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1 SUMMARY

‘We propose to remove diffracted multiples with an apex-
shifted Radon transform in angle domain common im-
age gathers (ADCIG). The complexity of the wavefield
is handled by the migration provided reasonably accu-
rate migration velocities are used. As a result, the move-
out of the multiples is well behaved in the ADCIGs. For
2D data, the apex-shifted Radon transform maps the 2D
image space into a 3D model space cube whose dimen-
sions are depth, curvature and apex-shift distance. Well-
corrected primaries map at or near the zero curvature
plane and specularly-reflected multiples map to or near
the zero apex-shift plane. The diffracted multiples map
elsewhere in the cube according to their curvature and
apex-shift distance. Thus, specularly reflected as well as
diffracted multiples can be attenuated simultaneously.
We illustrate our approach with an angle-domain com-
mon image gather under the edge of a large salt body in
a 2D seismic line of the Gulf of Mexico. We show that
ignoring the apex shift compromises the attenuation of
the diffracted multiples, whereas our approach atten-
uates both the specularly-reflected and the diffracted
multiples without compromising the primaries.

2 INTRODUCTION

Surface related multiple elimination (SRME) uses the
recorded seismic data to predict and iteratively subtract
the multiple series (Verschuur and Berkhout, 1992). 2D
SRME can deal with all kinds of 2D multiples provided
enough data are recorded given the offset limitations
of the survey line. Diffracted multiples from scatter-
ers with a cross-line component cannot be predicted
by 2D SRME but in principle can be predicted by 3D
SRME as long as the acquisition is dense enough in both
in-line and cross-line directions. With standard marine
streamer acquisition, the sampling in the cross-line di-
rection is too coarse and diffracted multiples need to be
removed by other methods (Hargreaves et al., 2003) or
the data need to be interpolated and extrapolated to a
dense, large aperture grid (van Dedem and Verschuur,
1998). Hargreaves et al. realized that the moveout of
the diffracted multiples does not have its apex at zero
offset and proposed a shifted hyperbola approach to at-
tenuate the multiples in CMP gathers. This approach,
however, relies on the moveout of the multiples to be
well approximated by hyperbolas or parabolas, which is
problematic in complex media.

An attractive alternative is to attenuate the
diffracted multiples in the image space (i.e. on common

image gathers). In most situations in which diffracted
multiples are a serious problem, the wave propagation
is rather complex, for example for multiples diffracted
off the edge of salt bodies. Thus, the moveout of pri-
maries and multiples tend to be very complex making
the application of data-space moveout-based methods to
the removal of multiples difficult. In ADCIGs, however,
since the complexity of the wavefield has already been
taken into account by prestack migration (to the extent
that the presence of the multiples allows an accurate
enough estimation of the migration velocity field), the
residual moveout of multiples is smoother and better
behaved (Sava and Guitton, 2003).

In this paper we attenuate the diffracted multiples
in ADCIGs by redefining the tangent squared Radon
transform of Biondi and Symes (2003) to add an ex-
tra dimension to account for the shift in the apexes of
the moveout curves of the diffracted multiples. We show
with a 2D seismic line from the Gulf of Mexico that our
approach is effective in attenuating both, the specularly-
reflected as well as the diffracted multiples. In contrast,
ignoring the apex shift compromises the attenuation of
the diffracted multiples.

The real impact of our method for attenuating
diffracted multiples is likely to be in 3-D rather than
in 2-D, though the results that we show in this paper
are limited to 2-D. Biondi and Tisserant (2004) have
presented a method for computing 3-D ADCIGs from
full 3-D prestack migration. These 3-D ADCIGs are
functions of both the aperture angle and the reflection
azimuth. Simple ray tracing modeling shows that out-
of-plane multiples map into events with shifted apexes
(like the 2-D diffracted multiples) and different reflec-
tion azimuth than the primaries. Attenuation of these
multiples from 3-D ADCIGs can be accomplished with
a methodology similar to one we present in this paper.

3 DIFFRACTED MULTIPLES ON ADCIGS

Figure 1 shows a zero aperture angle migrated 2D line
from the Gulf of Mexico over a large salt body. The
presence of the salt creates a host of multiples that ob-
scure any genuine subsalt reflections. Most multiples are
surface-related peg-legs with a leg related to the water
bottom or the top of salt. Below the edges of the salt, we
also encounter multiples diffracted from the salt edges
(CMP position 6000 m below 4000 m in Figure 1).
Figure 2 shows two ADCIGs obtained with wave-
equation migration as described in Sava and Fomel
(2003). Figure 2a corresponds to a lateral position di-
rectly below the salt body (CMP position 12000 m)
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Figure 1. Migrated image at zero aperture angle of 2D seis-
mic line in the Gulf of Mexico. Notice that multiples below
the salt obscure any primary reflections.

whereas Figure 2b corresponds to a position below the
left edge of the salt (CMP position 22056 m). While
the residual moveout of the specularly-reflected multi-
ples shown on Figure 2a have their apexes centered at
zero offset, the diffracted multiples on Figure 2b have
their apexes shifted away from the zero-offset line (e.g.,
around 4600 m). Notice that although the data is ma-
rine, the ADCIGs show positive and negative aperture
angles. We used reciprocity to simulate negative off-
sets and interpolation to compute the two shortest-offset
traces not present in the original data. The offset gath-
ers were then converted to angle gathers. The purpose
of having both positive and negative aperture angles is
to see more clearly the position of the apexes of the
diffracted multiples.

4 APEX-SHIFTED RADON TRANSFORM

To account for the apex-shift of the diffracted multiples
(h), we define the forward and adjoint transforms as a
modified version of the “tangent squared” Radon trans-
form introduced by Biondi and Symes (2004). We define
the transformation from data space (ADCIGs) to model
space (Radon-transformed domain) as:

m(h,q,') =Y _d(v,z =2 + qtan’(y — ),
Y

and from model space to data space as

d(vy,z) = Z Zm(h,q,z' =z qtan2('y — h)),
q h

where z is depth in the data space, 7 is the aperture an-
gle, 2’ is the depth in the model space, g is the moveout
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Figure 2. Comparison of angle-domain common image gath-
ers under salt (a) and under the edge of salt (b). Note the
presence of the diffracted multiples on (b) below 4000 m.

curvature and h is the lateral apex shift. In this way, we
transform the two-dimensional data space of ADCIGs
d(z,7) into a three-dimensional model space m(z', q, h).

In the ideal case, the primaries would be perfectly
horizontal in the ADCIGs and would thus map in the
model space to the ¢ = 0 plane (a plane of (h,2z'))
whereas the specularly-reflected multiples would map
to the h = 0 plane (a plane of (g,2’)). The diffracted
multiples map elsewhere in the cube depending on their
curvature and apex shift.

5 SPARSITY CONSTRAINT

As a linear transformation, the apex-shifted Radon
transform can be represented simply as d = Lm where
d is the image in the angle domain, m is the image in
the Radon domain and L is the forward apex-shifted
Radon transform operator. To find the model m that
best fits the data in a least-squares sense, we minimize
the objective function:

e o mi
flm) = [Lm = dI + 5 I (14 55, M
i=1

where the second term is a regularization that enforces
sparseness in the model space. Here n is the size of the
model space, ¢ controls the amount of sparseness in the
model space and b relates to the minimum value below
which everything in the Radon domain should be zeroed
(Sava and Guitton, 2003). The least-squares inverse of
m is
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Figure 3. Radon transforms of the ADCIG in Figure 2b.
(a): 2D transform. (b): h = 0 plane of the apex-shifted 3D
transform.
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where diag defines a diagonal operator. Because the
model space can be large, we estimate m iteratively.
Notice that the objective function in Equation (1) is
non-linear because the model appears in the definition
of the regularization term. Therefore, we use a limited-
memory quasi-Newton method (Guitton and Symes,
2003) to find the minimum of f(m).

Figure 3a shows the 2D tangent-squared transform
of the ADCIG in Figure 2b and Figure 3b shows the
h = 0 plane of our 3D apex-shifted transform. The pri-
maries are mapped near the zero curvature in both Fig-
ures although not with the same amplitudes since in
the 3-D transform part of their energy is mapped near
the zero curvature in other h planes (not shown). The
specularly-reflected multiples are mapped away from
the zero curvature line and are better focused with the
3D transform (Figure 3b). The diffracted multiples are
mapped as unfocused events in the 2D transform in par-
ticular at the largest and smallest curvature values. In
the 3D transform, these events are mapped to planes
other than the h = 0 plane and are therefore not seen
in Figure 3b. The absence of the background noise pro-
duced by the diffracted multiples in the 2D transform
makes the specularly reflected multiples stand out bet-
ter in the h = 0 of the 3D transform.

6 ATTENUATION OF DIFFRACTED AND
SPECULARLY-REFLECTED MULTIPLES

With ideal data, attenuating both specularly-reflected
and diffracted multiples could, in principle, be accom-
plished simply by zeroing out (with a suitable taper) all
the g-planes except the one corresponding to ¢ = 0 in
the model cube m(z’, ¢, h) and taking the inverse apex-
shifted Radon transform. In practice, however, the pri-
maries may not be well-corrected and primary energy
may map to a few other g-planes. Energy from the mul-
tiples may also map to those planes and so we have the
usual trade-off of primary preservation vs. multiple at-
tenuation. The advantage now is that the diffracted mul-
tiples are well focused to their corresponding h-planes
and can therefore be easily attenuated. Rather than sup-
pressing the multiples in the model domain, we chose to
suppress the primaries and inverse transform the multi-
ples to the data space. The primaries were then recov-
ered by subtracting the multiples from the data.

Figure 4 shows a close-up comparison of the pri-
maries extracted with the standard 2D transform (Sava
and Guitton, 2003) and with the apex-shifted Radon
transform. The standard transform (Figure 4a) was ef-
fective in attenuating the specularly-reflected multiples,
but failed at attenuating the diffracted multiples (below
4400 m). This is a consequence of the apex shift of these
multiples. There appears to be only one clearly visible
subsalt primary in this ADCIG (just above 4000 m)
since it is located exactly below the edge of the salt.
This primary was preserved with both transformations.

Figure b5a shows the multiples obtained with the
2D Radon transform whereas Figure 5b shows those ob-
tained with the 3D transform. Notice how the diffracted
multiples look almost as specularly-reflected multiples
in Figure 5a whereas they they show their characteris-
tic apex-shift in Figure 5b. That some of the multiples in
this ADCIG are actually diffracted multiples is further
emphasized in Figure 6. The specularly-reflected multi-
ples (Figure 6a) have been separated from the diffracted
multiples (Figure 6b) emphasizing their shifted moveout
even between 4000 and 4400 m where they were not so
clearly visible in Figure 5b.

7 CONCLUSIONS

The combination of choosing the image space in the
form of ADCIGs and the apex-shifted tangent-square
transformation from (z,7) to (2, ¢, h) has proven to be
effective in attenuating both, specularly-reflected and
diffracted multiples in 2D marine data. The residual
moveout of both multiples in ADCIGs is well-behaved
and the extra dimension provided by the apex-shift al-
lows the attenuation of the multiples without compro-
mising the integrity of the primaries.
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Figure 4. Comparison of primaries extracted with the 2D
Radon transform (a) and with the apex-shifted Radon trans-
form (b). Notice that some of the diffracted multiples remain
in the standard result).
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Figure 5. Comparison of multiples extracted with the 2D
Radon transform (a) and with the apex-shifted Radon trans-
form (b).
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Figure 6. Specularly-reflected multiples (a) and diffracted
multiples (b) extracted with the 3D transform.

References

Biondi, B. and Tisserant, T. 2003. 3-D Angle-domain
common-image gathers for migration velocity anal-
ysis, submitted to Geophysical Prospecting

Biondi, B. and Symes, W. 2004. Angle-domain
common-image gathers for migration velocity anal-
ysis by wavefield-continuation imaging, submitted
to Geophysics.

Dragoset, W., Jericevic, Z., 1998. Some remarks on
multiple attenuation. Geophysics, 63, 772-789.
Guitton, A. and Symes, W. 2003. Robust inversion of
seismic data using the Huber norm. Geophysics, 68,

1320-1319.

Hargreaves, N., Ver West, B., Wombell, R., and Trad,
D. 2003. Multiple attenuation using an apex-shifted
Radon transfrom. Exapnded Abstracts. 73rd Ann.
Internat. Mtg: Soc. Expl. Geophys. 1929-1932.

Sava, P. and Fomel, S. 2003. Angle-domain common
image gathers by wavefield continuation methods.
Geophysics, 68, 1065-1074.

Sava, P. and Guitton, A. 2003. Multiple attenuation in
the image Space. SEP-113, 31-44.

van Dedem, E., Verschuur, D. 1998. 3D surface-related
multiple elimination and interpolation. Soc. of Exp.
Geophys. 68th Ann. Internat. Mtg. 1321-1324.

Verschuur, D., Berkhout, A. 1997. Estimation of mul-
tiple scattering by iterative inversion, part II: prac-
tical aspects and examples. Geophysics, 62. 1596-
1611.



