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ABSTRACT

One of the most important tasks of seismic data processing is the successful identification
and suppression of seismic energy that does not correspond to primary body waves. These
include such energy as surface waves, which do not penetrate deep into the earth and so do
not carry useful information about the deeper subsurface, and multiples, seismic energy that
has bounced more than once from acoustic subsurface interfaces before its recording on the
surface of the earth.

Traditional approaches for ground-roll suppression, such as low-cut frequency filtering,
F-K filtering, and 7-p filtering, are reviewed and compared in this study. 7-p filtering is
shown to be the most effective of these three methods for ground-roll suppression. I also
compare the performance of a signal-noise separation algorithm that uses a statistically-
derived threshold amplitude that identifies and extracts, in the 7-p domain, those samples
more likely to correspond to the signal (Harlan et al., 1984). Harlan’s method uses local slant
stacks to “focus” (that is, decrease to the minimum the number of parameters required to
describe) the desired reflections while defocusing any unwanted noise. In this study, Harlan’s
method is applied to data sorted into CMP gathers that are NMO-corrected so that linear
or parabolic global slant stacks can be used instead of local slant stacks. Under certain
conditions, this modified Harlan’s approach can provide a refined extraction of the reflections
in the presence of the noise; moreover, the modifications allow an order of magnitude increase
in computation speed over Harlan’s use of local slant stacks.

Since the performance of the 7-p filtering and Harlan’s approach depend critically on
the ability of the 7-p transform to focus the reflections and to provide an accurate inverse
transform, a comparative study is carried out to investigate which implementation is the
best for this application. Although simple t-z or F-K implementations of the transform are
fast, their focusing power is limited, and artifacts such as edge effects due to the finite extent
of the data arise in the inversely transformed data. Beylkin’s F-X implementation, is shown
to provide better focusing and yields inverse transformed data with edge effects minimized.
Beylkin’s approach, however, is at least four times more expensive than either the ¢-x or F-K
implementations.

F-K and 7-p filtering (Hampson, 1986) can also be used for suppression of multiples.
Harlan’s signal-noise separation algorithm, in its original form, cannot be used to sup-
press multiples because the transform focusing the NMO-corrected reflections will also focus
the multiples. Instead, I devise a hybrid approach that combines 7-p filtering (Hampson’s
method) to suppress the most identifiable multiple energy, with Harlan’s signal-noise sepa-
ration algorithm, to suppress portions of residual multiple energy that overlap the moveout
region of the primaries in the 7-p domain. Comparison of the three methods shows that F-K
filtering provides only moderate multiple rejection and, worse, the level of multiple rejection
is offset-dependent. Hampson’s method is more effective for multiple suppression and, if
the differential moveout between the primaries and the multiples is enough to map them to
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separate regions in the 7-p domain, it provides offset-independent rejection of the multiples.
When the separation is imperfect, however, multiple energy remains that contaminates the
amplitudes of the extracted primaries at the short offsets. For constant trace-to-trace am-
plitudes, the hybrid approach is shown to provide an improved multiple rejection, at the
expense of being about 50% more computer intensive.

The focus of the thesis is a study of the relative performance of the F-K filtering method,
Hampson’s method and the hybrid method, in terms of AVO preservation and degree of im-
provement in primary-to-multiple amplitude ratio after the data are CMP-stacked. When
the amplitude of the multiples is high, multiple energy after multiple suppression can be
expected to remain in the data. As a result, AVO behavior is distorted because the con-
tribution of the residual multiple energy alters the apparent amplitude of the primaries on
the short-offset traces. Tests with modeled data demonstrate that when primary-to-multiple
amplitude ratio in the CMP-stacked data is the overriding consideration, and especially if
the primary-to-multiple amplitude ratio in the input data is low, the hybrid approach gives
the best result. If AVO analysis is expected to be performed with the data, then Hampson’s
approach is probably better because of its better preservation of the offset dependence of
amplitudes. When polarity changes with offset, the performance of all of the algorithms is
degraded and perhaps an alternative approach should be sought and comparably tested.
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Moveout-based noise suppression

Chapter 1

INTRODUCTION

The interpreter of seismic data is primarily concerned with the recognition and mapping
of seismic energy that has been reflected only once by an acoustic or elastic interface back
to the surface. This energy, however, is not the only type present in recorded short records;
other types of energy may also be present, such as surface waves, which do not penetrate deep
into the earth and thus carry no useful information of the deeper subsurface, and multiples,
waves that have been multiply reflected before they are recorded at the surface of the earth.
These two types of waves represent coherent noise since they have distinct, predictable
moveout and are typically strong events that obscure recognition of the sometimes weak
genuine reflections lying underneath (see Figure 1.1).

Trace Number

F1c. 1.1. Land shot record showing strong, aliased, dispersive ground-roll. Note that where
the noise is present, it obscures the reflections underneath.
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1.1 Ground-roll suppression

One of the most important tasks of seismic data processing is the successful elimination
of coherent noise, without harming the information contained in the reflections that we
want to uncover. Surface waves, loosely called ground-roll, are a serious problem in most
datasets, particularly in land data, because they not only obscure the recognition of useful
reflections, but also conspire against the success of other important processing steps such as
deconvolution.

Traditional approaches to ground-roll elimination include low-cut frequency filtering,
which relies on ground-roll’s lower frequency content and moveout filtering, which exploits
the characteristic linear moveout of ground-roll for its discrimination and suppression.

1.1.1 Low-cut frequency filtering

In traditional exploration seismology, the frequency content of the ground-roll usually
ranges from the lowest frequency recorded, up to about 20 Hz, whereas the frequency content
of the signal starts at about 5-10 Hz and can go up to perhaps half the Nyquist frequency
(see Figure 1.2). It seems natural, therefore, to apply a low-cut frequency filter to the
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Frequency (Hz)

Fic. 1.2. Amplitude spectrum of all traces shot record in Figure 1. Note the high
amplitudes of ground-roll for frequencies up to about 16 Hz.

data in order to remove the ground-roll. Although this approach does indeed suppress the
ground-roll (as will be shown in Chapter 4), it also can suppress overlapping low-frequency
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Moveout-based noise suppression

components of the signal that are critical for vertical and horizontal resolution and for
lithologic inversion. These low frequencies carry information about the general increase of
velocity with depth due to compaction and related processes. Low-cut frequency filtering,
therefore, is a good choice for suppressing only those frequencies in the ground-roll that are
clearly below the lowest useful signal frequencies. Thus, at best, its action at enhancing the
signal to ground-roll amplitude is incomplete.

1.1.2 Moveout filtering

In the frequency-wavenumber (F-K) domain, we can in principle separate the noise from
the signal based on their distinctly differing moveouts, because the moveout of the noise is
linear with large slope (low velocity), while the moveout of the signal is hyperbolic with
relatively smaller slopes (high apparent velocities), as seen in Figure 1.3, computed using all
the traces and all the time samples in the shot record in Figure 1.1. Note in this figure that
the ground-roll has been mapped to fairly narrow linear regions up to about 16 Hz, whereas
the signal has been mapped close to the vertical axis, (that is, high apparent velocities as
mentioned before).

Wavenumber (1/m)
o

40+ - A = Oy e Seseee S e R 15 = PR

Frequency (Hz)

GOSN e e e e e S R

80

Fic. 1.3. F-K amplitude spectrum of shot record in Figure 1. 1: ground-roll, 2: spatially
aliased ground-roll, 3: first arrivals, 4: spatially aliased first arrivals, 5: reflections.

The separation, between the signal and the noise, however, is possible only if the noise
is not aliased, so that the noise and the signal occupy different regions in that domain, and
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if we are ready to accept the price of sacrificing features with large moveout such as wide-
angle signal, diffraction tails, and fault-plane reflections. In Chapter 4, I present results of
applying this method. Even if no aliasing is present, however, moveout filtering introduces
undesired artifacts such as spatial correlation of background noise, loss of fault clarity, and
a Gibb’s phenomenon associated with the cutoff moveouts of the filter. Typically, because
of the fan shape of the filter, the background noise becomes organized so that it is high in
wavenumber and low in frequency (Kirchheimer, 1985). These problems combine to produce
seismic sections of “mixed” or “wormy” appearance, which can be potentially misleading for
the seismic interpreter.

We see, then, that traditional approaches to ground-roll elimination, despite their con-
ceptual simplicity, are seldom completely effective in removing the noise in all but the most
favorable situations. A number of techniques, based on refinements of the ones described
above or on the identification and exploitation of additional distinguishing attributes for
signal and noise discrimination, have been developed in the past decade.

1.1.3 7-p filtering

In Chapter 2, T present a detailed overview and comparison of the main ideas and
relevant computer implementation details of the most commonly used algorithms to compute
linear and parabolic 7-p transforms (i.e., slant stack) and more generally the discrete Radon
transform. This comparison is intended to provide the reader with practical criteria to
help decide on which implementation to choose for a given application, on the basis of the
transform’s focusing power, the presence or absence of edge effects, the ability of the inverse
transform to recover the input data in terms of phases and amplitudes, and computational
cost.

The 7-p transform can be used to suppress ground-roll in the following way: the data
are sorted into CMP gathers and NMO-corrected, such that the reflection hyperbolas are
flattened; a linear or parabolic 7-p transform is then applied to focus them, concentrating
their energy to small regions of the 7-p plane (Hampson, 1986). The range of slopes for
the 7-p transform is chosen so that the ground-roll does not show any discernible coherence
within this range of slopes, and so it is not modeled by the transformation. An inverse
7-p transform then maps the modeled data (the NMO-corrected reflections) back to the
time-offset domain without the ground-roll. This method, therefore, exploits the differential
moveout between the NMO-corrected reflections and the ground-roll. Results of applying
this method to suppress ground-roll in a field shot record will be shown in Chapter 4.

1.1.4 Signal-noise separation algorithm

A method, based on a statistical approach to signal-noise separation developed by Har-
lan et al. (1984) is emphasized in this study. This method allows the separation of events
considered to be signal from those considered to be noise, on the basis of their difference in
moveout pattern. Although the method can be used in a variety of applications, it has not
had wide-spread use in seismic data processing partly because some of its practical computer
implementation details have not been well understood. In Chapter 3, I present an overview
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of the method, along with relevant computer implementation details. This is expected to
provide the reader with a relatively easy way to implement the algorithm, if desired.

For ground-roll suppression, this method, like the previous one, uses the 7-p transform
to focus the desired reflections (that is, to concentrate their energy to a small region of the
7-p plane). As before, the ground-roll energy is not modeled by the transformation because
its slopes are not included in the range of slopes used to compute the 7-p transform. The
presence of the ground-roll, however, can create spurious local alignments (particularly if the
data are spatially aliased) that the transform models as background noise. The method then
uses a statistically developed amplitude threshold to separate the samples focused by the
transformation from those not focused by it, thereby allowing the extraction of the reflections
from the background noise. Details on how this amplitude threshold is computed and used
are given in Chapter 3.

Harlan’s original method for ground-roll suppression approximates the reflection hyper-
bolas by small segments of linear events that are then focused with the use of local slant
stacks. That method is computationally intensive. To reduce cost, I have modified Harlan’s
method by sorting the data into common midpoint (CMP) gathers and applying normal-
moveout (NMO) correction so that the reflection hyperbolas will be flat. After the NMO
correction, a simple linear or parabolic Radon transform can be used to focus the reflection
events with residual moveout, rather than the slower local slant stacks that have less fo-
cusing power and are more likely to focus spurious alignments. With this modification, the
algorithm runs about ten times faster and the results are better, for ground-roll suppression,
as is shown in Chapter 4.

For ground-roll suppression, both the direct 7-p filtering and the signal-noise separation
algorithm rely on the large moveout difference between the reflections and the ground-roll,
but the latter adds the possibility of further discrimination between the reflections and
background noise in the 7-p domain, on the basis of focused amplitude, perhaps producing
a cleaner extraction of the reflections. Whether this additional discrimination power is
significant or not, compared to the result of applying either of the previous two methods, is
studied in Chapter 4, where the result of applying these methods to a field shot record is
examined.

The results presented in Chapter 4 are qualitatively graded and compared, on the ba-
sis of quality of signal preservation, level of noise rejection and computational cost. This
comparison should help the reader decide which method to use for ground-roll suppression,
according to which of the above criteria is the priority.

1.2 Multiple suppression: traditional approaches

Multiply reflected energy can be a serious noise problem, particularly in marine data,
because sea-floor reflections tend to be very strong (high acoustic contrast between the water
layer and the bedrock) so the water layer acts as a wave guide to the seismic reflections.
Strong multiples can also arise when a high-velocity layer is sandwiched between layers of
lower velocity above and below. The energy from multiples can have a detrimental impact
on the ability of the interpreter to identify genuine reflections because both have hyperbolic
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moveout. It is, therefore, possible to misinterpret multiples as genuine reflections.

The suppression of multiples depends on their particular characteristics; the methods
used most are: stacking, deconvolution, and velocity filtering in both the F-K and 7-p
domains.

1.2.1 Deconvolution

The attenuation of short-period multiples is achieved with the use of predictive decon-
volution, in which the periodicity of the multiples can be used to design an operator that
will identify and extract the predictable part of the wavelet (multiples), leaving only the
non-predictable part of it (signal), assuming that genuine reflections come from an earth
reflectivity series that can be considered random. The success of predictive deconvolution
strongly depends on the ability of the process to identify any periodicity in the wavelet and
on this periodicity being associated exclusively with the presence of multiples (Yilmaz, 1987).
In general, for other than short-period multiples, only moderate success can be achieved with
this procedure.

In principle, deterministic deconvolution can be applied to remove water-bottom rever-
berations in situations in which the exact depth and speed of sound of the water layer are
known. Since these conditions are rarely met, deterministic deconvolution is not widely used,
despite the elegance of its closed, exact mathematical formulation.

1.2.2 Moveout filtering

As is the case for ground-roll suppression, the performance of an F-K filter in suppressing
multiples strongly depends on the transform’s ability to map genuine reflections and multiples
to separate regions of the F-K plane. This is in general the case for events on far-offset traces,
for which the difference in moveout can be large, but not for those on short-offset traces
for which the difference in moveout is small. The performance of applying F-K filtering,
therefore, is not uniform for all offsets but is rather good for far offsets and poor for small
offsets. This shortcoming, together with the problems mentioned above in relation to ground-
roll suppression, usually make F-K filtering an undesirable option for multiple elimination.

1.2.3 CMP stacking

CMP stacking is done routinely to take advantage of the redundancy in normal seismic
data acquisition. Stacking is itself a powerful tool for the suppression of both non-coherent
events and coherent events that depart significantly from horizontal after NMO correction.
Since this is the case for multiple energy, the stack itself can prove powerful for multiple
suppression. The performance of this process, however, is limited and some residual energy
survives the stack. Moreover, it is desirable to suppress multiples on unstacked data to
enhance the chance of success for data-dependent processes such as velocity analysis and
statics estimation. Likewise, interpretation of unstacked data, such as in amplitude-versus-
offset (AVO) analysis, benefits from suppression of multiples prior to CMP stacking.
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1.2.4 Hampson’s parabolic Radon transform filtering

Similar to the 7-p approach to suppression of ground-roll, we can NMO correct the
data in CMP gathers and then apply a parabolic Radon transform to map the flattened
reflection hyperbolas and the undercorrected multiples to different concentrated regions of
the 7-p plane (Hampson, 1986). This separation allows the application of a mute (of selected
slopes p) to remove the multiple energy. Provided that the separation between the primary
and multiple energy regions is large enough, accurate extraction of the primary energy for
all offsets can be achieved. Again, a separate chapter, Chapter 5, is devoted to the detailed
description of this method.

1.2.5 Signal-noise separation

Harlan’s approach, in its original form, cannot be used to separate primaries and mul-
tiples in the 7-p domain because they are both focused by the transformation. In Chapter
5, however, I show that a hybrid approach can be devised in which the most identifiable
multiple energy is first removed simply by applying a 7-p mute, in the same way as with
Hampson’s approach. The signal-noise separation algorithm is then used to discriminate,
on the basis of a statistically derived amplitude threshold, between the focused primaries
and any residual multiple energy that may have “leaked” into the primary energy zone. The
expectation is that this approach will yield a refined multiple suppression. How significant
is this refinement will be discussed in Chapter 5.

In Chapter 6, I demonstrate, through comparison processing of four model datasets, the
important issues of how the different methods for multiple suppression influence the quality
of the stack and the amplitude variation with offset of the primaries. The results of the tests
presented in Chapters 5 and 6 are aimed at learning which method best suppresses multiples
in stacked data, which method causes least distortion of amplitude variation with offset of
the primaries, and what are the relative computational cost of the various methods.
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Chapter 2

THE GENERALIZED DISCRETE RADON TRANSFORM

2.1 Introduction

Since the discrete Radon transform is a critical tool for the implementation of the
algorithm proposed in this study, in this chapter I present an overview of its most important
features, along with some details on computer implementation.

2.2 Theoretical overview

2.2.1 Continuous Radon transform

The classical Radon transform of a function z of two variables (z,t) where, for most

applications, = represents distance and t time, is defined as (Claerbout, 1985; Foster and
Mosher, 1992)

Tmaz

y(p,7) = / z(x,t = 7 + pz)de, (2.1)

Tmin

where ,,;, and z,,,, are the minimum and maximum offsets in the data. This equation can
be interpreted mathematically as the linear transformation that assigns, to every point in
the 7-p domain, the sum of the energy in z(z,t) along a straight line of slope p and intercept
time at £ = 0, 7, with the summation carried out over all possible values of x (that is, for all
traces). In the continuous, infinite case, this equation is the so-called 7-p transform. From a
geophysical point of view, the equation can be interpreted as a decomposition of the reflected
seismic wavefield z(z,t) into plane-wave components with propagation directions related to
the slope direction p.

The inverse of this transformation, which maps the energy from the 7-p domain back
to the t-z domain is given by (Claerbout, 1985)

Pmax

at) = pt) + [ ylo,m =t = pa)p, (2.2)
where p,,in and Pp,e; are the minimum and maximum slopes of the data in the 7-p domain.
This inverse transformation is basically another 7-p transform with the sign of p changed and
followed by a convolution with the so-called p (rho) filter, equivalent to multiplying every
frequency component in the data by the absolute value of its frequency, thus correcting for
high-frequency losses when the transform was performed. The expressions for this p filter in
time and frequency domain are (Claerbout, 1985; Tatham, 1984)

p(t) = tlz (2.3)
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p(w) = (-iw)isgn(w) = |w|. (2:4)
Equation (2.1) can be generalized such that the data are summed along any defined curve
g(x). In this case, the continuous generalized Radon transform is given by

yp.r) = [ (et =7+ pg(@)do. (25)
Equation (2.1) is a special case (with g(z) = z) of equation (2.5), which can be interpreted
as a family of transforms.

2.2.2 Discrete Generalized Radon Transform

The seismic data are recorded digitally in time and at discrete positions in space, so
they are continuous in neither time nor space. We can write the discrete counterparts of the
equations given in the previous section just by changing integrals to summations carried out
over all possible values of the integration variables z and p. The equations become

y(pi, 7) = Nil 2(zg, t =7+ pig(xg)) Az (2.6)
and Np1
z(zg, t) = p(t) * Z y(pi, t =7 — pig(xy)) Ap. (2.7)

Here, N, and N, are the number of traces and slopes, respectively.

2.3 Computer Implementation of Radon Transform

Several different computer implementations of the discrete Radon transform have been
devised. In describing them, I demonstrate their comparative actions on model dataset 1,
shown in Figure 2.1. This dataset consists of 128 traces with 1000 samples each, at 4-ms
sample interval and 50-m trace interval.

2.3.1 Time-Domain Implementation

The simplest way to implement the Radon transform is the direct use of its definition
for discrete data, given by equation (2.6). The procedure is straightforward: for each point
in the 7-p domain, say 7y and pg, we sum the energy in the original data along the straight
line of slope py (or along the curve associated with the parameter py in the case of the
generalized Radon Transform) and zero intercept time 75. This procedure is repeated for
all desired values of 7 and p. Although doing this is simple enough, a couple of problems
may arise. First, since the data in ¢-z space exist only in a finite grid of points, it is highly
unlikely that we will hit one of those grid points when doing the summation, so some sort
of interpolation between grid points is required; frequently, a simple linear interpolation is
adequate since the time sample interval is usually sufficiently small. The second problem is
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Trace Number
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Fi1c. 2.1. Modeled test dataset 1 containing events with hyperbolic and linear moveout.
Each reflector is a characterized by a Ricker wavelet with a dominant frequency of 37 Hz.
The amplitudes of every reflection on every trace are the same.
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space and slope aliasing, which forces us to use small enough sampling intervals in space and
slope to avoid distorting the energy at high slopes and large offsets in pretty much the same
way that a fine enough sampling in time is required to avoid distortions of the highest time
frequencies. Since this is a problem for any implementation, it will be discussed further in a
later section of this chapter.

The time-domain computer implementation can then be carried out simply as a cascade
of three loops, the outermost one over all slopes of interest, the middle one over all possible
time intercepts (7 values) and the innermost to carry out the summation over z, taking
into account the required time interpolation. The result of applying this time domain 7-p
algorithm to our modeleded data is shown in Figure 2.2. Straight lines have been mapped
to small regions in the 7-p plane roughly centered around their true slope and intercept
values, while the hyperbolas have been mapped to ellipses, as they should. The mapping
has not transformed linear events to points because the linear events in the data do not have
infinite extent. The inverse transform is performed in the same way, except that the sign of
p is changed in the summation and the roles of p and z are exchanged (that is, the same
subroutine used to compute the forward transform is used to compute the inverse by just
calling it with negative values of p) and the result is convolved with the rho filter to correct
for losses in high-frequency energy that arose during the forward 7-p transform.

The time-domain inverse 7-p transform can be expected to recover the shape and po-
sition of the events in the input data but not amplitudes because a perfect inverse discrete
Radon transform is possible only if the input data can be considered periodic (Beylkin, 1987).
Some form of scaling is required, therefore, to bring the inverted data back to the amplitude
level of the input data. Figure 2.3 shows the result of computing the inverse transform of
the data in Figure 2.1, with a least-squares amplification applied. The inverse transform
has been successful in recovering the shape and locations of the events as is emphasized
in Figure 2.4, which shows the difference between the input and the amplified 7-p inverted
data. The larger differences for the largest and smallest offsets result from edge effects due to
the fact that we are approximating data in a finite number of traces with an infinite-length
transform. Figure 2.5 shows a flow diagram of the 7-p implementation in this domain.

2.3.2 F-K Implementation

A faster algorithm can be implemented in the F-K domain in the following way (Wade
and Gardner, 1988; Claerbout, 1985).

The data are first transformed in time and space to the F-K domain via a 2-D Fourier
transform. Next, a change of variables from £ to p is performed using the relation

k= fp, (2.8)

SO

p=Fk/f (2.9)
This change of variables can be interpreted mathematically as a mapping of radial lines in the
F-K domain given by equation (2.8) to hyperbolas in the f-p domain given by equation (2.9)
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Fic. 2.2. Forward time-domain 7-p transform of the modeled test dataset 1. Note that the
three linear events have been mapped to small regions in this domain.
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Fia. 2.3. Inverse time-domain 7-p transform of the modeled test data.
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FiG. 2.4. Difference between time-domain inverse 7-p transform and original data. Note the
residual energy at the edges due to truncation effects associated with the finiteness of the
input data.
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Fic. 2.5. Flow diagram for the time-domain implementation of the forward and inverse 7-p
transform.

(Wade and Gardner, 1988). This change of variables can be regarded as a data stretch and
is similar to the one applied in Stolt migration (Stolt, 1978).

The problem that arises is that although k£ and f are regularly sampled, the p values
computed by this relation will not be regularly spaced and may not correspond to the range
of values that we want for p. The way around this difficulty is to choose the values of p that
we desire and then interpolate the corresponding values of k. The interpolation, however,
is in the 2-D F-K domain and so is no longer a simple 1-D linear interpolation as it was
with the time-domain implementation (Claerbout, 1985). Besides, the interpolation must
be carried out with complex numbers. The best interpolation choice is a truncated sinc
interpolation (Rosenbaum and Boudreaux, 1981). Wade and Gardner (1988) have given an
explicit, efficient formula for that interpolation.

Once the data are in the f-p domain, all that is left is to apply an inverse Fourier
transform over frequency to get the data in the desired 7-p domain. Figure 2.6 shows the
result of applying the transform with this implementation. The result is almost identical to
the one obtained by the time-space domain approach (Figure 2.2).

The inverse transform can be carried out with basically the same algorithm. The data
are first Fourier transformed in time from 7 to f, an inverse mapping is then performed to
go from the hyperbolas in the f-p domain to the radial lines in the F-K domain. With this
mapping, the data are mapped from a rectangle in the 7-p domain to a triangle in the F-K
domain (see Figure 2.7). Finally, the data are then inversely transformed back to the t-z
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FiG. 2.6. Forward F-K domain 7-p transform of modeled test dataset 1. Again, the three
linear events have been mapped to small regions in this domain.
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F1c. 2.7. Mapping from the F-K to the F-p plane for the F-K 7-p implementation.

domain with a two-dimensional Fourier transform. Through this stage, the inverse transform
and the forward transform are basically the same operation. The data are then least-squares
fitted with the input data to obtain a scale factor to apply to the result.

Figure 2.8 shows the result of this inverse F-K transform. As with the result of the ¢-z
implementation, the positioning and shape of the events are good, but the amplitudes for
the near and far offsets are lower than those for the intermediate ones. This, again, is due to
the finite extent of the data and the inappropriateness of modeling them with a transform
that assumes an infinite number of traces. Figure 2.9 shows the difference between this
inverse and the input data. As with the ¢t-x domain implementation, the transform has done
a better job at recovering the intermediate offsets than at recovering the near and far ones.
This edge-effect problem, which is worse for the F-K domain implementation, would be a
serious problem for AVO analysis.

Note that this F-K implementation is possible only if the space dimension is uniformly
sampled. Figure 2.10 shows a flow diagram for this algorithm.

2.3.3 F-X Implementation

In order to overcome the problems mentioned above with regard to the amplitude level
of the inverse 7-p transform when applied in either ¢-z or F-K domain, and in particular
the fact that the inverse transform is not capable of completely recovering the near and
far offsets, an alternative to the above 7-p transform is required. Beylkin (1987) devised
an algorithm for implementing the Radon transform in the frequency-space (F-X) domain
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Fia. 2.9. Difference between inverse F-K domain 7-p transform and input data. Note that
the near and far offsets were not recovered as well as were the intermediate ones.
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Fic. 2.10. Flow diagram for the F-K implementation of the forward and inverse 7-p
transform. The p filter is implicitly applied in the frequency domain.

that has the desirable characteristic of modeling the data in terms of linear events that are
truncated to match the lateral extent of the window of data being transformed. In Beylkin’s
method, we start by Fourier transforming with respect to time both sides of equation (2.6)

to get
Np—1

y(p,w)= Y. z(zy,w)e™PI Ag, (2.10)
k=0
Here, N, is the number of traces to be 7-p transformed. This equation illustrates that the
summation along curved lines g(z) in the time domain can be performed as a summation
of phase shifts over all possible values of z in the frequency domain. This equation can be
written in matrix form as

Yw(pj) = sz(g(xk))a (2'11)

where p; ranges over all desired slopes N,, k over all traces N, and R is an N,xN, dimensional
matrix with elements given by
Rjp = e“Pid@) Ay, (2.12)

Note that this matrix is data-independent. The forward Radon transform can thus be
computed directly by carrying out the multiplication in equation (2.11), followed by an
inverse Fourier transform over time to take the data from the p-w to the p-7 domain. It is
important to note that in order to compute the forward and inverse 7-p transform with this
algorithm, we do not require that the space sampling be uniform since no Fourier transform
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is taken over the space coordinate. To get the inverse transform, equation (2.11) can be
solved, in the least-squares sense, for the w-x data as (Beylkin, 1987)

z,(9(zx)) = [R'R]"'Rly,, (p;). (2.13)

In this equation, the dagger (1) symbol denotes the adjoint matrix or complex conjugate
transpose and, again, an inverse time Fourier transform returns the data to the ¢-x domain.
In this way, we have an exact forward transform to go from the ¢t-x to the 7-p domain and
a least-squares inverse to get back to the t-r domain. As mentioned above, an exact inverse
is not possible unless the input data are periodic in x (Beylkin, 1987). No interpolation is
required, but the solution of equation (2.13) is time consuming if the receiver positions are
irregular, which in general they are. The size of the R'R matrix is N,xN,, typically of the
order of 100x100.

As an alternative way to formulate the problem (Foster and Mosher, 1992), start with
the inverse Radon transform, the operation that goes from the model in the 7-p domain to
the data in the ¢-r domain. Then formulate the forward Radon transform from the data to
the model space as a least-squares inverse problem. With this perspective, we start with

Np—1

z(z,t) = Z Y(pk, T =t — prg(x))Ap. (2.14)

Fourier transformation over time gives,

Np—1

a,0) = 3 ylpew)e o Ap. (2.15)
k=0

Again, for discretely sampled values xy, this can be written in matrix form as

z,(9(zx)) = Rly,. (2.16)

The inverse least-squares solution for y,, is

Yu(pj) = [RRI ™Rz, (g(x))- (2.17)

In this way, the least-squares inverse generates the forward Radon transform. It seems at
this point that we are in exactly the same situation as before, but we are not, because the
operator RR is shift invariant whereas RIR is not. To see this, let us choose the slopes to
be uniformly sampled so that

Dk = Pmin + k - OP. (2.18)

With this restriction, the matrix C = RR! becomes Hermitian Toeplitz and an efficient
algorithm can be employed to solve for the least-squares inverse. To see that this matrix
is Hermitian Toeplitz, first note that, for any matrix, the product RR' is Hermitian, i. e.
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[RRf]' = RR'. To see that it is Toeplitz, let us examine its components (Anderson, 1993)

Np—1
1=0
With p given in equation (2.18), we get
Nyp—1 Nz—1
Cijr= Y e wrislegioma(e) — §™ giwlpn-ral), (2.20)
=0 =0
and, since p, — p; = (k — j)0p,
Nz—1 ) )
Cir= Y ciw(k—5)opg (ki) (2.21)
1=0

S0, Cjr = Cy—; making the matrix Toeplitz; i. e. all elements are identical along any given
diagonal. This fact allows us to use the efficient complex Levinson recursion algorithm for
the inversion; thus, the number of operations required is proportional to n? rather than to
n® for regular matrix inversion. It is important to note that the space variable need not be
evenly sampled; only the slopes need be so. The trade of the need for regular trace spacing
for the need for regular slope sampling is advantageous since the increment of p is at our
choice whereas the increment in x is dictated by limitations in the field. Note also that if we
do not insist on having the advantage of a Toeplitz matrix, then we do not require regular
sampling in either space or slope, and the method becomes completely general, but more
expensive. Another important point to note is that in order to have the advantage of the
Toeplitz matrix, we require N, < N,. Otherwise, we will not have a Toeplitz system matrix
and so are forced to go back to the general algorithm (Anderson, 1993). Normally, I have
chosen NV, equal to N,.

If N, > N, we can no longer compute the inverse using equation (2.17) because the
matrix R is not full rank and so is not invertible (Kostov, 1990). Ideally, in this case the
least-squares inverse should be computed as

yu(p;) = RIRRT "z, (g(z4)). (2.22)

but the Levinson recursion is lost since [RR'] is not Toeplitz as mentioned before.

In practice, however, we can still compute the least-squares inverse using equation (2.17)
when N, > N, if we prewhiten the inversion step adding a small value to the diagonal
elements of the matrix R. The prewhitening avoids the possibility for two or more columns
to be identical, thereby making the matrix full rank, with rank equal to N, (Anderson, 1993;
Kostov, 1990). Speed is not the major benefit of defining the forward transform from the
7-p to the t-xr domain. More important, we gain in the ability of the transform to focus
finite-extent linear events (or, in general, events defined by the offset function g(z)) as close
as possible, in the least-squares sense, to points. This is an important feature for most
applications of the transform for which the discrimination between focused and unfocused
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energy becomes critical. We will explore this feature when we review some of the applications
in later chapters.

If we defined the Radon transform from -z to 7-p, then the least-squares-inverse step
would be striving to focus a line in the 7-p domain to a point in the ¢-x domain, which is
also a nice feature but less valuable than the previous one for the applications investigated
in this study. Also, this focusing ability can be lost or severely reduced if we use too large a
value for the prewhitening factor mentioned above. In fact, the prewhitening value should
be chosen as the smallest value that ensures stability of the inverse transform. Normally I
have used a value between 0.01 and 0.1%.

The result of applying this transform to the modeled test data in Figure 2.1 is shown
in Figure 2.11. Compared with the results Figure 2.2 and Figure 2.6, the Beylkin approach
(Figure 2.11) shows a sharper focusing of the linear events. The focusing power of the filter
term R'R arises because the method describes finite-aperture data with finite-length straight
lines rather than with infinite-length ones. We can expect the performance of algorithms
that depend on the focusing property of the Radon transform to perform better with this
implementation of the transformation.

In summary, the algorithm for the forward transform to go from the data ¢-z space to
the model 7-p space is implemented in the following way: For each trace, apply a forward
time FFT to take the data z(z,t) to the f-x domain z,(g(zx)). For each frequency, collect
the information from each trace and solve the system Ry = z as in equation (2.17) for y,
using a complex form of Levinson recursion. For each value of p, gather the information from
each frequency and apply an inverse FFT to take the data to the 7-p domain. Note that
since each frequency is processed independently of the others, the algorithm is well suited
for parallelizing.

For the inverse transform, the same is done, exchanging the roles of p and z, except that
instead of solving a system of linear equations a simple matrix multiplication is required. The
result of applying the inverse transform is shown in Figure 2.12. Again, the events are in the
right places, but now the amplitudes are close to correct, as seen in Figure 2.13, which shows
that the difference between the input and the inverted data is small. Amplification of this
difference by a factor of 10, as shown in Figure 2.14, shows that the waveforms of the inverse
7-p transformed data differ slightly from the input data. Nevertheless, the result for this
F-X implementation is far superior to those in Figures 2.4 and 2.9. No special least-squares
effort at deriving scale factors is required this time because the scaling is accommodated in
the least-squares Beylkin approach. Note also that edge problems no longer exist because,
as mentioned before, the data are now represented in terms of finite linear segments. The p
filter is also implicitly applied in this method.

Figure 2.15 shows a flow diagram illustrating the implementation of Beylkin algorithm.

2.4 Local Slant Stacks

In some applications, it is necessary to focus energy along curves that are not easily
expressed as a simple function g(z). In those cases, it is advantageous to approximate
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FiG. 2.11. Forward F-X 7-p transform of modeled test dataset 1.
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F1a. 2.13. Difference between F-X inverse 7-p transformed and input modeled test dataset
1.
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F1a. 2.14. Difference between F-X inverse 7-p transformed and input modeled test dataset

1, amplified by a factor of 10.
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Fic. 2.15. Flow diagram for the F-X implementation of the forward and inverse Radon
transform.

such a curve locally as a series of segments of simple shape, the simplest being a series of
straight lines. The corresponding transform, called a local slant stack, maps data from a
two-dimensional (x,t) space to a three-dimensional space (p, 7, x) with the transformation
(Harlan et al., 1984)

y(p, T, T.) = {/ / W(xX anC)z[aﬁ, t=1+p(r—z.)]dr} *p(7). (2.23)
w

Here, W (z) is a suitable spatial windowing function, in the simplest case a rectangle; z. is the
z-coordinate of the window center and X, is the window width, normally just a few traces.
In their original work Harlan et al. included the p filter in the forward Radon transform
instead of the inverse transform (the choice is a matter of convenience), for the local slant
stacks computed in the t-r domain. With the posterior development of Beylkin’s method,
the p filter is no longer needed.

The procedure to compute the forward slant stack is then to select traces in a window by
the use of the windowing function W (z) and apply a regular 7-p transform to the data in this
window. The windows are chosen so that for each input trace there is one such window with
that trace as the center trace (some roll-in and roll-out must be applied at the edges of the
data, obviously). The type of window function to use is also a matter of convenience. Most
times a simple rectangular window is used. If an F-K implementation is used to compute
the slant stacks, however, the window function should be smoothly varying, the gaussian,
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W(z) = e‘”2, being perhaps the best choice.

Figure 2.16 shows one of these windows, 21 traces wide, the one centered around trace
65. A simple rectangular window was applied; note that the reflection hyperbolas look pretty
much linear over this small window. Figure 2.17 shows the corresponding local slant stack,
with the quasi-linear events well focused.

This procedure yields displays similar to the sonograms employed by Rieber (1936) to
decompose seismic data into planes containing narrow ranges of dip (Harlan et al. 1984).

The inverse slant stack is now easily computed, since we have decomposed the wavefield
recorded by a narrow range of traces centered at a given trace into plane-wave components.
The information contained in that narrow window of data is recovered simply adding back
those plane-wave components. The procedure is repeated for all traces (Harlan et al., 1984)

z(z,t) = /y(p, Te =1z, T = t)dp. (2.24)

Figure 2.18 shows the inverse slant stack of the input data, and Figure 2.19 shows the
difference between the inverse and the input data, amplified by a factor of 10. Again,
although the inverse transform is not perfect, the amplitude level of the difference is an
order of magnitude less than that of the input. Note however, that the short offsets show a
higher error for the hyperbolas, probably due to a combination of the roll-on for the windows
at the edge of the data and the fact that the hyperbolas have their largest change in curvature
in that region.

Note that although the local slant stacks allow us more flexibility in the approximation
of arbitrary smooth curves by local segments of straight lines or other curves, they also imply
a considerable increase in computational cost, depending on the number of traces used for
each window and the domain of application of the transform. This increase in cost can be
up to ten times that of a global transform if both the local slant stacks and the global global
slant stack are computed using the preferred Beylkin’s approach.

2.5 Aliasing, Stationarity and Stability

Let us look at three further critical features having to do with the efficiency and per-
formance of the Radon transform: aliasing, stationarity and stability.

2.5.1 Aliasing

As with any transformation that deals with discretely sampled data, the issue of how
finely it is necessary to sample the data in order to avoid aliasing artifacts is critical to
obtaining good results with any implementation of the Radon transform. Space aliasing
tends to introduce noises in the 7-p transform and to produce an imperfect inverse transform.
Likewise, too coarse sampling in slopes will introduce artifacts in space (Yilmaz, 1987).

For the linear Radon transform, Turner (1990) shows that to avoid having aliasing in
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Fi1a. 2.16. Data window centered at trace 65 of modeled test dataset 1. Note that the
segments of hyperbolas look like linear events.
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Fic. 2.17. Local F-X domain 7-p transform of windowed data. All events in Figure 2.16
have been focused.
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the 7-p domain, the p and x sampling intervals should be

1
Ap < , 2.25
fmaz (mmax - xmzn) ( )

and )
Az (2.26)

< fmam (pmaz - pmm) ’
where .., and Z,,;, are the minimum and maximum offsets, P, and pmne. are the mini-
mum and maximum slopes and f,,, is the maximum frequency present in the data. Equa-
tion (2.25) is sometimes expressed as (Harlan et al., 1984)

2At

Ap < 220
P < N, Az’

(2.27)
where At is the time sampling interval, Az is the space sampling interval and NN, is the num-
ber of traces. This equation, however, is equivalent to the expression given in equation (2.25)
only if the maximum frequency present in the data is the Nyquist frequency.

More recently, Hugonnet and Canadas (1995) gave equivalent expressions, appropriate
for the parabolic Radon transform (that is, the transform when g(z) = z?2)

1
A .
L P P e P E (229)
and 1
8 (2.29)

Tz < .
2fmam . |x‘maz ) [pmaz - pmzn]

In this equation, |Z|mq, is the absolute value of the maximum offset in the data. The
slope and space sampling interval are chosen to comply with these equations, and the number
of slopes N, is chosen so that the range of slopes in the data is spanned in applying the 7-
p transform. As mentioned before, if the F-X implementation is used, it is better to use
N, < N, for the sake of computational efficiency.

In order to satisfy this and the aliasing condition, we may have to high-cut filter the
data, restrict the range of offsets, or do a combination of the two.

2.5.2 Stationarity

Recall that efficient implementation of the generalized Radon transform does not require
that the data be regularly sampled in space, and we can perform the transform with the same
efficiency regardless of the shape of the stacking curve g(x). This is true, however, only if the
shape of the curves does not change with time, that is, if the stacking curves are stationary.
If, as with NMO hyperbolas, this is not the case, the advantage of the F-X computation is
lost because then the Fourier transform over time cannot be computed efficiently. One could
still use a time-domain implementation, but it is not accurate as was shown before; thus, it
is almost never used in practice.
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A way to circumvent this problem is to NMO-correct the data so that any residual
moveout can be approximated by parabolas (Hampson, 1986) or time-independent hyper-
bolas (Foster and Mosher, 1992). The first of these approaches was employed to obtain the
results shown in later chapters.

2.5.3 Stability

Although efficient implementation of the generalized Radon transform is stable for all
frequencies of interest, problems arise for some frequency components, such as at 0 Hz,
or at frequencies where aliasing artifacts occur (Gulunay, 1990). In these cases, the matrix
inversion cannot be successfully applied since the problem becomes undetermined: the matrix
is no longer diagonally dominant, and therefore is not invertible. The solution, again, is to
add a prewhitening factor to the diagonal elements of the matrix to stabilize the inverse.
In the limit of an infinitely large prewhitening factor, the matrix becomes diagonal and the
result is the same as that obtained by a traditional 7-p implementation (Anderson, 1993).
As this factor is made smaller, the quality of the inverse improves, provided that it remains
stable. Ideally, this factor should be chosen to be frequency dependent, so that a large value
is used for only those frequencies likely to produce unstable results. In practice, however, a
single value is employed for ease of implementation. For all of my tests, I have used a single
prewhitening factor of 0.01%.

2.5.4 Additional optimization

When a large number of shot or CMP records must be transformed, an additional
reduction in amount of computation can be done if the trace spacing is regular or if we can
regularize it, for instance by stacking adjacent CMP gathers. This optimization is based on
the observation that the matrix R is data-independent, so that it, along with the convolution
operator RRf, need be computed only once (once for every frequency, obviously), stored,
and used for all the CMP records. This will save a significant amount of computer time, but
at the expense of requiring a large amount of memory to store these matrices.

2.6 Relative cost

As the data comparisons in this chapter have shown, the preferred way to compute
the 7-p transform is by the use of the F-X (Beylkin’s) implementation. This is due to
the better focusing nature of the transform, its better handling of the amplitudes in the
inverse transform and the absence of edge effects. These factors are associated, as mentioned
above, with the fact that the transform approximates the limited aperture data with finite-
length segments. It may seem, therefore, that there is no reason to even consider the other
approaches, but there is: computational cost. The F-K implementation of the 7-p transform
is the fastest because it only involves FFT’s and interpolation. The t-x implementation could
be even faster than the F-K implementation if the data consisted of just a few traces. The
F-X approach is the slowest because it involves solving a linear set of equations, which can
be pretty large, for each frequency component in the data.
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For model test dataset 1 used in this chapter, the t-x implementation is slower than
the F-K implementation by about 30%, and the F-X implementation is about four times as
expensive as the F-K implementation.

Beylkin’s (F-X) implementation of the generalized 7-p transform will be used in the
remainder of this study for both Hampson’s parabolic 7-p filtering and Harlan’s signal-noise
separation. Harlan’s original work preceded Beylkin’s development of the F-X algorithm
so he did not originally use it. Harlan (personal communication) has since acknowledged
that Beylkin’s approach is the best available option because of its power to focus events of
interest.
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Chapter 3

THE SIGNAL-NOISE SEPARATION ALGORITHM

3.1 Introduction

Harlan et al. (1984) developed a statistical approach to separating signal and noise on
the basis of the difference of their patterns as they appear in an appropriate domain, where
data in that domain can be obtained by an invertible linear transformation of the input data.
Here I give a description of the algorithm as applied to the separation of linear reflectors
from both events with hyperbolic curvature and random noise. To illustrate the method, I
generated a dataset (see Figure 3.1) by zero-offset modeling of a series of truncated linear
horizontal reflectors and three isolated point diffractors. The dataset contains 100 traces
with 600 samples each, at 4-ms sampling interval and trace spacing of 20 m. Of particular
importance for this dataset is to evaluate the ability of the method to extract even the
extremely weak diffractions off the edges of the truncated horizontal reflectors.

3.1.1 Focusing the data by a linear, invertible transformation

The signal-noise separation algorithm must be capable of recognizing and exploiting
the characteristics that differentiate the signal pattern from the noise pattern after the
application of a suitable linear transformation. Although the type of transformation used
depends on the data and the application at hand, let us concentrate in this chapter on
the identification and extraction of linear coherent events from either incoherent events or
coherent events with moveout other than linear. Linear events require only two parameters
for their complete specification: their slope and their zero-offset intercept time. In a seismic
section, however, reflection events are seen as amplitudes on every trace; in other words,
their patterns are overspecified. Incoherent noise, on the other hand, not being laterally
coherent, cannot be specified by any fewer number of parameters. Therefore, if we apply
a linear 7-p transform to the data, we focus the linear events (that is, decrease to the
minimum the number of parameters required to describe them) without focusing the noise.
Obviously, coherent nonlinear events will not be focused by the transformation and will, for
the current purpose, behave as noise (they could be focused by a different transform if that
were desired). Figure 3.2 shows the 7-p transform of the model dataset 2, using the F-X
(Beylkin’s) approach. Note that the linear events have been focused to small regions of the
7-p plane, although not to points because of the limited number of traces. The diffraction
hyperbolas, on the other hand, were not focused by the transformation, but were mapped
to ellipses that are barely visible in that figure.

From a mathematical point of view, the transformation increases the statistical in-
dependence of the data samples, by decreasing their lateral predictability. This offers an
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important advantage for the way we can handle the statistical characteristics of the data. In
their original domain, the samples of the signal (the linear events) are far from being statisti-
cally independent, so we cannot describe them using marginal probability density functions
(which require the samples to be statistically independent); we need to deal with their joint
probability density functions. These joint probability density functions, however, cannot be
computed with just one realization of the data, so the recorded data do not have enough
redundancy for their computation. If we apply an appropriate transformation, as explained
before, the data samples that correspond to the signal are focused and so its samples become
statistically independent (or at least we will assume that this is the case) and we can now
work with marginal probability density functions, which can be computed relatively easily
from one-dimensional histograms, provided that we can neglect any correlation of the signal
or noise samples after the transformation.

The first and most critical step in the application of the algorithm, is to choose the
appropriate transformation that will focus the data without focusing the noise, with our
working definition of noise as anything that is not focused by the given transformation.

3.1.2 Basic Assumptions

Some of the basic assumptions of the algorithm may be obvious from the previous
discussion, but will be repeated here for the sake of reaffirming their importance. In order
for the method to work, three basic assumptions must be satisfied

e An appropriate transformation must exist that, ideally, will focus the signal to the
smallest possible number of parameters required to describe it.

e The same transformation must defocus the noise (or at the very least not focus it).
Equivalently, we redefine noise as any event that is not focused by the transformation.

e After the transformation, the signal and the noise are considered statistically inde-
pendent, uncorrelated random variables. This may be debatable, but it is a basic
assumption that seems to be satisfied by most datasets.

3.2 Description of the Method

I now describe, step by step, the different computations required to implement the
method of Harlan et al. (1984), leaving some particular, yet crucial, computer-implementation
details for a later section after the basic ideas about the method have been explained.

3.2.1 Computation of the probability density functions

As we shall see, the essence of the algorithm is the statistical separation of the signal
and the noise based on estimates of their probability density functions. In this section, we
see how estimates of these functions are computed.
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Fic. 3.3. Data probability density function. Note that most samples fall in the
smallest-amplitude bins.

Data probability density function With the assumptions mentioned above, the
data probability density function is computed from the transformed data in a straightforward
way by the computation of an amplitude histogram. The only parameter of concern is the
number of bins to use in computing the histogram. I have found this not be a critical
parameter; any number between 50 and 100 seems to be adequate. Figure 3.3 shows the
computed data histogram for the transformed model dataset 2 (Figure 3.2), with the ordinate
re-scaled from frequency of occurrence to probability density values by ensuring that the area
under the curve is unity. From this figure, it is obvious that the vast majority of the samples
have amplitudes close to zero (that is, they correspond to samples that were not focused by
the transformation), and a relatively few correspond to the high-amplitude, focused samples.
That some higher amplitudes are present is better seen in Figure 3.4, which is a detailed
close-up of the low-probability region of Figure 3.3.

Noise probability density function The noise probability density function is not
so straightforward to compute because we do not have information as to what exactly is
the noise. (Noise is one of the components we are trying to isolate.) The solution to this
difficulty lies on our working definition of noise: anything that is not focused by the linear
transformation. What this means is that, although there is no way to know the exact
probability density function of the noise, we can get at least a pessimistic estimate of it,
assuming that everything in the data is noise (it is not, of course; that is why the estimate
is pessimistic). This pessimistic estimate means that we are being conservative about our
signal extraction, desiring to prevent any noise from appearing as signal. In a subsequent
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iteration of the process, we can compute a better estimate of the noise distribution after
we have computed and extracted a first estimate of the signal present in the data; this will
be demonstrated in a later section. A mathematical justification for these facts is given in
Appendix B of Harlan et al. (1984). From our previous discussion, the way to make the data
behave as noise is to artificially destroy the linear coherence of the events. This can be done
in many different ways. Here are some

e randomly reverse the polarity of the traces
e randomly introduce static shifts to the data
e randomly alter the order of the traces

The simplest one to implement is the first one, and this is the approach used in this study
(see Figure 3.5).

We next apply the transformation to the disrupted data and obtain as a result that the
energy is not focused, but instead is rather spread out all across the transformed section (see
Figure 3.6), as we wanted it to be. We can now compute the probability density function of
the “noise” with a histogram, in exactly the same way that we did for the data. Figure 3.7
shows the estimated probability density function, and Figure 3.8 shows a detailed view of
the low-probability region. These figures show that we still have a predominance of samples
with low amplitudes. No significant energy is found with the high amplitudes because no
significant energy was focused by the transformation. One point to note here is that the
same amplitude intervals have to be used for both the data and the noise histograms.

Signal probability density function We cannot directly compute the signal prob-
ability density function for the same reason that we could not with the noise: at the outset,
we do not know what is the signal. At this point, we make use of the third assumption listed
above, that the signal and the noise are (or at least we assume that they are) independent
random variables. For every sample of data in the transformed domain, we can write

d=s+n, (3.1)

where d means data, s signal and n noise; that is, every data sample is the result of a
contribution from the noise and a contribution from the signal (although the amplitude
of one or both of them could be zero for any particular sample). For signal and noise
independent of one another, the probability density function of the signal and of the noise
are related to that of the data by (Papoulis, 1965)

pa(z) = ps(z) * pu(z), (3.2)

where the asterisk denotes convolution. Therefore, provided that signal and noise are inde-
pendent random variables, the knowledge of any two of these probability density functions
determines the other. In particular, since we have estimated pq(z) and p,(x), we can, in
principle, deconvolve equation (3.2) to get ps(x). This may sound trivial, but an ordinary
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deterministic deconvolution will not work since p,(z), being a probability density function,
has to satisfy two restrictions:

e all samples of p,(x) have to be non-negative
e the area under the curve of p,(z) has to be unity

What this means, is that some sort of constrained deconvolution is required in order for
the result ps(z) indeed to be a probability density function. Appendix B of Harlan 1988,
shows that a valid form of p(x) can be obtained by posing the problem as an optimization
problem: Given py(x) and p,(z), find the p,(z) that minimizes the error between py(z) and
pn(T) * ps(z) in the least-squares sense. This can be done using any iterative technique
such as conjugate gradient or steepest descent, with the two constraints mentioned above
introduced as parameters via Lagrangian multipliers.

As with any optimization problem that requires an iterative solution, we are still faced
with the questions of what to use as the starting model for p;(x) and how to determine when
to stop the iterations. In order to answer the first question, let us think of the data in the
transformed domain. We have focused the signal (in the present example, the linear events)
to small areas (they would be points if we had an infinite number of traces) and we have
spread out the noise (defocused it) all over the transformed domain. This means that we
expect our signal probability density function to be close to a spike, with a large number
of samples having low absolute amplitudes (that is, most of the points in the transformed
domain do not have any significant contribution from the focused signal) and just a few
points (those focused by the transformation) having large absolute values. A spike centered
at the zero-amplitude bin is therefore the natural choice for a starting guess. The answer to
the second question is less precise. We stop the iterations when either the difference between
pa(z) and p,(z) * ps(z) falls below a given threshold or when the change in the difference
from one iteration to the next becomes small. I have used the first stopping criterion and
found this threshold to be a parameter that does not need to be finely tuned. I normally get
good convergence within a few (less than ten) iterations.

In summary then, we can directly compute an estimate of py(x), compute an admittedly
pessimistic estimate of p,(z), and then use the two to estimate ps(z) as an optimization
problem. As seen in Figures 3.9 and 3.10, the result of doing this computation, the computed
ps(z), departs only slightly from the starting spike. That slight departure, however, is the key
to the computation, because for the highest amplitudes, we have basically no contribution
from the noise. Moreover, since the main contribution to those large amplitudes is from
the signal, those large values are the most valuable samples in our signal extraction; that
is, there is near-zero probability that those samples are noise. It should also be noted that
Figure 3.10 shows more samples with large positive amplitudes than those with high negative
amplitudes. This is a consequence of the fact that the model data were created with only
positive reflection coefficients, so that the negative amplitudes appear only because of the
lobes of the Ricker wavelet used in generating the data.

Now, how close are we able to recover py(z) from the convolution of ps(z) and p,(x)?
Figure 3.11 answers that question, and the answer is that we cannot exactly recover py(z),
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but, as will be seen later, we can get close enough for the method to work. Note in particular
that we have been able to recover the highest amplitudes, which is good because they are
the most important ones for our purpose of extracting signal.

Once we have these probability density functions, what remains to be done is to use
them to estimate how much signal is present in a given sample of data and to zero out those
samples that are judged to contain less than a prescribed amount of signal. That is, the next
step is to develop a criterion for selecting a threshold amplitude above which data focused
in the 7-p domain are considered signal, and below which data are treated as noise.

3.2.2 A Bayesian Signal Estimator

Following Harlan et al. (1984), we compute the expected value of the signal given the
amplitude of the data sample. This Bayesian estimator, E(s|d), is the amount of signal
estimated to be in a sample of data with amplitude d. It is given by (Harlan et al., 1984;
Papoulis, 1965)

[ zps(z)pp(d — x)dx
pa(d) '

In this equation, z is the bin center corresponding to a sample with amplitude d (in the
transformed domain), and the summation is carried out over all histogram bins. The quantity
Psja(x|d) represents the conditional probability of the signal given the data, and is a function
of the bin amplitudes z and the sample amplitude d. The numerator in equation (3.3) can
be easily computed by recognizing that it is just a convolution of zp,(z) with p,(x). The
denominator is not the original data probability density function but rather its estimate
computed as a convolution of the estimated signal and noise probability density functions.

This equation has a remarkable interpretation. It is telling us that, for every sample
of data, we can directly estimate what is the expected value of the signal contribution (and
thereby of the noise contribution) and so we have a direct way of deciding which samples are
significantly contaminated by noise and thus should be zeroed out. Two important extreme
cases can be used to illustrate this. If all of our data consist of signal, that is, if no noise is
present, then p,(z) = d(z) and py(z) = ps(z), so we have:

B(s|d) = [ zps(z)d(d — x)dx _ d - py(d) _ 4 (3.4)

Pd pa(d)

E(s|d) = /:Eps|d(m\d)d:c = (3.3)

That is, in this noiseless case, all the data samples are judged to be pure signal, i.e., they are
100% reliable. In the other extreme, if the data consist entirely of noise (remember, noise
is not necessarily random, it is just anything not focused by the transformation, including
linear events whose slopes are outside the range of values allowed for the 7-p transformation),
we have p(z) = d(x) and py(z) = p,(z), so:

_ J2é(z)p,(d — z)dz

E(s|d) = o) = 0. (3.5)

This result states that, in this case, none of the samples would be found to contain any signal
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and so are 100% unreliable. In all intermediate situations, we get intermediate results; thus,
we have a way of discriminating signal and noise for every data sample in the transformed
domain on the basis of their computed E(s|d) value.

Figure 3.13 shows this estimator for our example. Except for the low-amplitude samples,
the amplitude of the signal is roughly equivalent to the amplitude of the data (i.e., the curve
of E(s|d) versus d is close to the dashed line with unit slope), telling us that these samples
are unlikely to contain any noise.

3.2.3 Reliability measure

From the previous discussion, we might think that once we have computed the Bayesian
estimator we are basically home free, having achieved our goal of discriminating the signal
from the noise. It is now possible to set a threshold value for ascertaining whether or not a
sample should be considered as signal; samples that have an E(s|d) value larger than, say,
80% of the data amplitude will be considered to correspond to the signal we wish to extract,
and those with E(s|d) values less than that will be considered to correspond to the noise
we wish to suppress and so will be zeroed out. There is a problem, however, that we have
not addressed: how reliable is the Bayesian estimate F(s|d); that is, how much can we trust
that if the estimator indicates that a given data sample is, say, 80% signal and 20% noise, it
is not in fact, say, 75% signal and 25% noise?

In order to assess the reliability of the Bayesian estimator, we can define a reliability
indicator as the conditional probability that the estimated signal (that is, the value given
by the Bayesian estimator) is within a certain percentage of the true (unknown) value. Its
mathematical expression is given by (Harlan, 1988)

reliability = P[(—cs§ <s—3§<c8)|d (3.6)
fssjccgs ps(2)pp(d — )dx
S %0 Ps(2)pn(d — x)dx

Here, as before, s is the signal amplitude, § is the estimated signal amplitude given by the
Bayesian estimator, d is the data amplitude and c is a measure of how much uncertainty
we are willing to accept in the Bayesian estimate of signal. Normally, ¢ is chosen to be a
small value, less than say 5%. The numerator of this equation is a bounded convolution that
represents the contribution of the signal to the data sample, whereas the denominator, as
before, is the estimated probability density function of the data. If a given data sample were
all signal, the numerator and the denominator would be the same and the reliability of that
sample would be 1, that is 100% reliable. The data samples with the highest amplitude (in
the transformed domain), are therefore the ones most likely to correspond to signal with the
highest reliability. This reliability indicator can then be used to identify the signal samples
as those with the highest reliability.

The question of how high is high reliability depends on how well the transform was
capable of focusing the signal. It is a processing parameter that is data-dependent and
requires testing for each dataset and each application of the algorithm. As a matter of fact,

(3.7)
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it is the parameter to use in deciding how much signal is to be extracted. The parameter c
is not so critical and I have found that any value between 1 and 5% works well.

Figure 3.14 shows the result of the calculation of the reliability parameter for model
dataset 2. As expected, the low amplitudes have basically zero reliability, and this reliability
increases rapidly with increasing amplitude.

For this particular dataset, since the amplitudes of focused events are much larger than
those of defocused events, a small value of reliability is used to discriminate between reliable
and unreliable samples. Figure 3.14 shows that the transition between unreliable samples (for
which the reliability values is almost zero) and reliable ones for which the reliability indicator
is significantly greater than zero, is very steep. This is a consequence of the high amplitudes
of the focused energy and the very low amplitudes of the unfocused energy (the barely
seen ellipses in Figure 3.2) which makes only the very low-amplitude samples unreliable.
Thus, for this dataset, the reliability value necessary to discriminate between reliable and
unreliable samples needs only be able to detect for which bin amplitude the reliability curve
(Figure 3.14) abruptly increases upward from near zero (again, the unquestionably unreliable
samples). A value of 0.001 did the work for this dataset. This may seem too small a value
for a parameter that represents the reliability of the data samples but, as implied above, it is
just telling us that, for this dataset, only the samples that fall in the very low-amplitude bins
(from about -15 to 15) are unreliable, and that larger-amplitude samples, although having
small reliability values, are in fact reliable enough to contribute to the solution. For other
datasets, in which the transition from small to large reliability is not so steep, a much larger
value of reliability may be necessary to identify the reliable samples. As mentioned before,
the Bayesian estimator itself could be used to extract the reliable samples, but it is not so
accurate, in particular because it may be difficult to numerically compute E(s|d)/d for small
values of d for which both the numerator and the denominator tend to zero. Other ways to
discriminate between reliable and unreliable samples may also be possible. Perhaps even the
direct comparison of the data, noise and signal histograms could give us a good idea of what
is the minimum sample amplitude to consider samples as reliable. In all my tests, however,
I used the reliability measure as defined above to do the extractions.

Once the unreliable samples are identified, they are zeroed out, so that what remains
constitutes what are judged to be signal samples that can be inverse transformed to get the
extracted signal back in the time domain. The extracted noise can then be computed by
subtracting the extracted signal from the original data.

Results of this process for the test data in Figure 3.1 are presented in Figure 3.15 and
Figure 3.16. The algorithm was successful in identifying and extracting even the weakest
diffractions despite the fact that their amplitudes were much smaller than those of the
reflections (to the point that they were virtually invisible in the model plot, Figure 3.1) and
that they were coincident with the signal at some points. Some linear coherent energy from
the signal still remains, however, indicating that the extraction was not perfect. A second
iteration of the algorithm can be made, with the noise estimated from Figure 3.16 rather
than from the input data. This is important and will be discussed in a later section.
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3.3 Computer-implementation details

Having reviewed how the approach of Harlan et al. uses the focusing power of the
transformation, along with a statistically derived threshold amplitude detection to separate
signal and noise, some critical implementation details need to be addressed.

3.3.1 Analytic envelope

The approach described above should work well for a sample-to-sample extraction, that
is, assuming that the extraction of a sample is completely independent of that of neighboring
samples. This would be the case if the transformed data consisted of spikes, but seismic
data consists of band-limited wavelets. Thus, we want to be able to extract, as reliable,
the complete wavelet and not just its peak. In other words, for a given wavelet, we not
only want, but require, that the program be able to identify as comparably reliable all of
its samples, whether peak, trough, zero crossing or values in between. This obviously means
that we cannot solely use the sample amplitude to do the extraction, but instead need a
more global measure of the reliability of amplitudes, one that looks at the larger picture and
is not fooled into believing that the zero crossings of a reliable wavelet, being zero amplitude,
are unreliable. A useful tool that provides such a global measure of amplitude is the analytic
envelope of the transformed traces. Harlan (1985) suggests using this analytic envelope for
the extraction. Given a time series z(z), its analytic envelope is defined as (Bracewell, 1967)

y(z) = \/22(x) + (H[z(2)])?, (3.8)

where the capital H means the Hilbert transform of the time series z(z).

In order to be able to extract the complete wavelet, we compute the analytic envelopes
of the transformed traces and use their samples as “d” in computing the reliability measure,
equation (3.7). The sign of the analytic envelope samples is that of the transformed data
samples. Analytic envelopes were used in the computation of reliability for all the results
shown in this study.

3.3.2 Iteration

A refinement included in the method of Harlan et al. consists of applying a second
iteration using the extracted noise as a better estimate of the noise present in the data than
that obtained assuming that everything in the data was noise. It is still necessary to destroy
any residual coherency that might be left in the estimated noise by randomly reversing the
polarity of its traces, since we prefer to overestimate the noise to guarantee that no signal is
lost in the extraction.

I have found this second iteration to be more needed for noiseless modeled data than
for field data probably because field data have a significant amount of random noise to begin
with, so the initial estimate of the noise is not too far away from the true noise character.

Figures 3.17 and 3.18 show results obtained with this second iteration of the method.

Comparison of these with their counterparts in Figures 3.15 and 3.16 shows that, here, a
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significant improvement was obtained by this second iteration, in particular for the shallow
events; not only is the level of noise rejection better, but also, less noise was allowed in the
extracted diffractions (the arrows in Figure 3.18 point to places with improvement over that
in Figure 3.16).

3.3.3 Smoothing

It is desirable to have a smooth transition between accepted and rejected samples be-
cause a sharp transition will distort the spectrum of the extracted signal, which will be
evidenced as ringiness in its Fourier transform. This smooth transition can be done by
applying a two-dimensional smoothing to the extracted data, or equivalently, flagging sam-
ples judged reliable with ones, those judged unreliable with zeros and smoothing this array
of ones and zeros vertically and horizontally prior to multiplying it with the data. This
will have the desired effect of providing a smooth transition between samples accepted as
reliable from those rejected as unreliable. The level of smoothing is a data- and transform-
dependent parameter that in principle is necessary to test for every application. I have
found this smoothing parameter, however, not to be critical in the applications that I have
investigated. A vertical smoothing over 10 time samples and a horizontal smoothing over
two slope values was applied in all the tests that I have done.

To show how important is this smoothing, Figure 3.19 shows the result of applying the
algorithm, with exactly the same parameters used to generate Figure 3.18, but without the
smoothing. The lack of smoothing has resulted in a much noisier estimate of the diffractions.
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Fic. 3.4. Close-up of the low-probability region of the estimated data probability density
function to show that there are, in fact, a small number of samples with high amplitudes.
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F1a. 3.7. Estimated noise probability density function.

0.008
0.006
2
=
<
o
<)
o
0.004
0.002 K/\/\
0 T T T T T
-40 -20 (] 20 40 60

Bin amplitude

Fic. 3.8. Close-up of the low-probability region of the estimated noise probability density.
There are no samples with high amplitudes.
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Fic. 3.9. Estimated signal probability density function.
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Fi1G. 3.10. Close-up of the low-probability region of the estimated signal probability density
function showing that some samples indeed have high amplitudes.
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Fic. 3.11. Estimated data probability density function computed as ps * py.-
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FiG. 3.12. Close-up of the low-probability region of the data probability function computed
as pp(x) * ps(x). Note that we recovered the samples with the high amplitudes.
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FiG. 3.13. Bayesian estimator, showing that the signal and the data amplitudes are about
the same, i.e., close to the dashed line with unit amplitude through the origin, except for
the very small amplitudes for which the estimated signal is nearly zero.
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F1a. 3.14. Reliability indicator, showing that the high amplitudes are very reliable,
whereas the lowest ones are not.
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Chapter 4

GROUND-ROLL SUPPRESSION

4.1 Introduction

I now explore the application of the signal-noise separation algorithm described in the
previous chapter to the suppression of ground-roll noise. Ground-roll is a high-amplitude,
coherent, low-frequency, dispersive wavetrain that travels near the surface of the earth and
is a serious problem with most land datasets. First, I review traditionally-used techniques
for its suppression and then describe the proposed method, and show results of applying it
to a field shot record. Figure 4.1 shows this shot record; it consists of 44 traces, with 1000
samples per trace at 4-ms sample interval and 50-m trace interval.

4.2 Traditional techniques

Traditional techniques for ground-roll suppression have relied on using geophone arrays
on the field, and using a combination of F-K filters, low-cut frequency filters and deconvolu-
tion during processing. Each is simple to apply, but while these various approaches can be
effective, where the ground-roll amplitude is particularly strong and not sufficiently different
in frequency or wavenumber content from the signal, the resulting suppression can be inade-
quate. In particular, the noise suppression can distort the variation of signal amplitude with
offset on unstacked traces compromising interpretation of amplitude variations with offset.
Therefore, where the quality of extracted signal is particularly important, such approaches
may be inadequate. Before applying the method of this thesis, let us examine some basic
characteristics of these methods by applying them to the field data set.

4.2.1 Low-cut frequency filtering

Ground-roll noise is often distinctly low frequency compared with the body-wave energy
that we wish to preserve. Where the amplitude spectra of the two do not overlap, a low-cut
frequency filter can be applied to suppress the ground-roll frequency band. The shot record
in Figure 4.1 shows strong, dispersive and spatially-aliased ground-roll, and Figure 4.2 shows
the amplitude spectra of all the traces in this shot record. For frequencies below about 16 Hz,
the data are swamped by the noise. Figure 4.3 shows the corresponding amplitude spectra
after application of a low-cut trapezoidal frequency filter with a low-cut frequency of 16 Hz
and a low-pass frequency of 20 Hz. The filter was applied over the entire shot record and
not just in the region of the noise.

Figure 4.4 shows the extracted signal, and Figure 4.5 the extracted noise. The low-cut
filter did indeed suppress much of the ground-roll, but, as seen in Figure 4.5 the low-frequency
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frequency ground-roll.

FiG. 4.1. Field shot record with strong, spatially-aliased, low
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FiG. 4.2. Amplitude spectrum of the test shot record.
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FiG. 4.3. Amplitude spectrum of low-cut filtered shot record with low-cut frequency of 16
Hz and low-pass frequency of 20 Hz.
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Fi1G. 4.4. Low-cut filtered test shot record. Note that all the ground
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Fic. 4.5. Extracted ground-roll after applying a low-cut filter.
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Wavenumber (1/m)

Frequency (Hz)

FiG. 4.6. F-K spectrum of test shot record. The first arrivals and the noise are spatially
aliased.

component of the signal was suppressed along with it. While this may be acceptable for a
structural interpretation, it is not if a detailed stratigraphic interpretation is desired since
the low-frequency components contribute to the resolution of the resulting wavelet. The
limitation is important when the data are to be used for lithological inversion, since the low-
frequency components of the data carry useful information about geology such as compaction
trends or deposition cyclicity. Sometimes the low-cut frequency filter is applied not to the
entire shot record but only to the “noise cone”, or the zone in which the ground-roll is
present. This has the advantage that only the data inside that cone is filtered, but has a
serious problem in that the amplitude of the wavelet is changed in an offset-dependent way,
thereby precluding the utilization of any AVO analysis.

4.2.2 F-K filtering

In this method, the data are transformed to the F-K domain by the application of a 2-D
Fourier transform and then a slope filter, aimed at removing any feature within a prescribed
range of slopes, is used to separate the signal from the noise.

Since the ground-roll waves travel along the spread with much lower velocity than do
the body waves, they are mapped to a different part of the F-K domain than is the signal.
Figure 4.6 shows the F-K transform of the data in Figure 4.1. Note that the ground-roll (the
linear events with frequencies less than about 16 Hz) is aliased and so are the first breaks,
(the strong amplitude linear events for higher frequencies). A fan shaped slope filter might
then be applied to separate the signal from the noise.
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In practice two problems frequently conspire against the success of the algorithm.

Aliasing: Spatial aliasing of either the signal or the noise, due to insufficient sampling in
space (i. e., fewer than two samples per wavelength for the shortest wavelengths present
in the data), makes events appear to have moveout that can differ greatly from the
true moveout, causing events to appear in the wrong part of the transform domain.
As a result, it may be difficult, if not impossible, to apply the desired mute in the
F-K domain. Figure 4.6 should show no energy in its left hand-side half since all the
events in the input data are dipping to the right, but it does because of the aliased
events. Although there are ways to alleviate this problem, it is always detrimental to
the quality of the F-K filtering action.

Tapers: If the boundary between the pass zone and the reject zone of moveouts is too
sharp, moveout filters suffer from a two-dimensional version of the Gibb’s phenomenon,
familiar when the pass-reject boundary of one-dimensional frequency filters is too sharp.
Therefore, a transition zone with a taper must be applied to go gently from the slopes
that are to be fully rejected to those that are perfectly accepted. Since normally the
moveouts of signal and noise are not clearly separated, a tradeoff is necessary: short
transition zones mean more effective rejection but the possibility of introducing Gibb’s
phenomenon noise with slopes comparable to the cutoff slopes of the moveout filter.
Broader taper zones, on the other hand, mean a less severe Gibb’s phenomenon noise,
but also less perfect noise rejection.

Figure 4.7 shows the F-K spectrum after the application of such a fan filter, with smallest
reject slope of -0.218 ms/trace, (that is, energy with slopes less than that are multiplied by
zero), smallest pass slope of 0.0 ms/trace (a linear taper is applied for slopes between -
0.218 and 0 ms/trace), largest pass slope of 5.2 ms/trace (that is, energy between 0 and 5.2
ms/trace are multiplied by one) and largest reject slope of 6.2 ms/trace (that is, energy for
slopes larger than this value are multiplied by zero; a linear taper is applied for slopes between
5.2 and 6.2 ms/trace). Figure 4.8 shows the extracted signal. Some ground-roll still remains,
in particular between 700 and 1200 ms. F-K filtering, while useful for suppressing ground-
roll, is thus imperfect in separating the signal and noise. Figure 4.9 shows the extracted
ground-roll. Note that no discernible energy from the primaries was extracted.

4.3 Signal-noise separation method

In order to apply the signal-noise separation algorithm described in the previous chapter,
we need to design an invertible linear transformation that will focus the signal and, at the
same time, defocus the noise. If we consider the signal to be the reflection hyperbolas, and
the noise to be either random noise or ground-roll, then our transform must be able to focus
hyperbolas while defocusing non-hyperbolic events. Let us now compare the action of several
alternative approaches to focusing the hyperbolas.
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4.3.1 Local Slant Stacks

As mentioned above, Harlan et al. (1984) proposed the local slant stack method for
extracting the ground-roll noise present in a shot record by approximating the reflection
hyperbolas with a series of small, linear segments. Recall that the idea is that a hyperbola
or any smooth curve, can be locally approximated with a short linear segment. For each
input trace, the energy in a window of a few traces centered on that trace will be locally
slant stacked so that a 2-D 7-p representation is obtained for the chosen range of slopes in
the transform. Events that are linear (or can be reasonably approximated as linear) over
the window of data used in the transform are focused, whereas those that do not show that
coherence are not focused. The window moves up by one trace and the process is repeated
for all traces in the shot record.

The algorithm described in the previous chapter can be applied to each of these 7-p
planes so that the linear segments can be extracted. To the extent that the number of traces
for the local slant stacks is appropriate (not so many that the linear approximation breaks
down, and not so few that 7-p transform is not reliable) and that an appropriate range of
slopes for the 7-p transform is chosen, the signal can be retrieved from the stronger noise.
Figure 4.10 shows a window of data with 21 traces centered on trace 22. Note that some
linear reflections are clearly visible between 400 and 600 ms (in reality, these are segments
of hyperbolas that look linear because of the small range of offsets). Figure 4.11 shows the
result of applying the local slant stack to that window of data. Again, the linear and nearly
linear events are focused near zero moveout, with strongest amplitudes between 400 and 600
ms.

While the linear and nearly linear hyperbolic events were focused, as desired, the fo-
cusing is weak; that is, the energy in the linear events is not collapsed to a point because
of the small number of traces in the transform, which make nonlinear events show spurious
coherency. Nevertheless, the focusing is sufficient to get a good separation from the ground-
roll, as shown in Figure 4.12. The ground-roll has been largely suppressed, except for a
remnant at about 800 ms. Moreover, no significant coherent energy has been extracted as
noise, as shown in Figure 4.13. These figures should be compared with their counterparts in
Figures 4.4 and 4.5 for the low-cut filter and Figures 4.8 and 4.9 for the F-K filtering. The
ground roll has been better suppressed and no significant primary energy has been lost.

4.3.2 Hyperbolic slant stack

The local slant stack approach is effective in separating the signal from the ground-
roll but it is also expensive because the local slant stacks themselves are and because the
signal-noise separation algorithm has to be applied to each window of data. An alternative
to the method, as described previously, is to consider focusing the hyperbolic events not as
a series of linear events, but directly as the hyperbolas that they are; after all, we know the
equations of those hyperbolas. Although this can be done (Thorson and Claerbout, 1985),
the hyperbolas are not time invariant (they tend to be flatter for deeper events). Therefore,
the efficient F-X Radon implementation described in Chapter 2, cannot be used. One could
use a time-domain implementation, but in practice the code is highly inefficient. Also, if the

68



Moveout-based noise suppression

reflections are from dipping reflectors, then the apexes of the hyperbolas will be shifted from
the zero-offset trace, making the flattening of these events a more complicated endeavor.
This latter issue can be addressed by sorting the data into CMP gathers, so that reflections
are approximately hyperbolic, with apexes at the origin. After the sorting, the moveout of
the ground-roll remains sufficiently different that it will not be focused by the 7-p transform.

4.3.3 Parabolic slant stack

To overcome the problem of the non-stationarity of the NMO hyperbolas, I propose
to apply an NMO correction to the CMP gathers, aimed at flattening the hyperbolas so
that they can be approximated by time-independent parabolas (if the NMO correction were
perfect, they could even be approximated with straight lines as before). Hampson (1989)
proposed this idea for suppressing multiples, and Foster and Mosher (1992) extended it
to use time-independent hyperbolas in an effort to better approximate undercorrected or
overcorrected hyperbolas. I will apply the algorithm here to a shot record because the geology
is sub-horizontal so that the reflections are approximately symmetric, as they would be in
CMP gathers. Figure 4.14 shows the NMO-corrected data. In general, all the reflections have
been well corrected while the noise continues to exhibit large moveout. Next, we transform
the data with a parabolic 7-p transform (the transform could be linear if the NMO-correction
was perfect) and use the signal-noise separation algorithm to identify and extract the focused
energy, that is, the NMO-corrected hyperbolas, as we did in Chapter 3. The difference
between the extracted signal energy and the original data represents noise, which consists
not only of ground-roll, but any events that were not focused by the transformation, such
as head waves and random noise. The extracted signal can then be inverse NMO-corrected,
and other processing steps applied as usual.

Figure 4.15 shows the parabolic 7-p transform of the shot record. The energy from the
reflections has been mapped to near zero slope, and background noise has been generated
from spurious alignments (spatial aliasing) of either the ground-roll or the signal. The
focusing of the energy is not very sharp because the p-sampling interval is small (in order
that N, = N, and to avoid p-aliasing).

Figure 4.16 shows the signal extracted with this modified signal-noise algorithm using
the parabolic transform. Note that no trace of the ground-roll is left. Figure 4.18 shows the
noise that was removed, not only the ground-roll but also high-frequency incoherent noise.
Very little signal has been removed as noise. Figure 4.17 shows the preserved signal after an
inverse NMO has been applied.

Comparing Figure 4.17 with the input data in Figure 4.1 shows that not only has the
ground-roll been completely suppressed, but no apparent distortion has been introduced in
the wavelets.

Filtering of ground-roll in the 7-p domain was mentioned in Chapter 1; recall that it
consists of directly filtering the ground-roll in the 7-p domain via the application of a suitable
tapered mute to remove the noise energy. In Figure 4.15 the dashed vertical line represents
the maximum p-value fully preserved in the data and the dashed slanted line the minimum
p-value totally rejected as noise. A linear taper is applied between the two. Here, the rejected
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noise is not the ground-roll since its p-values are outside the range of the transform, and so
was not modeled by it. It represents noise associated with spurious alignments and noise
present in the data, as mentioned before. Figure 4.20 shows the signal extracted by this
method; no trace of the ground-roll is present. Figure 4.19 shows the suppressed noise. Note
that although the method was successful in removing all the ground-roll, some signal was
removed along with it. This is clear in particular between 1.6 and about 2.6 s.

4.4 Practical Aspects

Once the idea behind the discrete generalized Radon transform and the signal- noise
separation algorithm are understood, it is relatively simple to apply the method for ground-
roll extraction, as described in the previous section. A few details, however, must be taken
into account in order to get the best results.

Linear versus parabolic 7-p transform: It was previously mentioned that if the NMO
correction is perfect, we can apply a linear 7-p transform to the data, but since we are
in general unlikely to get a perfect correction, a parabolic 7-p is a better option.

Range of slopes: Limiting the range of slopes of the 7-p transform (whether linear, parabolic
or whatever), is the simplest way to apply a 7-p domain filtering since those events
with slopes outside the range of the transform slopes will not be modeled by the trans-
formation. This is, however, a somewhat crude approach to the problem because if
spurious alignments occur, the transform will model and extract them as signal. With
the signal-noise separation algorithm, we can in principle choose any reasonable range
of slopes, since the method is not based on slope filtering. It is wise, nevertheless, to
restrict the range of slopes used to those that will correctly describe the events that
we consider signal and allow the use of a small sampling interval in slope, thereby
avoiding the possibility of aliasing noise. In this sense, the modified Harlan’s method
may be regarded as a hybrid of Harlan’s signal-noise separation algorithm (based on
zeroing out amplitudes below a statistically derived threshold value) and Hampson’s
7-p filtering (based on muting of regions deemed to be noise). It is also advisable to
use a number of slopes that is less than or equal to the number of traces because that
guarantees the best performance of the F-X Radon transform, as was mentioned in
Chapter 2.

Preprocessing: Since the method strongly depends on amplitude histograms derived from
the data, it is important that all the traces be brought to about the same amplitude
before applying the method. Traces with abnormally weak amplitude level, due per-
haps to poor geophone coupling or any other reason, should be brought to the same
amplitude level of the others, so that no amplitude variations occur that are not related
to the signal and noise content of the data. This can be done by applying some trace
balancing. This, however, should be done with care (making sure that the balancing
is not systematic with offset), if AVO analysis is expected to be performed with the
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filtered data. A geometrical spreading correction is also convenient to bring up the
late energy.

4.5 Comparison of Results

Having compared the action of the five methods presented in this chapter (low-cut
frequency filtering, FK moveout filtering, signal-noise separation with local slant stacks,
signal-noise separation of NMO-corrected CMP gathers, and 7-p moveout filtering) for the
suppression of ground-roll in the test field record, I now summarize a comparison of their
relative performances on the basis of three criteria: level of ground-roll suppression, level of
signal preservation and cost.

The comparison of the performance of these methods in terms of signal preservation is
based on the results shown in Figure 4.4 for the low-cut frequency filtering, Figure 4.8 for
the FK moveout filtering, Figure 4.12 for the signal-noise separation algorithm using local
slant stacks, Figure 4.16 for the signal-noise separation algorithm applied to NMO-corrected
CMP gathers, and Figure 4.20 for Hampson’s 7-p filtering method.

In terms of their performance to noise rejection, the comparison involves Figure 4.5
for the low-cut frequency filtering, Figure 4.9 for the FK moveout filtering, Figure 4.18
for the signal-noise separation algorithm using slant stacks, Figure 4.13 for the signal-noise
separation algorithm for NMO-corrected CMP gathers, and Figure 4.19 for Hampson’s 7-p
filtering method.

The results in all these figures are graded good, fair or poor on the basis of what an
ideal hypothetical method would do, and are tabulated in Table 4.1. Cost is graded taking
the fastest method (low-cut filtering) as a reference, and assigning the other costs relative to
it. Both the 7-p filtering and the signal-noise separation (applied to NMO-corrected CMP
gathers) are more expensive because they use the more costly F-X implementation. Cost
could be reduced in these approaches if a t-x or an F-K implementation of the transform
were used, but implementations in these domains have the unacceptable shortcomings of
limited focusing capability and edge effects as was mentioned in Chapter 2. The signal-
noise separation algorithm with many local slant stacks is particularly expensive because
so many local slant stacks need to be computed. Again, cost could be reduced by using
implementations of the transform other than that in the F-X domain, but at the expense of
sacrificing accuracy of the results.

This table indicates that, on the basis of results for the tests on the field shot record in
Figure 4.1, the signal-noise separation algorithm, with the modification introduced in this
chapter, is perhaps the best option for ground-roll suppression if we are willing to pay the
extra cost.
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Table 4.1. Comparison between the different methods for ground-roll suppression presented
in this chapter. The numbers in parenthesis on the last column represent rough computa-
tional cost relative to that of the low-cut frequency filtering method. True relative cost, of
course, depends on details of software implementation and hardware used.

Method Signal Noise Cost
preservation suppression
Low-cut frequency filtering Poor Good Good (1)
FK moveout filtering Fair Poor Good (2)
Signal-noise separation Good Fair Poor (60)

(Local slant stacks)

Signal-noise separation Good Good Fair (6)
(NMO-corrected CMP gathers)

7-p filtering Fair Good Fair (4)
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Fi1G. 4.7. F-K spectrum of the F-K filtered shot record. The filter slopes have been chosen
so as to zero out the large-moveout noise region and the region of aliased noise.
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Fic. 4.8. F-K filtered shot record. Some ground-roll noise still remains.
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F1c. 4.9. F-K extracted ground-roll. Virtually no signal was extracted along with the noise.
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Fi1a. 4.10. A window of the shot record, 21 traces wide and centered at trace 22.
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Fi1c. 4.11. Slant stack of the windowed data. The segments of hyperbolas, being almost

linear, were focused by the transformation at times between 400 and 600 ms. Because of the

small number of traces, this focusing is not very sharp.

7



Gabriel Alvarez De La Hoz

trace number

40

30

20

- . . M .P»» ﬁ—-l» Amapacha o -aBhbomon AasAaRbA amo e aa ek an
b A —»» i 1a }\»/»]»)}\«P)‘l(!ln.»»\\)-P.)>>>>;)}>})\>\))?\fl(él)ll)b>}<b(r)))}w)?)\>\l
RENTIYY bb)}?-l»»)\{}{b»i.&{»;?»»b» —?V»f})?»»ﬁ?ill»ﬁ)}?)i}}?»}

]EI'J
- . A al »rk.r...:{.»}))::. ?).r:: _:r.i;))»)I))»}»]LT))E))};)}
™Y :L‘>P.I)-))>»$)})?>\:)> -.)—r:»— —l»f»))»)))}l))i\!))))»»))}»&!{}\n}?b))\#}
e Y | i &»l?»l A AA e A AL —»-)»l»\)» —b;fy);»)))?[)}}r;})})})}))&!sr)))iv()

i ..I.»).»»x)?)\»»— A ».)—li»-»—ft)»»)ﬁ)}?)}))))))}n}]))(})))\)])ws?
i .:},l:k»f)))):c. NYPN { YWYUY | VWISV
JYRWYY W PSSPy |} WYYVY VIS USSP SO
e adaaAlda :l!.l.)i);»{:
l!..)c...;»....-{;»

1l —.» P—»»L -i AN A A AR o o e e o e ]

{YVYVY [ PRI SO USUIADU

\« | —.—»bs —}.»i{)})‘j})‘%’)})})})})}}%

Ak NSNSy |
Tiaada, JYYON K)))Z,B))\u)/»»_»» -» Ak —&»-&»L»{»??)))l%%\(’]))%}\«;ﬁ??

YEW) YV T PSR
A b A V-{.»?»l}»)))}))]))))))}))}li<l{};
WYV | VSO

r»—f-»»l?l}i» SN an)

AR T YIA SOV
TSR SRR VYV VY R
[ TSNV | YWYYY T WYV Y BSOSV e e
[F VSRRV .:..:&—» (YO VSNV U
::;—i»)»i»i)»&»»».r:»-»>>.> A AR o a At m e e e ]
::.:_i{,iz.)xl\s){;_r_:f:,:)»r)s)»\)}))\\l!))))))li;)i))?)il){;
11 Akt om A e N :3/«: B A Rt e ]
r\:\s. [y VOSEPSYYY TN >.>: .- \;Lr}wé,\x/))?r)\&)))\?})?i())))))?))\%?
TWYHYWYPSISWYY T VYV | W VI VSOV VI UG
AAAA AN ,»»?(7))\»&& i, > b/»? »)5}?7\(})\)\)\)}})&)}(‘\(}})\/(5})\

;(:«: »u)\,b\[}lis T r b—».» A A e e A A A e e e

%{»: -\)><>S»f; N —r A, )»P z»t;i\ e o e
x{:f»»}»)\,)a)\(ré -&—r.; s A 1A z»ﬁ]\{:Z)\&r\,)\()SjJ)\())\r)f\((/\r}L[)\f?E
YWY VWY VUV DRSPS | L—r, AA 2 A ; P OV VOV PN
YW VO VP VSN r){)}??)»l»?. AA »)/»» AA Mnon Abm A
[—K_\?,. s,— Aa fuﬁ.»l}yr)??y» Ao ea o aan A [y ».. AL da AA ad anae an
MAA . AL AL Da A, L».Lr F ;)1:<)) A A A
VYTV »}»\V))&I?/)&:» F .}: aa A ah A
[ yly»z»ﬂ.’&?(}l)k{))\(\)\-,» !»,»} PO Y WD YU PV SV DD S RIS A G S

i : [V )),,‘I(«r!>>\<}\)?)7)\,‘.,lﬁf P Y S S S G

A b Y N N N Y. Y V) VAP VU G S P U\ U S S
A ..P »k\[?\!{)})?)\ﬁ)&())\,?kl AAAA A A an
. ikl A A m Aaa e Am A e A AA a A A n A
w »Lt wih R’ } »s)»)i\(y\))\f;ﬁb\.r A AA AR aah Al ana
PPN Y VI W SN NINIP OOV UTY W WO Y WY VOGP

N NN A, v- : P:\&a})\)\(/\:\bﬁ)))x/)\l?l)»P AL ;\bv [ VSVY PPUNAY VOPRON

o i N ™

(S) awiL

Fic. 4.12. Extracted signal using the local linear slant stack approach. Most of the

ground-roll was extracted, but some remainder can be seen at about 800 ms.
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Fic. 4.13. Extracted noise using the local linear slant stack approach. Virtually no energy

from the signal was extracted.
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FiG. 4.14. NMO-corrected input shot record.
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-p transform of field shot. The NMO
amplitude taper is applied between the two.
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-noise separation algorithm. Note that

no ground-roll has been left and the reflections have been recovered even for the shortest

Fic. 4.16. Extracted signal with the modified signal
offsets.
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FiG. 4.17. Extracted signal with the modified signal-noise separation algorithm after the

application of an inverse NMO correction.
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Fi1G. 4.18. Extracted noise with the modified signal-noise separation algorithm. Very little

signal has been extracted as noise.
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Fi1G. 4.19. Signal extracted with a parabolic Radon transform and a mute. This method
was also successful in suppressing the ground-roll noise.
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F1G. 4.20. Noise suppressed with a parabolic Radon transform and a mute. Note the

residual extracted signal between 1.6 and 2.2 s.
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Chapter 5

MULTIPLE SUPPRESSION

5.1 Introduction

Multiples are seismic energy that has reflected from more than one interface before
being recorded at the surface of the earth. Energy from multiples is an undesirable feature
in seismic records and in some cases can so dominate over primary reflections that they
preclude the identification and interpretation of the primaries, especially in marine data.
Common multiple-suppression methods can be roughly divided into two main categories:
those that exploit the periodicity of the multiples (mainly predictive deconvolution) and
those that exploit the difference in moveout between the primaries and the multiples (these
include F-K filtering and 7-p filtering). Here, I review these methods and illustrate a way in
which the signal-noise separation algorithm presented in Chapter 3 can be used to suppress
multiples.

Figure 5.1 shows a test dataset with six horizontal events, simulating NMO-corrected
primaries, and six low-moveout hyperbolas, simulating the under-corrected multiples. The
amplitude ratio of the multiples to the primaries is 4:1. The data set consists of 100 traces,
with 1000 samples each, at 4-ms sampling interval and trace spacing of 30-m. It is important
to note that the amplitude of the signal in these modeled data is the same on all traces.
Therefore, one measure of the success of any multiple-suppression algorithm will be that the
output data exhibit amplitudes that are independent of offset.

5.2 F-K filtering

The use of F-K filtering to suppress multiples is based on the same idea described in the
previous chapter for ground-roll suppression. Specifically, after a 2-D Fourier transform, the
NMO-corrected primaries and the multiples, having different slopes, will map to different
regions of the F-K plane, thereby making it possible to apply a mute to remove the energy
in the region to which the multiples mapped, keeping that of the primaries. As with the
ground-roll, the success of the method is compromised if the signal or the noise or both are
spatially aliased or if the difference in moveout between the primaries and the multiples is
not sufficiently large. Even if the data are not spatially aliased, we still must deal with the
inherent trade off between the required degree of rejection and the need for a taper to avoid
introducing Gibb’s phenomenon noise.

To complicate the situation, we cannot achieve the same degree of rejection for all
offsets because the energy associated with the smallest offsets, corresponding to the apex
of the hyperbolas, is mapped to much the same region as that of the signal and so the two
cannot be separated. The inevitable offset-dependence of multiple suppression might render
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F1G. 5.1. Modeled test dataset 3. The horizontal events are the primaries, and the

hyperbolic ones the undercorrected multiples. The multiple to primary amplitude ratio is
4:1.
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F1c. 5.2. F-K spectrum of test data. Primaries are mapped near the vertical. Multiples are
mapped just away from the vertical. The linear event corresponds to the first arrivals. All
the data were used in computing the F-K transform.

the processed data suspect for AVO, as will be shown quantitatively in the next chapter.

Figure 5.2 suggests that in this case, even though the data are not spatially aliased, the
separation between the primaries, mapped to the vertical axis (infinite apparent velocity)
and the multiples, mapped to close to the vertical, may not be large enough for the method
to perform well.

Figure 5.3 shows the corresponding F-K spectrum after the application of a fan-shaped
mute with smallest cutoff slope of -0.218 ms/trace (events with slope less than this value
will be multiplied by zero), smallest pass slope of 0.0 ms/trace (events with slope between
-0.218 and 0 ms/trace are linearly tapered), largest pass slope of 0.394 ms/trace (events
with slope between 0 and 0.394 ms/trace are multiplied by unity), and largest cutoff slope of
0.446 ms/trace (events with slope larger than that are multiplied by zero; those with slope
between 0.394 and 0.446 ms/trace are linearly tapered). The low-frequency components of
the primaries may be compromised by the rejection process because the width of the taper
zone of the fan-shape filter approaches zero and the moveout difference between the primaries
and the multiples is small for low frequencies. As suggested above, the result of applying this
method normally shows good rejection for the large offsets and poor rejection for the small
ones. Figure 5.4 and Figure 5.5 exhibit this problem. The level of noise rejection is good
for the far offsets, but poor for the near ones. This is of course a most undesirable feature
because the remaining multiple energy, being almost flat, will contribute to the stack and
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F1c. 5.3. F-K spectrum of the F-K filtered modeled test dataset 3.

will thereby distort it. Also, this non-uniformity in the level of multiple suppression with
offset, will distort the interpretation of AVO analysis.

5.3 Hampson’s parabolic 7-p filtering

Recall that Hampson (1986) developed an algorithm, called inverse velocity stacking,
to achieve multiple suppression for NMO-corrected CMP gathers. Its main features are as
follows. The shot records are sorted into CMP gathers so that the reflection hyperbolas
will be symmetric even if the reflectors are not horizontal. The CMP gathers are then
NMO-corrected with the primary velocities so that the multiples will remain undercorrected.
Hampson’s key observation, which enabled him devise his efficient algorithm, was that the
moveout of the undercorrected multiples could be approximated by parabolas as long as the
undercorrection was not too severe. This observation made it possible to use the efficient
F-X discrete generalized Radon transform described in Chapter 2 to stack the data along
parabolas with moveout spanning the range of residual moveouts in the undercorrected
multiple events.

Once the parabolic transform has been applied, the NMO-corrected primaries should
map to or near zero parameter p and, because of their moveout, the multiples should map
to larger p values. Then, provided that moveout difference between the primaries and the
multiples is sufficiently large, a mute can be applied to separate the data mapped to the
smallest p values (primaries) from those mapped to larger p values (multiples). As with the
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F-K filtering, it is advisable to apply some taper to provide a smooth transition between the
accepted and the rejected regions. An inverse 7-p transform is then applied to the extracted
signal and, if desired, the multiples can be computed by subtracting the primaries from the
original data. Also, an inverse NMO correction is usually applied to prepare the data for
subsequent velocity analysis.
Figure 5.6 shows the result of applying the parabolic transform to the modeled dataset
3 of Figure 5.1. In this figure, because the transform is not linear, the important parameter
p is not slope, but rather the curvature of the corresponding parabolas. The parameter p
is sometimes relabeled ¢ for parabolic transforms. The units in Figure 5.6 are moveout at
farthest offset because this is the parameter that most directly relates to what we really
want to see, difference in moveout between primaries and multiples at the farthest offset.
The primaries and the multiples have been mapped to separate regions of the 7-p plane
and, except for the two deepest reflectors, this separation seems enough to allow for the
separation of the two types of events. Note, however, that because of the strong amplitude
of the multiples, part of their energy has “leaked” to the primary zone. This is clearly
seen below each of the focused primary energy regions. The vertical dashed line represents
the largest p-value of the primaries, and the slanted dashed line the smallest p-value of the
multiples. A linear taper of amplitudes is applied between the two. The most important
advantage of this method over the previous one is that we can achieve the same level of
multiple rejection for all offsets, so that if the moveout difference is sufficient, in principle
the multiple suppression will be independent of offset. This issue will be investigated further
in the next chapter.
The result of applying this technique to our modeled test dataset 3 is shown in Figure 5.7.
The preserved primaries show residual energy from the multiples, particularly for the
deepest reflectors and far offsets. This is due to the small moveout difference between the
deepest multiples and primaries, which does not allow a clear separation between them
(see Figure 5.6). Comparison with the primaries extracted with the F-K filtering method
(Figure 5.4) shows a much better extraction in particular in terms of amplitude variation
with offset. Figure 5.8 shows the suppressed multiples. Almost no signal has been extracted,
and the overall result is good; in particular, the strength of the suppressed multiples is much
more uniform with offset than is the case for the F-K filtered result in Figure 5.5. Note,
nevertheless, that, as mentioned with regard to the previous figure, the deepest multiple was
not very effectively removed.

5.4 Signal-noise separation

In Chapter 3, Harlan’s signal-noise algorithm was described as a means to separate
events with different patterns of moveout, provided that an appropriate invertible linear
transformation could be devised that would focus the events considered signal while at
the same time defocusing those considered noise. In this chapter, we consider use of this
algorithm to separate primaries from multiples on the basis of their differing moveouts after
an NMO-correction has been applied to flatten the primaries while leaving the multiples
undercorrected. The situation here, however, differs significantly from that on Chapters 3
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and 4 because now, if a linear 7-p transformation is applied to focus the corrected primaries,
non-neglegible focusing of the undercorrected multiples is obtained, since their moveout is
close to flat. An alternative approach is to try focusing the multiples using a parabolic 7-p
transform, but there is a problem. Namely, the flat events are a special case of parabolic
events with zero p-value and so will also be focused. If the relative amplitudes of the primaries
are of the same order of magnitude of those of the multiples, it is not possible to directly
apply the signal-noise separation algorithm to discriminate between the two.

In order to use the signal-noise separation algorithm for this application, I propose a
hybrid approach between Hampson’s p-filtering and Harlan’s signal-noise separation algo-
rithm. The energy that is unquestionably associated with the multiples (that is, to the right
of the slanted dashed line in Figure 5.6) is zeroed out and the signal-noise separation algo-
rithm is used to refine the extraction of the primaries in the primary zone (that is, to the
left of the dashed line in Figure 5.6), eliminating any residual contribution by the multiples.
The multiples are then computed by subtraction from the original data, after the extracted
primaries have been inversely 7-p transformed.

In this application, therefore, the goal of the signal-noise separation algorithm is not
to discriminate between the focused primaries and the focused multiples (which it is unable
to do), but between the former and the unfocused residual multiples. Most of the multiple
energy, therefore, is removed via 7-p filtering just as Hampson’s approach does and its
residual (if any) is removed via the signal-noise separation algorithm. The stronger the
multiples in comparison with the primaries, the more residual multiple energy will be left
for the signal-noise separation algorithm to remove. This issue will be studied in more detail
in the next chapter.

Figure 5.9 shows the primaries extracted with the hybrid approach. Note that in this
case, less residual energy from the multiples can be seen, in particular for the shallower events,
than in Figure 5.7. This is a consequence of the residual multiple extraction provided by this
method. The improvement is not so great for the deepest multiples because, as mentioned
before, their differential moveout with respect to the primaries at the same times is not large
enough to allow a clear separation between them. The amplitude level of the primaries,
however, looks weaker than in Figure 5.7, indicating a tradeoff between level of multiple
rejection and primary extraction. In the next chapter I quantify both these effects, the level
of improvement in multiple rejection against the weakening of primary extraction.

Figure 5.10 shows the removed multiples with the hybrid approach described in the
previous paragraph. The main contribution to the removal of multiples comes from the 7-p
filtering, with a residual suppression from the signal-noise separation algorithm. Figure 5.10
is almost identical to Figure 5.8, which shows the extracted multiples with Hampson’s ap-
proach. This of course is due to the fact that the residual multiple energy extracted with the
signal-noise separation is much weaker than the bulk of the multiple energy removed with
the 7-p filtering portion of the hybrid algorithm.

To end this section, I would like to point out that the extra flexibility afforded us by the
signal-separation algorithm in removing the residual multiple energy does not come free, the
algorithm is about 50% more expensive than the simpler Hampson’s 7-p mute. Whether or
not this extra expense is justified depends on whether or not we can tolerate some residual
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Fi1G. 5.9. Primaries extracted with the hybrid approach of the 7-p filtering and the signal-
noise separation algorithm. Note that the multiple rejection is better than in Figure 5.7
for the shallow events, for which the differential moveout between the primaries and the
multiples is largest.
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multiple energy in the extracted primaries and perhaps more important, in the way this
residual multiple energy may distort amplitude variations with offsets. This important issue
is postponed until next chapter.

5.5 Simultaneous suppression of multiples and ground-roll

We have now seen that the signal-noise separation algorithm can be effectively used to
suppress either ground-roll or multiples. In this section, I apply the method to model data
contaminated by both problems. Although multiples are by far a more serious problem with
marine data for which ground-roll is not usually a problem, many examples exist of land data
in which multiples, although not completely dominating the primary energy, interfere to such
degree with the primaries that their elimination is essential to delineating subtle stratigraphic
features in CMP stacks and to performing AVO analysis for lithologic purposes.

In principle, the presence of the ground-roll should pose no additional strain on the
performance of the algorithms, since its moveout is far larger than that of either the primaries
or the multiples. To demonstrate this, I added a synthetic train of dispersive waves to
the modeled test dataset 3 in Figure 5.1 to simulate the ground-roll. The resulting data,
modeled test dataset 4, are shown in Figure 5.11. The dispersive wavetrain was generated
using an algorithm that propagates a dispersive wave using a supplied dispersion relation,
with velocities between 250 and 1000 m/s and a frequency range from 5 to 25 Hz.

5.5.1 Hampson’s parabolic 7-p filtering

The primaries can be separated from the multiples and the ground-roll using Hampson’s
approach, in the same way described in the previous section. Here, I applied the algorithm
a second time, this time to separate the multiples from the ground-roll. In practice this
second pass probably would not be necessary, since all we normally wish to do is to extract
the primaries.

Figure 5.12 shows the preserved primaries, with just a little residual from the multiples.
This result is virtually the same as that in Figure 5.7 corroborating that the presence of
the ground-roll is not a threat to the performance of the algorithm. Figure 5.13 shows the
extracted multiples, with almost no removed signal. Again, this result is almost the same as
that obtained in the absence of ground-roll (see Figure 5.8). Finally, Figure 5.14 shows the
removed ground-roll. No residual energy from either the primaries or the multiples is seen.

5.5.2 Signal-noise separation

The extraction of the primaries, using the signal-noise separation algorithm, proceeds
in the same way described in the previous section. Again, in practice we probably just want
to extract the primaries, leaving the multiples and the ground-roll together, but here I apply
the algorithm once again to separate the ground-roll from the multiples.

Figure 5.15 shows the primaries extracted with the hybrid 7-p filtering and signal-noise
separation algorithm, as described in the previous paragraph. As expected, the presence
of the ground-roll poses no particular threat to the ability of the algorithm to identify
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Fi1c. 5.15. Primaries extracted with the hybrid 7-p filtering and signal-noise separation
algorithm for the data with ground-roll. Compare with Figure 5.9 for data without the
ground-roll.
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and extract the primaries; they have been extracted the same as before (Figure 5.9), with
energy from the multiples present only on the deepest reflectors. In a situation with field
data, however, the presence of the ground-roll could compromise the quality of the primary
velocity estimation, thereby perhaps jeopardizing the performance of the algorithm.

Figure 5.16 shows the multiples removed with this hybrid algorithm. Again, this result
is almost the same as that in Figure 5.10 for the data without the ground-roll. Figure 5.17
shows the removed ground-roll with almost no energy from either primaries or multiples.

In summary, then, I have demonstrated, with this example, that the performance of
either method for multiple suppression is about the same with or without ground-roll. The
same will happen with any other type of noise whose moveout is sufficiently different from
that of the primaries or the multiples.
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Chapter 6

IMPLICATIONS OF MULTIPLE SUPPRESSION FOR AVO ANALYSIS
AND CMP-STACKED DATA

In Chapter 5, the removal of strong multiple energy in the presence of weak primary en-
ergy was accomplished with three different methods: F-K filtering, Hampson’s 7-p filtering,
and a hybrid approach combining Hampson’s 7-p filtering with Harlan’s signal-noise sepa-
ration. Here, I study more closely the relative performance of these approaches to multiple
suppression in terms of the preservation of signal amplitude with offset, a primary reason for
attempting to suppress multiples on unstacked data, and of the signal-to-noise enhancement
as seen after CMP stacking, which itself is powerful in suppressing multiples. In order to do
this, I created the four model datasets described in the next section.

6.1 Description of the test model datasets

All test model datasets in this chapter have 100 traces with 1000 samples each, at 4-ms
sample interval and 30-m trace interval. Each dataset consists of four primary reflections at
zero-offset times of 1.0, 1.9, 2.5 and 3.0 s and corresponding velocities of 2500, 3000, 3500
and 5000 m/s, and four multiple reflections at zero-offset times of 1.0, 2.0, 2.5 and 3.1 s
and corresponding velocities of 2300, 2600, 2800 and 3000 m/s. The differences between the
four datasets are aimed at emphasizing the influence of multiple-to-primary amplitude ratio
and variation of amplitude and polarity with offset on the implications that each multiple-
suppression method has for AVO analysis and the output of CMP stacking.

6.1.1 Test model dataset 5a

Test model dataset 5a has no trace-to-trace amplitude variation (prior to NMO-correction)
and a multiple-to-primary amplitude ratio of 4:1, and Figure 6.1 shows this dataset after
an NMO-correction has been applied with the velocity of the primaries. Figure 6.2 shows
its corresponding parabolic 7-p transform. For such strong multiples a substantial amount
of imperfectly focused energy from the multiples is mapped to the same moveout region as
that of the primaries. This is clearly seen as the amplitudes below the primary events in
Figure 6.2. The vertical dashed line represents the maximum p-value that is to be fully pre-
served in the data. The slanted dashed line represents the minimum p-value to be completely
suppressed from the data. A linear amplitude taper is applied between the two.
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Fi1a. 6.1. NMO-corrected modeled test dataset ba. The amplitude of the multiples is four-
times that of the primaries. Neither signal nor multiple has any trace-to-trace amplitude
variation.
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F1G. 6.2. 7-p transform of NMO-corrected modeled test dataset 5a. Because of the relative
strength of the multiples, substantial residual energy from the multiples is mapped to the
same slope region as the primaries. The vertical dashed line represents the maximum p-value
fully preserved in the data. The slanted dashed line denotes the minimum p-value completely
suppressed. A linear amplitude taper is applied between the two.
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6.1.2 Test model dataset 5b

This dataset is the same as the previous one except that the multiple-to-primary am-
plitude ratio is 1:1. This model, together with the previous one, is intended to assess the
influence of the multiple-to-primary amplitude ratio on the relative performance of the algo-
rithms for both AVO analysis and CMP stacking. The model dataset is shown in Figure 6.3,
and Figure 6.4 shows the corresponding parabolic 7-p transform. The 1:1 amplitude ratio
between the primaries and the multiples makes them both appear with the same degree
of focusing in the 7-p domain. Thus, with this lower level of multiple energy, the primary
zone in the 7-p domain is less severely contaminated by imperfectly focused multiples. The
dashed lines have the same meaning as in Figure 6.2.

6.1.3 Test model dataset 5c¢

This dataset is the same as that in Figure 6.1 (4:1 multiple-primary amplitude ratio),
except that a linear amplitude variation with offset is introduced. The amplitude of any given
event at the farthest offset is only one half its amplitude on the nearest offset. The model
dataset is shown in Figure 6.5. Due to the angular dependence of reflection coefficients,
geometric spreading, and array-directivity, we can expect signal amplitude to vary with
offset, although not of course in this simplistic manner. Likewise, we certainly would not
expect the offset dependence for late reflections to be the same as that for early reflections.
Nevertheless, these tests should mimic major issues related to amplitude variation with offset.

In the corresponding parabolic 7-p transform (Figure 6.6), note the weak decrease of
focusing power caused by the variation in amplitude, (compare with Figure 6.2, the case
with no amplitude variation with offset).

6.1.4 Test model dataset 5d

This dataset (Figure 6.7) is the same as in Figure 6.1 except that the polarity of events
changes at larger offsets as may happen for reflections from thin beds in elastic media.
Polarity reversals arise, for example, when the elastic parameters of the layers change strongly
across an interface. Riiger (1995) has given an equation that shows relative values of P- and
S-wave velocities and densities for which phase changes and polarity reversals can be present
in a CMP gather. The model used to describe this situation here is extreme because the
change of polarity with offset can be expected for wider angle reflections than those typically
used in AVO analysis. Certainly, the offsets at which polarity can be expected to change
will typically increase with increase in reflector depth. This model, therefore, is more severe
than those that can be expected for field data.

The parabolic 7-p transform of the data in Figure 6.7 is shown in Figure 6.8. The
presence of the polarity reversal has seriously decreased the focusing of both primaries and
multiples (compare with Figure 6.2 for model dataset 5a) to the point that the primaries are
virtually unfocused. The reason is that the parabolic transform describes the data in terms
of events with parabolic moveout whose amplitude and phase are independent of offset.
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F1G. 6.3. NMO-corrected modeled test dataset 5b. The amplitude of the multiples is the
same as that of the primaries. Amplitudes again do not change with offset.
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Fi1a. 6.5. NMO-corrected modeled test dataset 5¢c. The amplitude of the multiples is four
times that of the primaries, and amplitudes decrease linearly with offset such that the am-
plitudes at the far offset are half those at near offset.
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Fi1G. 6.7. NMO-corrected modeled test dataset 5d. The amplitude of the multiples is four
times that of the primaries, and amplitude decreases linearly with offset so that the ampli-
tudes on the last trace are -0.5 times those on the first trace.
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6.2 Multiple suppression for the four datasets

In this section, I show the result of applying each of the three methods for multiple
suppression described in the previous chapter to each one of the four modeled test datasets
described above. The results are presented separately for each dataset.

6.2.1 Model dataset 5a

Figure 6.9 shows the primaries extracted with the F-K filtering method for dataset 5a
(primary-to-multiple amplitude ratio of 4:1 and constant amplitudes for all traces). A sub-
stantial part of the multiples remains. In particular, because moveout differential between
multiples and primaries approaches zero for small offset, multiple energy is not well sup-
pressed at zero offset. Where the multiples and primaries have the same zero-offset time, the
residual multiple energy gives the primaries the appearance of having amplitude that varies
strongly with offset. This is more clearly shown in Section 6.3.

Figure 6.10 shows the primaries extracted with Hampson’s approach. The earliest mul-
tiple was well removed because it and the primary exhibited enough differential moveout
at the same zero-offset time to allow a clear separation between the two. The multiples at
times 2.0, 2.5 and 3.1 s were not so clearly removed because their differential moveout was
smaller. More specifically, the tails of the multiples that overlap the primary region in 7-p
space are associated with the smaller moveouts on the short-offset traces. The influence of
the multiple at 2.5 s is seen as an increase in apparent amplitude of the primary for the
short-offset traces.

Figure 6.11 shows the primaries extracted with the hybrid approach of Chapter 5.
The hybrid approach has helped further remove the residual multiple energy, although at
the expense of weakening the extracted primaries, as a result of the algorithm’s effort to
produce the stronger degree of residual multiple rejection. See, in particular, those primaries
at 1.9 and 3.0 s. The trade off between added multiple suppression and loss of signal is
controlled by the reliability threshold used to discriminate between signal and noise on the
assumption that high amplitudes represent well-focused signal. The degree and importance
of this weakening of the primaries will be quantified in Section 6.3.

6.2.2 Model dataset 5b

Figure 6.12 shows the primaries extracted with the FK filtering approach. Because of
the linearity of the FK filtering operation, the strength of the multiple-to-primary amplitude
ratio does not influence the performance of the algorithm (compare the extracted primaries
at 1.9 and 3.0 s in Figures 6.9 and 6.12). The ratio of the amplitudes of the residual multiples
in Figures 6.9 and 6.12 at any given offset is the same as that on the corresponding input
datasets. Thus, while the extracted primaries are again contaminated with residual multiple
energy, since the multiples are much weaker in this dataset, offset-dependent contamination
of primaries by residual multiple energy is less severe than that for dataset 5a.

Figure 6.13 shows the primaries extracted with Hampson’s 7-p filtering approach. The
muting operation in this dataset is the same as in the previous dataset, so because of the
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F1G. 6.10. Primaries in model dataset 5a extracted with Hampson’s approach. Some residual
energy from the multiples is clearly seen on the edges of the section, but here the multiple
energy is weak enough that the amplitudes of primaries do not seem to change so much with
offset.
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F1G. 6.11. Primaries in model dataset ba extracted with the hybrid approach of Chapter
5. Much of the residual multiple energy is gone. The amplitudes of the extracted primaries
have been weakened, in particular for the primaries at 1.9 and 3.0 s.
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Fia. 6.12. F-K extracted primaries for model dataset 5b. As a consequence of the linearity
of the FK filtering operation, the relative action on signal and multiples is identical as that
in Figure 6.9.
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linearity of the 7-p transform, relative treatment of primaries and multiples is the same as
for dataset ba. Again, due to the lower multiple-to-primary amplitude ratio on input, less
multiple energy can be seen as compared with Figure 6.10.

Figure 6.14 shows the primaries extracted with the hybrid approach of Chapter 5. This
time, no residual energy from the multiples appears with the extracted primaries, although
the primaries again show weaker amplitudes. Potentially, the hybrid algorithm provides an
additional degree of multiple rejection by discriminating between the focused primary energy
and the residual multiple energy. Since the multiple energy was much weaker for this than
for the previous dataset, virtually no residual multiple energy can be seen in the extracted
primaries. The price for the extra degree of multiple rejection over and above that obtained
by Hampson’s method, is again a weakening of the amplitudes of the extracted primaries. In
section 6.3, where I compare output signal-to-multiple ratio, rather than separate treatment
of signal and multiples for the various processes, I show that the improvement in primary-
to-multiple amplitude ratio with this method is about the same for both datasets 5a and
5b.

6.2.3 Model dataset 5c¢

Figure 6.15 shows the primaries extracted with the FK filtering approach. The linear
decrease of amplitudes with offset introduced in this model (recall that the amplitudes on
the last trace are only 0.5 those on the first trace) can be seen in the extracted primaries
at 1.9 and 3.0 s, which are not coincident with multiples at zero-offset time. The residual
multiple energy, however, makes the amplitudes in the short-offset traces of the other two
events appear much stronger than are the true signal amplitudes, as was the case for model
dataset 5a in Figure 6.9.

Figure 6.16 shows the primaries extracted with Hampson’s approach. Comparison with
Figure 6.10 shows that the primary extraction is about as good with this model as it was
with the constant-amplitude model. The linear amplitude variation with offset introduced in
this model apparently has posed no additional strain in the ability of Hampson’s approach
to identify and extract the primary energy. Although the focusing of both primaries and
multiples in the 7-p domain is not so strong as with dataset 5a, no additional overlapping
occurs (compare Figures 6.2 and 6.6) between the focused primaries and multiples, so the
mute operation works well. Somewhat surprising, considering the substantial amplitude
variation across the traces in dataset 5c, the residual multiple on the smaller-offset traces is
comparable with that in Figure 6.10.

Figure 6.17 shows the primaries extracted with the hybrid approach of Chapter 5. The
residual multiple energy has been reduced considerably, but not so much as in Figure 6.11,
for which input data had no amplitude variation with offset. The reason is that the weaker
amplitude in the far offset traces of the primaries reduces the degree of focusing of the
primary energy (compare Figure 6.6 with Figure 6.2 for the constant amplitude case). The
focusing of the multiples is also weaker in Figure 6.6 than it was in Figure 6.2 but the relative
strength of the residual multiples is about the same in both figures. This combination makes
it more difficult for the signal-noise algorithm to discriminate between the primary and the
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F1G. 6.14. Primaries in model dataset 5b extracted with the hybrid approach of Chapter 5.
This time, the algorithm eliminated virtually all residual multiple energy. Weakening of the
primaries (compare with Figure 6.3) has been the price.
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F1G. 6.16. Primaries in model dataset 5c extracted with Hampson’s approach. Residual
energy from the multiples can be seen at the short offsets. The linear decrease of primary
amplitude with offset has been largely honored.
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F1G. 6.17. Primaries in model dataset 5c extracted with the hybrid approach of Chapter 5.
The multiple energy has been reduced but not eliminated. Signal amplitudes still show the
decrease of amplitude with offset, but overall the primary amplitudes on all traces have been
reduced.
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residual multiple energy, which results in a lesser degree of multiple rejection and an increased
weakening of the extracted primaries, compared with the results in Figure 6.11.

6.2.4 Model dataset 5d

Figure 6.9 shows the primaries in dataset 5d (the data with a polarity reversal), ex-
tracted with the FK filtering algorithm. As seen in the primaries that are not contaminated
by multiples (those at 1.9 and 3.0 s), while the amplitudes of the primaries are weakened,
and, as with all previous datasets, too much energy from the multiples remains.

Figure 6.19 shows the primaries extracted with Hampson’s method. Although again
better than that with the F-K filter method, the degree of multiple suppression is less for
this dataset than it was for dataset 5a (compare with Figure 6.10). Recall that the two
datasets are identical except for the introduced polarity reversal. The multiples are stronger,
which can be seen in particular at 2.0 and 3.1 s. To make things worse, the amplitude of
the extracted primaries is weaker because of the polarity reversal, as can be seen at 1.9 and
3.0 s. The reason for these results lies in the comparison between Figures 6.2 and 6.8, which
shows that the polarity reversal resulted in much energy from the multiples being smeared
into the primary zones, thereby making it difficult for the algorithm to separate multiples
and primaries.

Finally, Figure 6.20 shows the primaries extracted with the hybrid algorithm of Chap-
ter 5. Comparison of Figures 6.20 and 6.19 shows that the refinement of the signal-noise
separation to extract the residual multiple energy did almost nothing beyond the action of
the Hampson method. The reason for this result lies again in the comparison between the
7-p transforms of the data with and without the polarity reversal (Figures 6.8 and 6.2), as
explained in the previous paragraph.

6.3 AVO implications of multiple suppression

Having qualitatively compared the relative performance of each of the three methods
for multiple suppression with each of the test datasets, here I quantitatively compare their
relative implications for AVO analysis. In order to do this, I plot the amplitude of each of
the extracted primary reflections as a function of offset for every model and every multiple
removal method. The amplitudes are measured as the peak of the wavelet at the two-
way traveltime corresponding to each primary (which, at times, may be contaminated by
residual multiple). In the plots below, a solid black line indicates the amplitude of a primary
(in the absence of multiples) in the input data. Any departure from this curve for the
extracted primaries, indicates amplitude variation with offset introduced by the multiple-
suppression algorithm. That variation could be a combination of the amplitude variation
of the extracted primary and contamination from residual multiples. A finely dotted line
indicates the amplitude of the primary in the input data including the presence of the
multiples. For primaries not coincident with multiples, the two curves are the same. A
dashed black line represents the primary extracted with the FK filtering algorithm, a solid
gray line the primary extracted with Hampson’s approach, and a dashed gray line the primary
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F1G. 6.19. Primaries in dataset 5d extracted with Hampson’s approach. For this dataset,
although the signal-to-multiple ratio was improved over that of the input data, the extraction
of the primaries was not nearly as successful as in the previous datasets; strong energy from
the multiples remains and the primaries have been weakened (compare with Figure 6.7).
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F1G. 6.20. Primaries in model dataset 5d extracted with the hybrid approach of Chapter
5. For this dataset, the method did little to increase the rejection of the multiples over and
above the performance of Hampson’s approach.

133



Gabriel Alvarez De La Hoz

extracted with the hybrid approach of Chapter 5. A dashed vertical line indicates the
offset that equals the depth of the reflector. This line is relevant because normally offsets
approaching the depth of a reflector are not included in AVO analysis. Amplitude variations
for offsets smaller than the one corresponding to that vertical line, therefore, are the most
important ones to consider in this study.

Figure 6.21 shows the four sets of curves described above, corresponding to each of the
four primaries in modeled test dataset 5a (multiple-to-primary ratio of 4:1, with amplitudes
independent of offset). First, note that where primaries are contaminated by multiples (plots
a and c in Figures 6.21 to 6.24), the contamination is so severe for dataset 5a (and for the
others as well) that AVO analysis would be hopeless. Because the FK filtering algorithm
(dashed black line) has not suppressed the strong multiples sufficiently for the smaller offsets
of the primaries that are contaminated by multiples (compare the solid and dotted thin black
lines in Figures 6.21a and 6.21c), those primaries show insufficient improvement of measured
amplitude on the small-offset traces and thus are again useless for AVO study. For those
primaries that are not coincident with multiples (Figures 6.21b and 6.21d), the extracted
primary amplitudes are closer to the ideal behavior but are distorted at the very short and
long offsets, due to edge effects. Thus, although the distorsion is less severe for the primaries
that are not contaminated by multiples, nevertheless the FK algorithm is unsatisfactory
where the goal is to analyze AVO behavior.

Hampson’s approach (solid gray line) performed well for intermediate offsets for all pri-
maries, but showed departures for long- and, of more importance, short-offsets. Although
not as severe as the departures when the FK filter approach was used, the amplitude vari-
ations will distort AVO analysis. For the third primary, for example, the departure from
the true amplitude is almost 50% in Figure 6.21c. More important, a strong, roughly linear
amplitude variation with offset is present for offsets between about 800 to 1600 m. The
results in Figures 6.21b and 6.21d indicate that the near-offset primary amplitudes were
reduced in the process of suppressing the multiples, and that the increase in amplitude for
short offsets for the other two reflections is due to the presence of the residual multiples. For
AVO analysis, however, the results are good for a large range of the shorter offsets.

The hybrid approach of Chapter 5 performed the best for the short offsets of the pri-
maries contaminated by the multiples because of the level of residual multiple present is
much smaller than that for the other two methods. For those primaries not coincident with
the multiples, use of the algorithm resulted in a general loss of amplitudes, (the reliability
value was chosen to get an improved level of noise rejection even at the expense of losing
some signal). That loss of amplitude, however, seems to have been more or less uniform for
all offsets compared with Hampson’s results (which makes the curves from this two methods
roughly parallel). Since AVO analysis depends more on the relative variation of amplitudes
with offsets than on the actual amplitude values, the result of the method in terms of AVO
can be considered at least equal to that of Hampson’s. The algorithm did not do very well for
the far offsets, for which the departure from the true amplitudes varied rapidly to values as
high as 50% in Figure 6.21c, probably due to an edge effect. Such large-offset data, however,
are not used in AVO analysis.

Figure 6.22 shows the four sets of curves corresponding to the four primary reflections
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Fi1Gc. 6.21. Amplitude variation with offset of extracted primaries in modeled test dataset
ba. a) through d) represent the primaries from the shallowest to the deepest. The solid
black line is the input (in the absence of multiples), the thinly dotted line the input (in the
presence of multiples) and the dashed black, solid gray and dashed gray lines the extracted
primary with FK, Hampson’s and hybrid approaches respectively. The dashed vertical black
line represents offset equal to the depth of the reflector.
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Fic. 6.22. Same as Figure 6.21, but for modeled test dataset 5Hb.
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in modeled test dataset 5b (multiple-to-primary amplitude ratio of 1:1 and constant trace-
to-trace amplitudes). As mentioned before, the linearity of the FK filtering operation makes
the extraction of the primaries for this dataset equal to that for the previous one. This can
be particularly seen in the comparison of Figures 6.22b and 6.22d (primaries non-coincident
with multiples) with Figures 6.21b and 6.21d. For primaries coincident with multiples (Fig-
ures 6.22a and 6.22c), the result looks different from Figures 6.21a and 6.21d only because
the multiples started out weaker in this dataset. The AVO implication of the FK algorithm
for this dataset, however, remains the same as that for the previous dataset: results would
be meaningless because of the poor rejection of multiples at the short offsets.

Hampson’s results for this dataset are also the same as those in the previous dataset
because of the linearity of the 7-p filtering operation. Again, the only difference is in the
much weaker amplitude of the multiples in this dataset. This weaker amplitude makes the
amplitudes for the short offsets of the extracted primaries that are contaminated by multiples
(Figures 6.22a and 6.22d) closer to the true amplitudes than in Figures 6.21a and 6.21c for
the previous dataset. The results for AVO, therefore, would be commensurately better than
for dataset 5a. Where primaries are not contaminated by multiples, the results are the same
as for dataset 5a.

The hybrid approach of Chapter 5 is about as successful here as it was with dataset
5a even though the residual multiple energy inside the primary region was comparatively
lower than for dataset 5a. The fact that the primary amplitudes are lower in Figures 6.22a
and 6.22c compared with Figures 6.21a and 6.21c is somewhat misleading. As shown in
plots b and d of Figures 6.21 and 6.22, uncontaminated primaries are weakened by the
hybrid process. Contaminated primaries (plots a and c) are likewise weakened, but the
measured amplitudes are higher because they include the contribution from the superimposed
multiples. In Figure 6.21, the additional multiples fortuitously compensated for the loss of
primary amplitudes. Because the residual multiples are weaker, the net amplitudes in plots
a and ¢ of Figure 6.22 appear low. The details in the shape of the curves are related to the
specific characteristics of the model dataset (i.e., the relative reflection times of primaries and
multiples), and so are not as important as is the general trend that they show. Figures 6.22b
and 6.22d are virtually the same as Figures 6.21b and 6.21d since those primaries are not
contaminated by multiples, the primary is the same in both datasets, and the reliability
threshold value used is about the same for both datasets.

It is important to note that, however, just as for dataset 5a, even though the extracted
primaries are in all cases weaker than they should be, and weaker than with Hampson’s
method, from the point of view of AVO the two results are comparable because the curves
for the two methods are roughly parallel. It will be shown in Section 6.4 that even with the
loss of primary amplitude, the extra rejection of the multiples obtained here could perhaps
justify the extra cost of this algorithm compared with Hampson’s for this dataset.

Figure 6.23 shows the amplitude curves corresponding to the four primaries in modeled
test dataset 5¢ (with amplitudes decreasing with offset and a multiple-to-primary amplitude
ratio of 4:1). As with the previous datasets, the FK filtering algorithm exhibits edge effects at
short and far offsets. The departure from the true amplitudes at short offsets, as mentioned
before, makes the algorithm inappropriate for AVO analysis. The departure at far offsets is
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Fi1c. 6.23. Same as Figure 6.21, but for modeled test dataset 5c.
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not as pronounced as with dataset ba because the linear decrease of amplitude with offset
acts as a taper to lessen the edge effect of the FK transform, but this difference is not
significant since far offsets are not important for AVO.

Both, Hampson’s and the hybrid method performed about the same with this dataset as
they did for dataset 5a (recall that the only difference between the two datasets is the linear
variation of amplitudes with offsets) for primaries not coincident with multiples (compare
Figures 6.23b and 6.23d with Figures 6.21b and 6.21d). The only essential difference is
that the decrease of amplitudes with offsets (as with the FK algorithm), helped reduce the
edge effects at large offsets. For primaries coincident with multiples, however, some slight
distortion is present at the short offsets (compare Figures 6.23a and 6.23c with Figures 6.21a
and 6.21c). This distortion, for both of these methods will compromise AVO analysis more
for datasets in which the amplitudes decrease with offset than for datasets for which the
amplitudes are constant with offset.

Figure 6.24 shows the four sets of curves corresponding to the four primaries in modeled
test dataset 5d (when a polarity reversal is introduced in the data). For this dataset, none
of the methods performed well from the stand point of fidelity of amplitude variations with
offset. The FK algorithm is unable to suppress much of the multiple energy, and even when
the primaries are not coincident with the multiples, the edge effects are so strong that the
result, as with the previous datasets, is inappropriate for AVO analysis.

The polarity reversal makes the focusing of the primaries and multiples weaker, and even
worse, smears the primary and multiple energy in the 7-p domain to such degree that the
separation between the two becomes poor (Figure 6.8). This reflects in the inability of either
Hampson’s or the hybrid approach to honor the steep linear decrease of amplitudes with
offset in this dataset. Note also that the results with Hampson’s and the hybrid approach
are similar for Figures 6.24b and 6.24d but very different for Figures 6.24a and 6.24c because
of the failure of both algorithms to suppress a significant part of the multiple energy that
was mapped to the primary zone. This implies that AVO analysis of a dataset such as this
could be significantly compromised. Perhaps some other method not discussed here might
perform better. One that may have the potential for preservation of AVO features, is based
on an iterative time-domain conjugate gradient scheme to find a velocity scan that “fits” the
associated CMP gather to within a few percent misfit energy, when a hyperbolic forward
modeling operator is applied to that inverted velocity scan (Lumley, 1995). It remains to be
seen whether or not such an approach is superior to the 7-p methods discussed here.

All tests in this section were created with the same polarity for primaries and multiples.
With field data, both positive and negative polarity for both primaries and multiples are
likely. While these differences in polarity will surely change the particular shape of the curves
shown in these tests, the general conclusions drawn from them will probably be the same.
Where multiple suppression is enough, the data remain acceptable for AVO analysis.

6.4 Influence of the multiple extraction on the quality of the CMP stack

Having compared the relative performance of the three methods for multiple suppression
for use in AVO analysis, let us now compare their performance in terms of the improvement
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Fic. 6.24. Same as Figure 6.21, but for modeled test dataset 5Hd.
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in primary-to-multiple amplitude ratio in a stacked trace. For this, and for each of the four
test models, I stacked the NMO-corrected data, the NMO-corrected input primaries-only
and the NMO-corrected input primaries extracted with each of the methods. The stacked
traces are plotted side-by-side for comparison such that the first is the stacked trace of the
input data, the second is the stacked primary-only input data (ideal) and the next three are
the extracted primaries with the FK filtering method, Hampson’s method and the hybrid
method.

Figures 6.25, 6.26, 6.27 and 6.28 show the stacked traces for test datasets ba to 5d. From
these figures, I measured the primary-to-multiple amplitude ratio (P/M) for the stacked
traces after the application of each of the multiple suppression methods. The P/M was
computed as the quotient of the amplitude of the extracted primary divided by the amplitude
of the residual multiple. For primaries coincident with multiples, the amplitude of the
residual multiple was estimated as the difference of the amplitude of the primary (which
has a contribution from the multiple) and the amplitude of an adjacent primary with no
contribution from multiples. Since the P/M ratio varies slightly for the four sets of primaries
and multiples in each of the modeled datasets, I compute a simple arithmetic average for
each dataset.

The results of these P/M computations appear in Table 6.1. The first column cor-
responds to the primary-to-multiple amplitude ratio of the input data and the next the
result obtained with the CMP stack alone and with each of the three methods for multiple
suppression studied here.

Table 6.1. Comparison between the different methods for multiple suppression presented in
this chapter in terms of primary-to-multiple amplitude ratio in a CMP stacked trace. The
numbers correspond to peak-to-peak amplitude ratio between primaries and multiples.

Model dataset | Input | CMP stack | FK filter | Hampson’s | Hybrid
Dataset ba 0.25 1.0 1.0 5.5 10.2
Dataset 5b 1.0 4.0 4.3 18.0 40.0
Dataset 5c¢ 0.25 0.8 0.85 3.9 4.4
Dataset 5d 0.25 0.31 0.33 0.9 0.87

Analysis of the results in Table 6.1 shows that the CMP stack itself was able to provide
a P/M ratio improvement of up to 4.0, except for dataset 5d (polarity reversal) for which its
improvement was marginal.

The FK filtering approach yielded only marginal P/M ratio improvement over and above
what the CMP stack itself did. Since it was shown in Section 6.3 that it also performed
poorly in terms of AVO preservation, this method is not adequate for the type of differential
moveouts and primary-to-multiple amplitude ratios tested in this chapter.

Hampson’s method yielded an improvement in P/M ratio over the CMP stack that
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Fi1ac. 6.25. CMP stacked traces for modeled test dataset Ha. The first trace corresponds
to the stack of the NMO-corrected input data, the second the stack of the NMO-corrected
primary-only input data and the last three traces the extracted primaries with FK filtering,
Hampson’s and the hybrid method.
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Fi1G. 6.26. Same as Figure 6.25, except that the CMP-stacked traces are for modeled test
dataset db.
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Fi1G. 6.27. Same as Figure 6.25, except that the CMP-stacked traces are for modeled test
dataset 5c.
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Fic. 6.28. Same as Figure 6.25, except that the CMP-stacked traces are for modeled test
dataset 5d.
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ranged from about 3:1 for model dataset 5d to more than 5:1 for model dataset 5a. In
general, for all the datasets, the improvement in P/M ratio was significant.

The hybrid approach, as expected, yielded further improvement of P/M ratio for the
first and second datasets (those for which the trace-to-trace amplitudes were constant). For
the fourth dataset, for which the polarity reversal reduced the focusing of the primaries and
increased the smearing of multiple energy in the 7-p domain to a point that the algorithm
could not discriminate between the primaries and the residual multiples, the result of the
hybrid method was actually poorer than that of Hampson’s method.

In summary, then, from this quantitative analysis carried out with the four datasets, I
consider that if improvement in P/M ratio is the overriding factor, then the extra cost of the
hybrid approach is justified for datasets 5a and 5b. For dataset 5c¢ (amplitudes decreasing
linearly with offset), the extra multiple rejection is perhaps not enough to justify the extra
cost (50%) of the hybrid algorithm compared with Hampson’s method. For dataset 5d
(polarity reversal with offset), none of the methods was able to produce the level of multiple
rejection achieved with the previous datasets. Perhaps another method should be sought,
that could produce a larger P/M ratio. Wave-theory-based methods (Verschuur et al., 1992;
Verschuur and Berkhout, 1994; Verschuur and Berkhout, 1995) have recently been proposed
that could be tested using wave-theoretical data exhibiting characteristics similar to those
here. Also, as mentioned above, Lumley (1995) proposed a method especially tailored to
preserve AVO features. It is not known whether or not these methods can suppress multiples
more effectively than either the Hampson or the hybrid method, for example, in order to
improve the accuracy of AVO analysis. For CMP stacking, they must perform on data of
the sort studied here at least as well as these two methods.

6.4.1 A closer look

Finally, let us take a more detailed look at the stacking of each primary in order to get
a better feeling for the comparative result of the CMP stack tests. To this end, the data are
windowed in time so that only one primary is included in each window. The window lengths
are 500 ms, centered on the corresponding primary.

Figure 6.29 shows such plots for the primaries in model dataset 5a. This figure shows
that Hampson’s method yielded the most accurate representation of the primaries. The
hybrid approach, on the other hand, did best at suppressing the multiples as was mentioned
in the analysis of Table 6.1. In this figure, the small decrease in amplitude of the primaries
with the hybrid approach is more than compensated by the increase in multiple rejection
power. The FK method performed well in the extraction of the primaries, except for the
first primary, but did very poor on the level of multiple rejection.

Figure 6.30 shows similar plots for the primaries in model dataset 5b. The results
for this dataset are similar to those for the previous one. As mentioned above, this could
be expected from the linearity of the FK and 7-p filtering operations. Hampson’s method
performed best in extracting the correct primary amplitudes but allowed some small residual
multiple energy. The hybrid approach did best in suppressing the multiple energy but at
the expense of decreasing the amplitude of the extracted primaries. It was shown in the
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F1G. 6.29. Details of stacked traces for modeled test dataset 5a. The order of the traces is
the same as that on the previous set of figures. a) to d) represent the primaries from the
shallowest to the deepest.
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previous section, nevertheless, that the increase of primary-to-multiple amplitude ratio was
likely enough to justify the extra expense (about 50% more than Hampson’s approach) of
applying the hybrid method to this dataset.

Figure 6.31 shows the detailed stack for the primaries in model dataset 5¢ (amplitudes
linearly decreasing with offset). In this case, the level of primary-to-multiple amplitude
ratio was good enough with Hampson’s approach. The extra degree of rejection afforded by
the hybrid method is not significant and would not justify the extra cost over and above
Hampson’s approach. Note that this dataset does not meet the assumption under which the
7-p transform of the data works best; specifically, the amplitude variation with offset makes
it inaccurate to represent the data as a superposition of parabolas whose amplitudes do not
change with offset.

Figure 6.32 shows the detailed stack for the primaries in model dataset 5d (polarity
reversal with offset). For this dataset, the lack of focusing of the primaries and the increased
smearing of energy for the multiples in the 7-p domain cause both Hampson’s method and the
hybrid method to be inappropriate. They both reduce the multiple energy to about one third
of its value when the data are simply CMP stacked. The residual multiple energy, however,
is strong enough to distort the apparent amplitude of the extracted primary, in particular for
the first and third primary (primaries coincident with multiples). The extracted amplitude
is more than twice its correct value. Here again, this result is not surprising since the data
with the polarity reversal cannot be modeled accurately with constant amplitude parabolas.

6.5 Summary

The results of the above tests, are summarized on Tables 6.2, 6.3, 6.4 and 6.5 for each of
the datasets. The two attributes discussed here (AVO and CMP stack quality) are used to
compare the relative performance of the different methods for each primary of each dataset.
A grade of very good, good, fair or poor is used based on the analysis of the previous two
sections. Recall that the first and third primary in each dataset are contaminated by a
multiple, whereas the second and fourth are not.

The results on Table 6.2 indicate that for dataset ba (for high multiple-to-primary
amplitude ratio) the extra cost of the hybrid algorithm is justified and it should probably
be chosen unless cost is a primary concern.

Table 6.3 shows that for dataset 5b (that is, multiple-to-primary amplitude ratio of 1:1)
even though the multiple energy was not so strong, the extra cost of the hybrid algorithm is
perhaps justified, due to the increased primary-to-multiple amplitude ratio obtained in the
stacked trace.

Table 6.4 indicates that for dataset 5c¢ (linear trace-to-trace amplitude variation with
offset and multiple-to-primary amplitude ratio of 4:1), the extra cost of the hybrid algorithm
is perhaps not justified, because the added improvement in primary-to-multiple amplitude
ratio is not large enough. Thus, Hampson’s method is perhaps the best choice for this
dataset.

Finally, Table 6.5 indicates that for dataset 5d, none of the methods really provides
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Fi1G. 6.30. Details of stacked traces for modeled test dataset 5b.
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Table 6.2. Performance comparison between the different methods for multiple suppression
presented in this chapter applied to dataset 5a (multiple-to-primary amplitude ratio of 4:1
and constant amplitudes with offset).

Method AVO preservation | Quality of CMP | Cost
stack
FK moveout filtering Poor Poor Good
(first and third primary)
FK moveout filtering Fair Poor Good
(second and fourth primary)
Hampson’s method Fair Good Fair
(first and third primary)
Hampson’s method Good Good Fair
(second and fourth primary)
Hybrid approach Good Very good Poor
(first and third primary)
Hybrid approach Fair Very good Poor
(second and fourth primary)

a very good result, and as previously mentioned, other methods should be considered. Of
the methods studied here, Hampson’s is clearly the strongest one for this dataset. Optimum
CMP stacking (Budihardjo, 1995) is yet another alternative, although obviously not for AVO
analysis. Optimum CMP stacking can often provide improvements in primary-to-multiple
amplitude ratio of more than 4:1 compared with a conventional CMP stacking, but at some
loss in attenuation of incoherent noise.

It is also important to note in this summary that the coincidence or lack of it for pri-
maries and multiples at zero-offset time makes a difference in the relative implications of the
approached for use in AVO study, as is evident from the results in the previous two sections.
Since in practice, however, we are likely to encounter multiples whose polarity and zero-offset
time relative to that of primaries varies from one reflection to another, the judgement must
consider the likely occurrence of all such situations. Fundamentally, the relative implications
for AVO analysis and for CMP stacking depend on the relative performance in suppressing
multiples on the one hand while preserving primaries on the other. Where multiples are a
problem in field data, their amplitudes can range widely, readily exceeding four times that
of primary. This suggest some promise for practical use of the hybrid method.

I finish this chapter by stating that whenever the goal is maximum degree of multiple
rejection in the stacked data and AVO is not an issue, then it is better to try the hybrid
approach, if the multiple-to-primary amplitude ratio is large and offsets are restricted such
that the primary wavelet does not reverse polarity as offset increases. On the other hand,
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Table 6.3. Performance comparison between the different methods for multiple suppression
presented in this chapter applied to dataset 5b (multiple-to-primary amplitude ratio of 1:1
and constant amplitudes with offset).

Method AVO preservation | Quality of CMP | Cost
stack
FK moveout filtering Poor Fair Good
(first and third primary)
FK moveout filtering Fair Poor Good
(second and fourth primary)
Hampson’s method Fair Good Fair
(first and third primary)
Hampson’s method Good Good Fair
(second and fourth primary)
Hybrid approach Fair Very good Poor
(first and third primary)
Hybrid approach Fair Very good Poor
(second and fourth primary)

when the overriding concern is AVO and some residual multiple energy can be tolerated in
the stack, then Hampson’s approach is perhaps the best bet. Notice, however, that this
method yields some variation of apparent primary amplitude at the short offsets when the
primaries and the multiples coincide at the same zero-offset time. This distortion of the
short-offset amplitudes is an undesirable characteristic for AVO analysis.
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Table 6.4. Performance comparison between the different methods for multiple suppression
presented in this chapter applied to dataset 5¢ (multiple-to-primary amplitude ratio of 4:1
and amplitudes linearly decreasing with offset).

Method AVO preservation | Quality of CMP | Cost
stack
FK moveout filtering Poor Poor Good
(first and third primary)
FK moveout filtering Fair Poor Good
(second and fourth primary)
Hampson’s method Poor Good Fair
(first and third primary)
Hampson’s method Good Good Fair
(second and fourth primary)
Hybrid approach Fair Good Poor
(first and third primary)
Hybrid approach Fair Good Poor
(second and fourth primary)

Table 6.5. Performance comparison between the different methods for multiple suppression
presented in this chapter applied to dataset 5d (multiple-to-primary amplitude ratio of 4:1
and polarity reversal).

Method AVO preservation | Quality of CMP | Cost
stack

FK moveout filtering Poor Poor Good
(first and third primary)

FK moveout filtering Poor Poor Good

(second and fourth primary)

Hampson’s method Poor Fair Fair
(first and third primary)

Hampson’s method Fair Fair Fair
(second fourth primary)

Hybrid approach Poor Fair Poor

(first third primary)

Hybrid approach Fair Fair Poor

(second fourth primary)
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Chapter 7

CONCLUSIONS

In this study, I reviewed the most commonly used computer implementations of the
7-p transform, reviewed the signal-noise separation algorithm of Harlan et. al. (1984), and
showed that a variation of it can be successfully used in the problem of the identification
and suppression of ground-roll and multiples. I reviewed the more traditional methods such
as F-K and Hampson’s 7-p filtering and analyzed the implications of the multiple-removal
process with each of the aforementioned methods in terms of AVO preservation and degree
of multiple suppression on CMP stacked traces. Following are the main conclusions.

The discrete Radon transform: I showed in Chapter 2, by means of an example, that
the best of the currently available computer implementation of the 7-p transform and
in general of the discrete Radon transform, is Beylkin’s (F-X) implementation. This
method produces the best focusing of the desired events in the 7-p domain, accurately
reproduces the amplitudes as well as the phases of the events after an inverse trans-
formation and does not introduce edge effects at the nearest and farthest offsets of the
inversely transformed data. The other two commonly used implementations (in FK
and t-x domains) are faster by a factor of at least four, but they have less focusing
power and have edge effects.

Signal-noise separation algorithm: This algorithm is powerful in its ability to separate
focused events from unfocused ones after the application of an appropriate invertible
linear transformation. The method, with some modifications, can be effectively used to
suppress ground-roll (with an order of magnitude improvement in computer efficiency
with respect to the original Harlan’s method) and to provide an increased degree of
rejection of multiple energy (compared with Hampson’s method). This increase in
multiple rejection power is necessary especially when the moveout difference between
primaries and multiples is not large and the multiple-to-primary amplitude ratio is
high. Other applications of the method may be envisioned, whenever effective dis-
crimination between events with different moveout patterns is required, provided that
an invertible linear transformation can be devised that will focus the desired events
(signal) while defocusing the undesired ones (noise). Harlan’s method has not been
used much probably because some of its implementation details have not been clearly
understood and the potential of the method has not been realized. For ground-roll
suppression, the computer cost of the algorithm in its original formulation was too
expensive. This study helps in both counts making all the relevant computer imple-
mentation details explicit and modifying the ground-roll suppression application of the
algorithm faster.
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Ground-roll suppression: Both Hampson’s and the modified signal-noise separation algo-
rithm provide an adequate degree of suppression of the ground-roll energy. The signal-
noise separation algorithm, however, can provide an improved preservation and cleaner
extraction of the reflections (compared to 7-p filtering), because it can suppress energy
from spurious alignments in the transformed domain, especially for strongly spatially
aliased data. The algorithm, however, is about 50% more expensive than Hampson’s
method.

AVO and CMP-stack implications of multiple suppression: The suppression of mul-
tiple energy is a necessity with many seismic datasets, particularly marine, but the
choice of implementation can have serious implications in distorting AVO behavior
and in distorting the amplitudes of the stacked traces. Hampson’s approach works
well in preserving AVO as long as the primary-multiple moveout separation is suffi-
ciently large and the multiple-to-primary amplitude ratio is not very large, so that not
much residual multiple energy can be expected in the extracted primaries. If this is
not the case, however, the residual multiple energy will tend to increase or decrease
the amplitudes of the short offsets of the extracted primaries, depending on the rela-
tive polarity of the two. The hybrid approach, on the other hand, depending on the
choice of reliability value, can provide increased multiple suppression but can decrease
the amplitude of the extracted primaries in the process. Details of the trade off gov-
ern whether or not this approach to multiple suppression will result in data that are
appropriate for AVO analysis.

Future work: The comparisons carried out in this study in terms of ground-roll and mul-
tiple suppression are not exhaustive. Future similar such numerical tests include other
methods for ground-roll suppression such as depth filtering (McMechan and Sun, 1991),
dispersion filtering (Beresford-Smith and Rango, 1988), matched filters (Saatcilar and
Canitez, 1988) and others. The comparison could, in particular, test the tolerance
of the methods to spatially aliased data and could be applied to 3-D data. In terms
of multiple suppression, the methods of Lumley (1995), Verschuur et al. (1992) and
Verschuur and Berkhout (1994, 1995) could be tested to evaluate their performance in
terms of AVO preservation and primary-to-multiple amplitude ratio improvement via
CMP stacking, as was done with the methods used in this study.
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