Can we make genetic algorithmswork in high-dimensionality
problems?

Gabriel Alvarez!

ABSTRACT

In this paper | compare the performance of a standard genetic algorithm versus a micro-
genetic algorithm for matching a randomly-generated seismic trace to a reference trace
with the same frequency spectrum. A micro genetic algorithm evolves a very small pop-
ulation that must be restarted whenever the population loses its genetic diversity. | show
that the micro-genetic algorithm is more efficient in solving this problem in terms of im-
proved rate of converge, especially in the first few generations. This characteristic may
make the method useful for locating the most promising valleys in the search space which
can then be searched with more traditional gradient-based methods. An additional benefit
is a significant reduction in the number of evolution parameters that needs to be adjusted
making the method more easy to use.

INTRODUCTION

The kind of optimization problems that we usually face in exploration geophysics are non-
linear, high-dimensional, with a complex search space that may be riddled with many local
minima or maxima. Usually our first line of attack is linearization of the problem around some
given smooth, “easily” computed initial model. Seismic tomography is a good example of the
success of this approach. There are many cases, however, where linearization is impractical or
undesirable and the full non-linear problem must be solved. Broadly speaking, there are two
ways to attack these kind of problems: deterministic search methods, for example non-linear
conjugate gradient, quasi-Newton methods or Levenberg-Marquardt method (Gill and Murray,
1981), and stochastic search methods such as Montecarlo, simulated annealing and genetic
algorithms (Davis, 1987; Goldberg, 1989a). Deterministic methods are attractive because they
are natural extensions of familiar linear methods and because, in certain applications, they can
be made to run extremely fast. The downside is the need to compute first and/or second order
derivatives of the cost function and the dependence of the solution (and sometimes even the
convergence of the method itself) on a suitable starting point. In other words, deterministic
methods are extremely efficient at locating the bottom of the valley, provided they start the

lemail: gabriel @sep.stanford.edu

SEP 112

Genetic Algorithm Inversion 2 Alvarez

search somewhere inside the valley. This is a serious shortcoming since in many problems
locating the valley that contains the minimum may be a problem as difficult as locating the
minimum itself. We could say that deterministic methods are poor at “exploration” (locating
the best valleys) but are very good at “exploitation” (given the valley, locating its floor).

Stochastic methods, on the other hand, perform a much more exhaustive search of the
model space but are not as good at exploiting the early results of the search. It appears that a
hybrid method combining the strengths of both techniques would be the best choice. The sit-
uation is not so clear cut, however, because it may be difficult to identify the most promising
valleys and it may also be difficult to compute the derivatives of the cost function. In geo-
physics such a hybrid approach between a genetic algorithm and conjugate gradient was used
to solve the problem of estimating velocities from refraction seismic data, although the results
were not conclusively better than those obtained by the genetic algorithm alone (Boschetti,
1995).

An interesting alternative is the use of the so-called micro-genetic algorithms (Krishnaku-
mar, 1989) which aim at improving the relatively poor exploitation characteristic of the genetic
algorithms without affecting their strong exploration capabilities. In this paper | compare the
results of applying both a standard and a micro-genetic algorithm to the problem of match-
ing a seismic trace. This is part of the more interesting problem of inverting a zero-offset
trace for interval velocities addressed in a companion paper in this report (?). Figure 1 shows
the input sub-sampled sonic log and the corresponding reference seismic trace obtained by a
simple computation of the normal incidence reflection coefficients assuming no multiples, no
absorption and no noise.

Subsampled Original Log Trace to be Matched

009¢
L
0

029¢
|
700
|

079¢
(s) ouy,
80°0

(4) mdeq
210
|

099¢
.

9o
|

089¢
|
20

T T T T
2200 2400 2800 2800 3000 3200 —0.2 —0.1 [o] 0.1 0.2

Velocity (m/s) Trace Amplitude

Figure 1: Left, sub-sampled sonic log used to generate the synthetic seismic trace on the right

out €8]

SEP 112

Genetic Algorithm Inversion 3 Alvarez

STANDARD GENETIC ALGORITHM

A genetic algorithm is an optimization method inspired by evolution and survival of the fittest.
A trial solution to the problem is constructed in the form of a suitably encoded string of model
parameters, called an individual. A collection of individuals is in turn called a population.
There are several considerations and choices to be made in order to implement a suitable
solution to an optimization problem using genetic algorithms. A full description of all the
practical details is outside the scope of this paper, and some of them are a matter of active
research (Gen and Cheng, 2000; Haupt and Haupt, 1998; Falkenauer, 1998; Beasley et al.,
1993). In Appendix A | give a brief description of the most relevant issues of genetic algorithm
optimization as used in this study. In particular, I describe model-parameter encoding as well
as standard and non-standard operators (selection, jump and creep mutation, crossover, elitism
and niching), fitness function and convergence criteria.

Parameter Selection

The first step, of course, is to select the model parameters related to the “physics” of the prob-
lem, their ranges (maximum and minimum values) and their required resolution. Then it is
time to choose the evolution parameters actually related to the genetic algorithm itself. The
performance of a genetic algorithm to solve a particular optimization problem depends criti-
cally on the choice of its evolution parameters that must be fine-tuned to that problem as much
as possible. In general it is difficult to give hard and fast rules that may work with a wide range
of applications, although some guidelines exist (Goldberg and Richardson, 1987; Goldberg,
1989b; Goldberg and Deb, 1991). For this problem, I choose the evolution parameters one by
one starting with the most critical and working my way down to the least critical. Once a par-
ticular parameter is selected it is kept constant in the tests to select the remaining parameters. |
do so because it would be nearly impossible to test all possible combinations. The reader may
find useful to refer to Appendix A for a description of the evolution parameters themselves.

Model Parameter Encoding

For the present application | use binary encoding of the 99 model parameters (not to be con-
fused with the evolution parameters that control the inner workings of the genetic algorithm)
representing potential solutions to the problem (?). I represent a model parameter with 10 bits
so that there are 219 = 1024 possible values for each model parameter and a total of 1024%°
possibilities for the entire search space. A completely exhaustive search of the model space
would therefore be very difficult if not impossible.

Population Size

Ideally, the population size should be large enough to guarantee adequate genetic diversity yet
small enough for efficient processing. In particular, the number of cost-function evaluations is

SEP 112

Genetic Algorithm Inversion 4 Alvarez

proportional to the population size. Equation 1 corresponds to Goldberg’s criterion (Goldberg,
1989b) of increasing the population size exponentially with the increase in the number of
model parameters (assuming binary encoding).

npopsi ze = order [(I /K)(2 * xk)] 1)

In this equation, | is the number of bits in the chromosome and k the order of the schemata of
interest (schemata is plural for schema 2). This criterion, however, may result in populations
too large when the number of model parameters and so the length of the chromosome is large.
In this case, for example, with 99 model parameters, each encoded with 10 bits, even for a
relatively low-order schema of 5 bits the population size would have to be larger than 3000
individuals. Such large populations may require many cost-function evaluations and a lot of
memory. Most applications reported in the literature use population sizes between 50 and 200
individuals and | am unaware of any reported use of a population larger than 1000 individu-
als. For the purpose of the present application | decided to try a relatively wide number of
population sizes using for the other evolution parameters “reasonably” standard choices. For
example, 1 used uniform crossover with a probability of 0.6, jJump mutation probability equal
to 1/npopsi ze (large populations have larger genetic diversity and so less need for jump mu-
tation) and creep mutation probability equal to the number of bits per model parameter times
the jump mutation rate. Also, for this first set of tests | allowed both niching (sharing) and
elitism of the best individual.

The top panels of Figure 2, from left to right, show a comparison of convergence rate as
a function of number of generations for population sizes of 50, 100, 200 individuals whereas
the bottom panels show similar curves for population sizes of 250, 500 and 1000 individu-
als. As expected, the larger populations produce better convergence after a fixed number of
generations. This is not a fair test, however, since the number of cost-function evaluations is
proportional to the population size. Figure 3 shows the same curves for a fixed number of
function evaluations. Clearly, there is a practical range of optimum population sizes about 200
or 250 individuals. For all the following tests | used a population of 200 individuals. Figure 4
shows a comparison of the reference trace (solid line) with the inverted traces (dotted line) ob-
tained with each population in the same order as that in Figure 3. The difference in the match
of the traces is not so impressive because in all cases a good solution is eventually found for
all populations. The smallest population, however, does show a poorer match than the others.

Selection M echanism

I used a tournament selection in which each parent is the best fit of two individuals picked
at random from the population. This technique has the advantage of applying significant
selection pressure while avoiding the pitfalls of fitness ordering or ranking (Falkenauer, 1998).

2A schemais a similarity template describing a subset of strings with similarities at certain string posi-
tions. For example, the schema 0* 1 matches the two strings 001 and 011.

SEP 112

Genetic Algorithm Inversion

=,
> Legend
best
o Average - -
o
=,
o™
S
2
=]
g
=
T
a
=,
o 40 80 120 160 200
Generation Number
=
> Legend
best
= Average - -
o
\
=
i~

an[eA 18079
£0

2.0

1.0

) 40 80 120 180 200
Generation Number

an[ea 1507

20

9.0

<0

70

g0

10

9.0

an[eA 1809
€0 70 G0

20

10

Legend
best

40 80 120 160 200
Generation Number

Legend
best
Average - |

40 80 120 180 200
Generation Number

9:0

Alvarez

g0 ¥0 S0

9n[eA 180D

20

10

Legend
best

90

40 80 120 180 200
Generation Number

an[eA 1809
0 g0 F0 g0

20

10

Legend
best
Average - -

40 80 120 180 200
Generation Number

Figure 2: Comparison of convergence rates for different population sizes keeping the number
of generations constant. Top row populations 50, 100 and 200 individuals. Bottom row,
populations of 250, 500 and 1000 individuals. | SG_compare_pop_sizesl ‘ [ER]

=
@ Legend
best
o Average - -
o
=)
o™
S|
2
sl
S
= WYRTT RPN |
s

20

10

o 10000 20000 30000 40000
Cost—function evaluations

e

el Legend
best

o| Average - -

o

ol

=1

an[eA 1507
20 €0

10

10000 20000 30000 40000
Cost—function evaluations

Figure 3: Same as in Figure 2 but in terms of number of function

anfes }s07)

20

3an[eA 1809

20

9.0

0

g0

10

70

Legend
best

o

9.0

10000 20000 30000 40000
Cost—function evaluations

0

€0

10

70

Legend
best
Average - -

10000 20000 30000 40000
Cost—function evaluations

number of generations. | SG_compare_pop_sizes2 ‘ [ER]

SEP 112

9:0

0

anfea }s0)
£.0

20

10

0

Legend
best

o

9.0

10000 20000 30000 40000
Cost—function evaluations

anjeA 180
20 €0 70 S0

10

Legend
best
Average - -

10000 20000 30000 40000
Cost—function evaluations

evaluations rather than

Genetic Algorithm Inversion 6 Alvarez

o]

iy
. .(Sg. uo
20 910 €10 800 #Q0

auIry
. .(Sg. oo
%0 910 ¢10 800 FQ0 0

: A(Sg_ S
20 910 €10 800 70 0

—0.08 —0.04 o 0.04 o©0.0B —0.08 —0.04 o 0.04 0.08 —0.08 —0.04 o 0.04 0.08
Trace Amplitude Trace Amplitude Trace Amplitude

(s% oy,

20 910 210 80 ¥Q0 0
(sg sl

2.0 910 210 8Q0 ¥Q0 0
(sg auIn]

2.0 910 210 80 ¥Q0 0

—0.08 —0.04 o 0.04 o©.08 —0.08 —0.04 o 0.04 0.08 —0.08 —0.04 o 0.04 0.08
Trace Amplitude Trace Amplitude Trace Amplitude

Figure 4: Comparison of trace match for different population sizes keeping the number of
function evaluations constant. Continuous line is the reference trace and dotted line the in-
verted trace. Top row, populations of 50, 100 and 200. Bottom row, populations of 250, 500
and 1000. |SG_compare_tr_pop_sizes2 ‘ [ER]

Crossover Rate

Crossover is by far the most important evolution operation. | tested single-point and uniform
crossover with a crossover probability of 0.6. The population size was chosen to be 200 and
the algorithm was run for 250 generations. The jump mutation was set at 0.005 and the creep
mutation at 0.05. Elitism of the best individual as well as niching was allowed. The top panels
in Figure 5 show the convergence rate of the two cases, whereas the bottom panels show the
corresponding traces. In this case uniform crossover (right panel) performs a little better since
it reaches a lower cost-value after the allowed number of cost-function evaluations. Using
uniform crossover, | tried six different values of crossover probability: 0.5, 0.6, 0.7, 0.8, 0.9
and 1.0. 1 tried this large range of values because crossover rate is a particularly important
evolution parameter. The top panels of Figure 6 show the comparison of the convergence rates
for crossover rates of 0.5, 0.6 and 0.7 whereas the bottom panels show the same curves for
crossover rates of 0.8, 0.9 and 1.0. The results are surprisingly similar, although it appears that
the smaller crossover rates produce faster initial convergence, and so | chose a crossover rate
of 0.6 for the remaining tests.

Mutation

As mentioned in Appendix A, there are two types of mutation operators: the standard jump
mutation that acts on the chromosome (binary representation of the individual, sometimes
called genotype) and creep mutations that act on the decoded individual, sometimes called

SEP 112

Genetic Algorithm Inversion

Alvarez

Tegend

o0

120 160 200 240

Generation Number

< <
o Legend o
o —1 9
o . o \
o’ ol
o] o
@ @
“o “o
<ol Ph
0@ @
co co
@ 2ol @ 2ol
<] <]
[N [N
0 40 80 120 180 200 240 0 40 80
Generation Number
of of
o o
o o
= =
o o
o o
©)
=) =)
o o
—~00 —~
Zo 2o
1 1
o o
N N
20 IS

—0.08 —-0.04

0 .0.04
Trace Amplitude

0.08

—0.08 —0.04 0 0.04
Trace Amplitude

0.08

Figure 5: Comparison of convergence rates for two types of crossover: single-point (left)

and uniform (right).

Top panels are convergence rates whereas bottom panels are trace

match with continuous line representing the reference trace and dotted line the inverted trace.

SG_compare_crossoverl| [ER]

e
b Legend
best
=| Average - -
o
.
=)
S

an[eA 18079
€0

20

1o

o 40 80 120 160 20O 240
Generation Number

=
@ Legend
best
=] Average - -
o
.
=)
P
S
2
=1
s
=
o)
9
=)

o 40 80 120 160 200 240
Generation Number

90

an[eA 1507
20 €0

)

g0

0

Legend
best
Average - -

90

o 40 80 120 180 =200 =240
Generation Number

anfes 35079

20

<0

0

g0

0

Legend
best
Average - -

o 40 80 120 160 200 240
Generation Number

an[eA 180)

20

anfea }s0)

20

90

)

g0

70

€0

Legend
best
Average - -

90

o 40 80 120 180 20O 240
Generation Number

<0

0

g0

10

o 40 80 120 180 200 240
Generation Number

Figure 6: Comparison of convergence rates for different crossover rates. Top panels corre-
spond to crossover rates of 0.5, 0.6 and 0.7 whereas bottom panels correspond to crossover

rates of 0.8, 0.9 and 1.0. | SG_compare_crossover2 ‘ [ER]

SEP 112

Genetic Algorithm Inversion 8 Alvarez

phenotype. In any case, the mutation probabilities are expected to be low, since high values
may cause strong disruption of promising schemata and therefore steer the algorithm away
from the most promising regions of the search landscape. The top panels of Figure 7 show a
comparison of convergence rates for three values of jump mutation probability 0.002, 0.004
and 0.008, without creep mutations. In this case a jJump mutation of 0.002 is the best although
a value of 0.005 would have been expected from the rule of thumb of the inverse of the popula-
tion size. The bottom panels of Figure 7 show the effect of creep mutations with probabilities
0f 0.02, 0.04 and 0.08. Again, it seems that a small mutation is actually best. For the remaining
| used creep mutation with probability 0.02.

Legend

anjeA 180
1020 €0 K0 S0 90

an[eA }s0)
10 20 €0 K0 S0 90

anjeA 180
1020 €0 ¥0 S0 90

o 40 80 120 160 20O 240 o 40 80 120 180 =200 =240 o 40 80 120 180 20O 240
Generation Number Generation Number Generation Number

anfes }80)
10 20 €0 ¥0 g0 90

anfea 3807
10 20 €0 ¥0 g0 90

anfes }80)
10 20 £0 ¥0 S0 90

Figure 7: Comparison of convergence rates for different jump and creep mutation rates. Top
panels for jump mutation rates of 0.002, 0.004 and 0.008. Bottom panels for creep mutation
rates of 0.02, 0.04 and 0.08. SG_compare_mutationl‘ [ER]

Other options

Finally, | tested the inclusion of niching (Goldberg and Richardson, 1987) and elitism. The top
panels of Figure 8 compare the convergence rates with niching and elitism (left)i, only elitism
(middle), and only niching (right). The bottom panels show a similar comparison for the trace
match. All the other evolution parameters were chosen according to the previous analysis.
It seems that the lack of niching makes the convergence a little slower in the first iterations
(compare the left and middle panels) but makes it faster after about the 40th generation. The
lack of elitism, on the other hand, makes convergence a little erratic (compare left and right
panels) since we are not guaranteed to go to a better-fit best individual in any generation com-
pared with the previous one. Elitism was thus included and niching excluded in the evolution
parameters of the final optimum standard genetic algorithm.

SEP 112

Genetic Algorithm Inversion 9 Alvarez

anfea 180
10 20 €0 F0 S0 90

anpea 1809
1O 20 €0 F0 G0 90

anpea 48079
170 20 €0 ¥0 G0 90

o 40 80 120 160 200 240 o] 40 80 120 160 200 240 o 40 80 120 160 200 240
Generation Number Generation Number Generation Number

amiy,

Eluing
. ,(?, Lo
20 910 210 800 F00

auI],
. ,(%, Lo
20 910 210 800 PO

. _(%_ oo
20 910 210 800 790 0

Figure 8: Comparison of results for the inclusion of niching and elitism. Top panel conver-
gence rates: left with niching and elitism, middle with elitism only and right with niching only.
Bottom panels show similar comparison for the trace match with continuous line representing
the reference trace and dotted line the inverted trace. | SG_compare_otherl ‘ [ER]

Parameter Summary
For easy reference, Table 1 shows the evolution parameters selected as optimum from the pre-
vious tests. The resulting genetic algorithm will be compared with a micro-genetic algorithm

described in the next section.

Table 1: Summary of the optimum evolution parameters for the standard genetic algorithm

Population size 200 Crossover rate 0.6
Mutation rate 0.002 Creep mutation rate | 0.02
Elitism Yes Niching No
Selection strategy | Tournament || Number of children | 1

MICRO-GENETIC ALGORITHM

When dealing with high dimensionality problems, it may be difficult or too time consuming
for all the model parameters to converge within a given margin of error. In particular, as the
number of model parameters increases, so does the required population size. Recall that large
population sizes imply large numbers of cost-function evaluations. An alternative is the use of
micro-genetic algorithms (Krishnakumar, 1989), which evolve very small populations that are

SEP 112

Genetic Algorithm Inversion 10 Alvarez

very efficient in locating promising areas of the search space. Obviously, the small populations
are unable to maintain diversity for many generations, but the population can be restarted
whenever diversity is lost, keeping only the very best fit individuals (usually we keep just the
best one, that is, elitism of one individual). Restarting the population several times during
the run of the genetic algorithm has the added benefit of preventing premature convergence
due to the presence of a particularly fit individual, which poses the risk of preventing further
exploration of the search space and so may make the program converge to a local minimum.
Also, since we are not evolving large populations, convergence can be achieved more quickly
and less memory is required to store the population.

Selection of Evolution Parametersfor Micro-GA

In principle, micro-genetic algorithms are similar to the standard genetic algorithm described
in the previous section, in the sense of sharing the same evolution parameters and similar
considerations. There is, however, an important distinction: since new genetic material is
introduced into the population every time the algorithm is restarted, there is really no need for
either jump or creep mutation. Also, elitism is required, at least every time the population is
restarted, otherwise the algorithm would lose its exploitation capability. | have also found that
the algorithm is much less sensitive to the choice of evolution parameters compared with the
standard genetic algorithm. In particular, population sizes of 5 to 7 with crossover rates of 0.8
to 0.95 give very good results. The top panels of Figure 9 shows a comparison of convergence
rates for populations of 3, 5 and 7 individuals. It seems clear that 5 individuals is the best. This
result agrees with Carroll’s who employed micro-GAs to optimize an engineering problem
(Carroll, 1996). The bottom panels show a comparison of convergence rates for populations
of 5 individuals and crossover rates of 0.7, 0.9 and 1.0. It seems that 0.9 is the best crossover
rate, although further tests showed that 0.95 gave even better results and therefore that value
was chosen for the remaining tests. Figure 10 shows the results in terms of trace match. Again,
it is apparent that a population of 5 and a crossover rate of 0.9 are optimum. In particular, note
how a uniform crossover of 1.0 (bottom right panel) is far too disruptive.

Summary of Evolution Parametersfor Micro-GA

Table 2 shows a summary of the evolution parameters selected for the micro-GA for the current
application.

Table 2: Summary of the optimum evolution parameters for the micro-genetic algorithm

Population size 5 Crossover rate 0.95
Jump mutation rate 0.0 Creep mutation rate | 0.0
Elitism Yes (best individual only) || Niching No
Selection strategy Tournament Number of children | 1

SEP 112

Genetic Algorithm Inversion 11 Alvarez

S o S
S S S
psd ped feisd
e o e
4 2 4
= = =
s s s
=] =] =
EEY @0 3o
) o)
[s] 10000 20000 30000 40000 [s] 10000 20000 30000 40000 o 10000 20000 30000 40000
Cost—function evaluations Cost—function evaluations Cost—function evaluations
=, =1 =]
IS iS ES
ao =) OQL‘H
8 e} & o] & el
S & Z
< < <
=5 =5 =5
=2 =2 =2
5 5y 5
Vo’]l_&\ - -
10000 20000 30000 40000 o 10000 20000 30000 40000 [¢] 10000 20000 30000 40000
Cost—function evaluations Cost—function evaluations Cost—function evaluations

Figure 9: Comparison of convergence rates for different options of the micro genetic algo-
rithm. Top panel population rates of 3, 5 and 7 (from left to right). Bottom panels, with
population size of 5 and crossover rate of 0.7, 0.9 and 1.0. |MG_comparel | [ER]

o o o
- - -
= = =
= = =
2 g g
So So So
Ee E=| ER
= = =5
5 5 5
[N g oo
—0.08 —0.04 o 0.04 0.08 —0.08 —0.04 o 0.04 0.08 —0.08 —0.04 e} 0.04 0.08
Trace Amplitude Trace Amplitude Trace Amplitude
o - o
- = - -
= i~ =
- - -
=R —R =
8o 8= s =
== == z
= & &
e =) IRl
g S S
70[05 70[04 é) OAb4 OA‘OB 70[08 70‘.04 é) O.b4 OAbB 7O‘ADE 70[04 é) DAb4 OA‘OB
Trace Amplitude Trace Amplitude Trace Amplitude

Figure 10: Comparison of trace match for different options of the micro genetic algorithm.
Continuous line is the reference trace and dotted line is the inverted trace. Top panel population
rates of 3, 5 and 7 (from left to right). Bottom panels, with population size of 5 and crossover
rate of 0.7,0.9 and 1.0. |[MG_compare2| [ER]

SEP 112

Genetic Algorithm Inversion 12 Alvarez

COMPARISON OF STANDARD AND MICRO-GA

Having chosen the evolution parameters that provided the best results for both the standard
and the micro-GA (Tables 1 and 2), | will now compare the performance of the two in solving
the current problem.

The top panels of Figure 11 show a comparison of convergence rates between the standard
genetic algorithm (left) and the micro-genetic algorithm (right). The difference in convergence
rate is in the first generations is impressive. For example, the micro-genetic algorithm would
have essentially converged after 2000 cost-function evaluations, whereas the standard genetic
algorithm would take almost 10000 cost-function evaluations to reach the same convergence
level. If enough iterations (generations) are allowed both algorithms will converge to essen-
tially the same result. The bottom panels in Figure 11 show the corresponding trace match.
The differences are not too great because both algorithms were essentially run to convergence.

CONCLUSIONSAND FUTURE WORK

The results of this test are encouraging because micro genetic algorithms show a much faster
rate of convergence than standard genetic algorithms in the solution of this simple, relatively
high-dimensional problem. At the very least micro genetic algorithms could be run for a few
generations and use the results as starting points for gradient-based methods.

From the point of view of the genetic algorithm inversion, some lessons have been learned
after extensive testing of the evolution parameters. Firstly, using a micro-genetic algorithm
with uniform cross-over without mutation emerges as the best option for this problem (as
opposed to a standard genetic algorithm with single-point cross-over and jump and creep mu-
tation). Secondly, a micro-genetic-algorithm population of 5 individuals with a cross-over
probability of 0.95 seems to be optimum for this problem.

An important issue to be further analyzed is that of the multi-modality of the search space.
In this case it is clear that there is a single global minimum, namely recovering the original
trace sample-by-sample. However, | have found that once | get close enough to this global
minimum it takes a large number of iterations to escape local minima (many traces *“almost
fit” exactly the original). My present convergence criteria do not allow for checking of con-
vergence of individual model parameters so | have to investigate alternative options.

Another important issue has to do with the convenience of working with the model param-
eters directly in their floating-point representation rather than the standard binary encoding
used here. This approach has the advantage of not requiring a resolution limit on the model
parameters.

SEP 112

Genetic Algorithm Inversion

%+

oniea 3so)d
€°0
I

=20
L

Legend

best
average - - -

T T T T
10000 20000 30000 40000
Cost-function evaluations

(@]

+O-
L

80 0
L

(s) suary
210
\

T°0
L

-0.04 0 0.04
Trace Amplitude

T
-0.08

13

sanrea 3so)D

2°0

STUT],

s)

o

Alvarez

€0

T T T T
10000 20000 30000 40000
Cost-function evaluations

O

80 0

2T 0

91"

-0.04 0 0.04
Trace Amplitude

T
-0.08

Figure 11: Comparison between the standard and the micro genetic algorithm. Top panels con-
vergence rates for standard genetic algorithm (left) and micro genetic algorithm (right). Bot-
tom panels show the corresponding trace match with continuous line representing the original
trace and the dotted line the inverted ones. ‘final_comparison ‘ [ER]

SEP 112

Genetic Algorithm Inversion 14 Alvarez

APPENDIX A: REVIEW OF GENETIC ALGORITHMS

In this appendix | briefly review some of the terms and issues related to genetic algorithms
in optimization. More detailed accounts can be found in (Goldberg, 1989a; Haupt and Haupt,
1998; Falkenauer, 1998; Gen and Cheng, 2000).

Model Parameter Encoding

The choice of representation of the problem in terms of how many model parameters, their
encoding, range of values and required resolution is perhaps the most important decision we
face when using genetic algorithms. In particular, we must decide whether to use “direct”
representation of the problem (in terms of floating point numbers,for example) or to “encode”
the solution in terms of a suitable “alphabet”, usually binary. In his pioneering work in genetic
algorithms Holland employed the binary representation to prove his schemata theorem which
provides the theoretical foundation for the workings of the genetic algorithm (Holland, 1975;
Goldberg, 1989a). This theorem proves that short, low order schemata are more likely to be
preserved by the evolution process in contrast to long high order schemata which are more
likely to be disrupted by crossover and mutation 3. Short, low order schemata, therefore, are
likely to end up associated with highly fit individuals, that is, with the best solutions to the
problem. Therefore, if we can encode our model parameters in such a way that the promising
short low-order schemata are produced, we may achieve a faster convergence and obtain a
better solution. If we use binary encoding, in order to have short, low-order schemata, the
model parameters must be suitably encoded with related model parameters being put close
together in the binary string representing an individual (Goldberg, 1989a). The problem is
that in general we may not know before hand which parameters are related to others or to
what extent they are related. Therefore, in general it is difficult to establish the order of the
predominant schemata in a given encoding of the model parameters.

Basic Operators

A genetic algorithm optimization begins by generating a population of randomly computed
individuals within the constraints imposed on the model parameters. Three basic operators:
reproduction (selection), crossover and mutation are used to “evolve” the solution from one
generation (iteration) to the next.

Selection

Each trial solution (individual) is assigned a figure of merit that represents how good a solution
it is according to the fitness function (cost function or objective function) of the problem. The

3The order of a schema is the number of fi xed positions. For example, the order of 011*1** is 4. The
length of a schema is the distance between the fi rst and the last specifi ¢ string positions. For example, the
schema 011** 1* has alength of 6-1=5

SEP 112

Genetic Algorithm Inversion 15 Alvarez

most fit individuals (lowest cost-values for minimization problems) are given a higher proba-
bility of mating in order to produce the next generation. There are several ways to select the
“parents” for mating, such as random pairing, roulette wheel, rank weighting and tournament
selection (Haupt and Haupt, 1998). Whatever the selection method, the net effect is to skew
the next generation towards the most fit individuals, that is, towards the most promising re-
gions of the search space. It is still possible and desirable to allow less fit individuals to mate,
albeit with a lower probability. This increases the exploration of the search space and helps
prevent premature convergence, i.e. convergence to a local minimum.

Crossover

Crossover is the operator actually responsible for the exchange of genetic material between
the parents in order to produce their offspring. In the usual case of binary encoding, the
simplest crossover operator randomly selects a bit position in the binary string representing an
individual (a chromosome), and then two children are produced by taking the bits to the left
of the crossover point in parent one and those to the right in parent two and vice-versa. This is
called single-point crossover. More than one point may be selected, two, for example, such that
one child consists of the bits from the two points to the ends in one parent and those in between
the two points from the other parent. The other child will be similarly produced by exchanging
the role of the two parents. In the limit a child may be produced by randomly selecting,
for each bit, the value from one or the other parent. This is called uniform crossover. It is
important to notice that crossover is not necessarily applied to all couples, but only according
to a given probability, usually between 0.5 and 0.9. Also, when using other encodings, for
example floating-point numbers, the operator must be adjusted (Haupt and Haupt, 1998).

Mutation

The operator responsible for introducing new genetic material into the population is called
mutation (or more precisely jump mutation). With binary encoding, this operator works by
randomly selecting a bit and then flipping it. In general, mutation is applied with a relatively
low probability, usually less than 0.1. The idea is that although mutations are critical to prevent
the population from loosing their genetic diversity (that is, mutations force the algorithm to
look into other areas of the search space) they are potentially disruptive causing the algorithm
to lose information from a promising search area.

Other operators

There are many other operators that may be used to improve the chances of a fast and accurate
convergence of genetic algorithms. The ones used in this study are

e Elitism: This is the operator that promotes, without change, the best individual or indi-

viduals of the population to the next generation. These individuals are still eligible for
recombination with others to produce the offspring.

SEP 112

Genetic Algorithm Inversion 16 Alvarez

e Niching: Also called sharing is the process of sharing genetic material between closely

related individuals (Goldberg and Richardson, 1987)

e Creep mutation: Similar to standard mutation but only changes that result in small per-
turbations of the decoded model parameters (as opposed to their binary representation)

are allowed. This can be considered a fine-tuning operator.

Fitnessfunction

The fitness function is the equivalent to the cost function in standard optimization theory. In a
minimization problem the fitness of each individual is evaluated and a figure of merit assigned
such that the individuals with the smallest cost-function values are considered the most fit.

Convergence

In general, establishing the convergence of a genetic-algorithm optimization may not be an
easy matter because we do not know for sure if the algorithm has converged to a local or global
minimum. In the first case we would like the algorithm to continue exploring the search space
and in the second case we would like the algorithm to stop. There are several different ways

in which we can proceed, for example:

e Set a threshold for the minimum cost function that constitutes an acceptable solution
and stop the algorithm when this value is reached. The problem with this approach is
that in some cases it may be too difficult to establish a priori what a good threshold
should be.

Set a threshold for the difference between the best and the average fit individual in the
population. This has the advantage of not requiring a priori knowledge of the actual cost
function values.

Set a threshold for the difference between the best individuals of the present and the
previous generation or generations. This has the advantage of preventing the algorithm
from attempting to refine the search too much by slowly crawling to the bottom of the
valley.

Set a maximum number of generations to be evolved. This is a fail safe criterion which
can be useful when comparing the performance of genetic algorithms with different
combination of evolution parameters.

In most cases a combination of two or more of these and similar criteria are employed.

SEP 112

Genetic Algorithm Inversion 17 Alvarez

REFERENCES

Beasley, D., Bull, D., and Martin, R., 1993, An overview of genetic algorithms: Part 2, re-
search topics: University Computing, 15, no. 4, 170-181.

Boschetti, F., 1995, Application of genetic algorithms to the inversion of geophysical data:
Ph.D. thesis, The University of Western Australia.

Carroll, D., 1996, Genetic algorithms and optimizing chemical oxygen-iodine lasers: Devel-
opments in theoretical and applied mechanics, 18, 411-424.

Davis, L., 1987, Genetic algorithms and simulated annealing.: Pitman.
Falkenauer, E., 1998, Genetic algorithms and grouping problems: John Wyley and sons.

Gen, M., and Cheng, R., 2000, Genetic algorithms and engineering optimization: John Wyley
and sons.

Gill, P., and Murray, W., 1981, Practical optimization: Academic Press.

Goldberg, D., and Deb, K., 1991, A comparative analysis of selection schemes used in ge-
netic algorithms: A comparative analysis of selection schemes used in genetic algorithms:,
Morgan Kaufmann, Foundations of Genetic algorithms.

Goldberg, D., and Richardson, J., 1987, Genetic algorithms with sharing for multimodal func-
tion optimization: Genetic Algorithms and their application. Proceedings of the Second
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers.

Goldberg, D., 1989a, Genetic algorithms in search for optimization and machine learning:
Addison-Wesley Pub. Co.

Goldberg, D., 1989Db, Sizing populations for serial and parallel genetic algorithms: Proceed-
ings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Pub-
lishers.

Haupt, R., and Haupt, S., 1998, Practical genetic algorithms: John Wyley and sons.
Holland, J., 1975, Adaptation in natural and artificial systems: University of Michigan Press.

Krishnakumar, K., 1989, Micro-genetic algorithms for stationary and non-stationary function
optimization.: SPIE: Intelligent control and adaptive systems, 1196, 289-296.

SEP 112

