, say, the even wavefield

traces of the wavefield at the N depth step.

WN+1(j) =
nx∑

m=1,2
WN(m)fj(m),

• Subsampling in wavenumber domain implies windowing

in the space domain.

• May be a better approximation at shallow than a at

deeper depths.
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Subsample the Computed Wavefield

• Compute only, say, every other wavefield trace at depth

step N + 1 using all traces of the wavefield at the N

depth step.
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Subsample the Computed Wavefield

• Compute only, say, every other wavefield trace at depth

step N + 1 using all traces of the wavefield at the N

depth step.
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Subsample the Computed Wavefield

• Compute only, say, every other wavefield trace at depth

step N + 1 using all traces of the wavefield at the N

depth step.

WN+1(2j) =
nx∑

m=1
WN(m)fj(m),

• Linearly interpolate for the wavefield traces not

computed.

• This implies that the wavefield is somewhat smooth in

the spatial direction.
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Interpolating Phases Two-by-Two

For any two phases θ1 and θ2:

Φ
(

eiθ1+eiθ2

2

)
= θ1+θ2

2
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Interpolating Phases Two-by-Two

For any two phases θ1 and θ2:

Φ
(

eiθ1+eiθ2

2

)
= θ1+θ2

2

But

Amp
(

eiθ1+eiθ2

2

)
= 1√

2

√
1 + cos(θ2 − θ1) 6= 1

The question is: can we pair-up the sum of exponentials

such that the amplitude term becomes a normalization?
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Interpolating Phases Sketch
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Interpolating Phases Sketch
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Conclusions and Future Work

• It is possible to do F-K wavefield continuation with

arbitrary spatial velocity variations.

gabriel@sep.stanford.edu SEP120 page 311-317 30



Conclusions and Future Work

• It is possible to do F-K wavefield continuation with

arbitrary spatial velocity variations.

• The resulting algorithm is quadratic in the spatial

dimensions so needs to be made more efficient.

gabriel@sep.stanford.edu SEP120 page 311-317 30



Conclusions and Future Work

• It is possible to do F-K wavefield continuation with

arbitrary spatial velocity variations.

• The resulting algorithm is quadratic in the spatial

dimensions so needs to be made more efficient.

• We have given some untested ideas on how to

overcome the high cost. Testing those ideas is the next

step.
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