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Abstract

In complex subsurface areas, attenuation of specular and diffracted multiples in image space
(after migration) is an attractive alternative to the industry standard processes of Surface Re-
lated Multiple Elimination (SRME) and data space Radon demultiple. There are several rea-
sons: (1) migration increases the signal-to-noise ratio of the data; (2) migration guarantees that
the primaries are mapped to coherent events in either Subsurface Offset Domain Common Im-
age Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) unlike data
space, image space is by construction regular and usually much smaller; (4) the moveout of
the multiples in image space is more predictable than in data space for complex geology; (5)
attenuating the multiples in data space may leave “holes” in the frequency-wavenumber space

that generate artifacts and amplitude problems after migration.

In this thesis I exploit the power of prestack wave-equation migration to handle complex
wave propagation. I design a robust and efficient method to attenuate the multiples in image

space via a Radon transform of ADCIGs.

I demonstrate that specular multiples migrate as primaries and develop the equations for
their residual moveout in both SODCIGs and ADCIGs for canonical models. In particular, I
develop a new equation for the residual moveout of multiples in ADCIGs that accounts for ray
bending at the multiple-generating interface. The new equation improves the accuracy of the
tangent-squared approximation for the residual moveout of primaries migrated with the wrong
velocity (Biondi and Symes, 2004). The tangent-squared equation is shown to be appropriate
for multiples only at small aperture angles. A Radon transform whose kernel is the new

equation better focuses the multiples and helps separate them from the primaries. This in turn
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improves the attenuation of the multiples. Unlike specular multiples, diffracted multiples do
not migrate as primaries. That is, they do not map to zero subsurface offset in SODCIGs nor
to flat events in ADCIGs even if migrated with their correct velocities. Furthermore, I show
that the apex of their residual moveout in ADCIGs is shifted from zero aperture angle similar
to their behavior in common midpoint gathers. I design an apex-shifted Radon transform that,
for 2D data, maps the 2D ADCIGs to a 3D cube of dimensions depth, curvature and apex-shift
distance. I show, with a real 2D dataset from the Gulf of Mexico, that Radon filtering with the

apex-shifted transform is effective in attenuating both specular and diffracted multiples.

Estimating a multiple model is the first part of the multiple attenuation process, but it is
not the only critical step. In order to estimate the primaries we need to subtract the estimated
multiples from the data. Because of amplitude, phase and kinematic errors in the multiple esti-
mate, straight subtraction is inaccurate and some form of adaptive subtraction is often needed.
I propose to pose the adaptive matching and subtraction of the multiple model from the data as
an iterative least-squares problem that simultaneously matches the estimates of both primaries
and multiples to the data. Once converge is achieved, the primary and multiple estimates are
updated and the inversion is run again. Standard methods match only the estimate of the mul-
tiples. The simultaneous matching of the primaries and the multiples has the advantage of
reducing the crosstalk between the matched estimates of the primaries and the matched esti-
mate of the multiples. I demonstrate the method with real and synthetic data and show that
it produces better results than the standard multiples-only adaptive subtraction. I also show
that the method can be used to tackle similar problems where estimates of signal and noise
need to be matched to data containing both, and illustrate it by attenuating spatially-aliased

ground-roll from a land shot gather.

In 3D, the multiples exhibit residual moveout in SODCIGs in both the inline and crossline
offset directions. They map away from zero subsurface offset when migrated with the faster
velocity of the primaries. The ADCIGs are function not only of the aperture angle but also of
the reflector azimuth. I show, with a simple 3D synthetic dataset, that the residual moveout
of the primaries as a function of the aperture angle is flat for those angles that illuminate the
reflector at that reflection azimuth, but appear to have curvature for those reflection azimuth

planes that do not illuminate the reflector. The multiples, on the other hand, have residual
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moveout towards increasing depth for increasing aperture angles at all azimuths. Likewise,
as a function of azimuth, and for a given aperture angle, the primaries show good azimuth
resolution for large aperture angles that illuminate the reflector. At zero aperture angle there is
no azimuth resolution. For the multiples from a reflector with crossline dip there is no azimuth
resolution at any aperture angle because, even in constant velocity, the propagation is not on

one plane.

I show, with a real 3D dataset from the Gulf of Mexico, that even below salt, where illu-
mination is poor, and where the requirements of 3D-SRME are less likely to be met, there is
enough residual moveout in ADCIGs to discriminate and attenuate the multiples with a direct

application of the new 2D Radon transform in planes of azimuth-stacked ADCIGs.
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Preface

The electronic version of this thesis! makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by myself about the repro-
ducibility of each figure result. Reproducibility is a way of organizing computational research
that allows both the author and the reader of a publication to verify the reported results. Repro-

ducibility facilitates the transfer of knowledge within SEP and between SEP and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the paper. I
claim that you can reproduce such a figure from the programs, parameters, and makefiles
included in the electronic document. The programs are present locally in the different
directories or available in the SEP data library?. I assume you have a UNIX workstation
with Fortran, Fortran90, C, Matlab, X-Windows system and the software downloadable
from our website (SEP makerules, SEPIib, and the SEP latex package), or other free
software such as SU. Before the publication of the electronic document, someone other
than me tested my claim by destroying and rebuilding all ER figures. Some ER figures
may not be reproducible by outsiders because they depend on data sets that are too large

to distribute.

CR denotes Conditional Reproducibility. I certify that the commands are in place to repro-
duce the figure if certain resources are available. SEP staff have only attempted to make
sure that the makefile rules exist and the source codes referenced are provided. The pri-

mary reasons for the CR designation is that the processing requires 2 hours or more or

Thttp://sepwww.stanford.edu/public/docs/sep121
Zhttp://sepwww.stanford.edu/public/docs/sepdatalib/toc_html/

1X



a special hardware such as computer cluster. In Chapters 5 and 6, proprietary data from
CGG Veritas cannot be used without written permission. All the Figures displaying this

dataset are CR.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their figures
as NR except for figures that are used solely for motivation, comparison, or illustration
of the theory, such as: artist drawings, scannings, or figures taken from SEP reports not

by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.4 using the Intel Fortran90 compiler, but the
code should be portable to other architectures. Reader’s suggestions are welcome. For more
information on reproducing SEP’s electronic documents, please visit

<http://sepww. st anf ord. edu/ r esear ch/ redoc/ >.
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Chapter 1

| ntroduction

Subsurface images provided by the seismic reflection method are the single most important
tool used in oil and gas exploration. Almost exclusively, our conceptual model of the seismic
reflection method, and consequently our seismic data processing algorithms, treat primary
reflections, those waves that are scattered back towards the surface only once, as the “signal”.
The traveltimes of the primary reflections are used to map the structure of lithology contrasts
while their amplitudes provide information about the magnitude of the lithology contrasts as
well as other information such as presence or absence of fluids in the pore spaces of the rock.
All other waves such as multiples, waves that are scattered back toward the surface more than

once, are considered “noise”.

CLASSIFICATION OF MULTIPLES

There are many types of multiples, some of which are illustrated in Figure 1.1. For the pur-
pose of this thesis, however, multiples will be classified in two main categories: specular
multiples and diffracted multiples. Specular multiples are those that reflect as light rays, fol-
lowing Snell’s law at the reflection points. Diffracted multiples, in contrast, are scattered in
all directions at the diffractor location. I will further classify the diffracted first-order multi-

ples into receiver-side and source-side multiples depending on which side the diffractor lies as
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shown in panels (a) and (b) of Figure 1.2 respectively. The dashed lines represent the arbitrary
trajectories that the multiple may take from the diffractor to the receiver (for a receiver-side
diffracted multiple) or from the source to the diffractor (for a source-side diffracted multiple).
The travelpath from the diffractor to the receiver is independent of the source location for a
receiver-side multiple and likewise the travelpath from the source to the diffractor is indepen-
dent of the receiver location for a source-side multiple. This behavior makes the kinematics of
specular and diffracted multiples very different in Common-midpoint (CMP) gathers. Spec-
ular multiples have a moveout curve that is symmetric around their apex at zero offset, since
reciprocity requires the same traveltime for rays from the source location to the receiver loca-
tion and from the receiver location to the source location. Diffracted multiples, on the other
hand, do not have their apex at zero offset (Hargreaves et al., 2003) and are therefore not sym-
metric around zero offset as shown in Figure 1.3. The travelpath of the receiver side multiple,
for example, is not the same if the source and receiver locations are interchanged. Reciprocity
is not violated, however. Receiver-side multiples just become source-side multiples and vice-
versa as illustrated in Figure 1.2. A similar splitting of the source- and receiver-side multiple

happen with peg-leg multiples from a dipping reflector (Levin and Shah, 1977).

Water—bottom multiple Reflector multiple
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Figure 1.1: Examples of 2D specular multiples. [ER]
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DATA SPACE AND IMAGE SPACE

In this thesis, I refer to data space as the un-migrated space. This means data as a function
of time. I consider two main sets of data: source gathers and CMP gathers. The first are
function of the source coordinates, offsets and time while the second are function of the CMP

coordinates, half-offsets and time.

I will refer to image space as the domain of migrated data. In particular, data migrated
in depth. In image space I consider two main datasets: Subsurface Offset Common Image
Gathers (SODCIGs) and Angle Domain Common Image Gathers (ADCIGs). In this thesis I

will use exclusively wave-equation migration algorithms.

ATTENUATION OF MULTIPLES IN DATA SPACE

The standard approach in seismic data processing is to attenuate the multiples before imaging,
that is, in data space. Most algorithms for the attenuation of multiples in data space are based
on three main characteristics of the multiples: (1) their periodicity in arrival time (predictive
deconvolution), (2) their difference in moveout with respect to the primaries in CMPs ( f-k
and t-p filtering) and (3) their predictability as the auto-convolution of the primaries (Surface
Related Multiple Elimination (SRME)). Each of these approaches have distinctive advantages

and disadvantages.

Predictive deconvolution

The attenuation of short-period multiples (most notably reverberations from relatively flat,
shallow water-bottom) can be achieved with predictive deconvolution. The periodicity of the
multiples is exploited to design an operator that identifies and removes the predictable part of
the wavelet (multiples), leaving only its non-predictable part (signal). The key assumption is
that genuine reflections come from an earth reflectivity series that can be considered random
and therefore not predictable (Yilmaz, 1987). In general, for other than short-period multiples,

only moderate success can be achieved with this simple, one-dimensional procedure.



In principle, deterministic deconvolution can be used to remove water-bottom reverber-
ations when the exact depth and speed of sound of the water layer are known. Since these
conditions are rarely met, deterministic deconvolution is not widely used, despite the elegance

of its closed, exact mathematical formulation (Robinson and Treitel, 2000).

Moveout-based filtering

Primaries and multiples exhibit hyperbolic moveout in CMPs but their curvature is different.
After Normal Moveout (NMO) correction with the NMO velocity of the primaries, ideally
the primaries exhibit flat moveout whereas the residual moveout of the multiples can be ap-
proximated by parabolas or hyperbolas (Hampson, 1986; Foster and Mosher, 1992). This
difference in moveout can be exploited to separate the primaries from the multiples in either

the f-k domain or the t-p (Radon) domain.

The performance of an f-K filter in suppressing multiples strongly depends on primary
and multiple reflections being mapped to separate regions of the f-k plane. This is in general
the case on far-offset traces, for which the difference in moveout can be large, but not on short-
offset traces for which the difference in moveout is small. The performance of f-K filtering,
therefore, is poor at small offsets even if the subsurface geology is not very complex. This

usually makes f-K filtering an undesirable option for multiple elimination.

Radon demultiple in data space (Hampson, 1986; Foster and Mosher, 1992) has proven
successful in attenuating specular multiples if the subsurface is not very complex. In com-
plex subsurface areas, such as under salt, the hyperbolic or in fact any NMO approximation
breaks down. The NMO velocities are inaccurate and therefore, after NMO, the primaries are
unlikely to be flat. Furthermore, the residual moveout of the multiples is unlikely to be well
approximated by parabolas or hyperbolas. The quality of the separation between primaries
and multiples in the Radon domain, and their focusing, therefore, deteriorates. As a result,
multiples are imperfectly attenuated and, worse, the attenuation is offset dependent. In such

complex areas, Radon demultiple in data space is not a good option.
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SRME

Surface-related multiple elimination (SRME) uses the recorded seismic data to predict and
iteratively subtract the multiple series (Verschuur et al., 1992). The key advantage of SRME
is that it needs no subsurface information whatsoever. The multiples are completely predicted
from the data. 2D SRME can deal with all kinds of surface-related 2D multiples, provided
all relevant data are recorded within the aperture and offset limitations of the survey line.
Predicting 3D multiples with 2D SRME is hazardous because the accuracy of the prediction
depends on the amount of crossline dip. Figure 1.4 shows an example with 3D real data. Panel
(a) is an inline common-offset section with an obvious water-bottom multiple. Panel (b) is the
inline offset gather taken at horizontal position 12000 m. Panel (c) is the multiple prediction
with 2D SRME and panel (d) is the offset gather for the predicted data (figure courtesy of
Bill Curry). The prediction is very good except at the canyon where the water-bottom has
non-negligible crossline dip. Notice that the predicted multiple arrives later than the multiple

in the data inside the canyon but arrives at the correct times to either side of the canyon.

Prediction of multiples from reflectors with crossline dip, and diffracted multiples, espe-
cially those from scatterers with a cross-line offset component, cannot be accurately achieved
with 2D SRME. Predicting these multiples requires the much more expensive 3D SRME. If
the acquisition of the 3D survey is regular and dense enough, the survey apertures large enough
in both in-line and cross-line directions, and there is no feathering, 3D SRME performs well.
With standard marine streamer acquisition, however, the sampling in the cross-line direction
is too coarse, the cross-line aperture is too narrow, short offsets are not recorded and feath-
ering and acquisition obstacles make the acquisition geometry irregular. Any multiple whose
surface bounce is not recorded can not be predicted by 3D SRME. Again, diffracted multiples,
and multiples from a reflector with significant crossline dip pose the most serious problem
because their surface bounce is likely to lie way outside the relatively narrow recording patch.
Figure 1.5 shows a schematic map view of this situation. The empty circle represents the sur-
face bounce of the multiple and, since there is not detector at that location, 3D SRME cannot
predict that multiple. We do not need a particularly convoluted subsurface for this situation to
arise in practice. All it takes is crossline dip of the water-bottom or the multiple-generating

surface, or the presence of diffractors. These multiples, therefore, need to be removed by



Time (s)

8000 120 000 20000 4000
Horizontal position (m) Inline offset (m)

Figure 1.4: Prediction of 3D multiple with 2D SRME. Panel (a) is an inline common-offset
section from a 3D survey. Panel (b) is an offset gather. Panel (c) is the inline common-offset
section of the predicted multiple with 2D SRME and panel (d) is the offset gather of the
predicted multiple. Notice that the prediction is good away from the canyon (the arrival times
of the predicted multiple match those of the data) but no in the canyon where the predicted
arrival times of the multiple are larger due to the crossline dip of the canyon. [ER]
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other methods (Hargreaves et al., 2003) or the data need to be interpolated and extrapolated
to a dense, large aperture grid (Baumstein and Hadidi, 2006; Curry, 2006; Matson and Abma,
2005; van Dedem and Verschuur, 1998; Nekut, 1998). Interpolation is complicated by the
coarse sampling that may introduce aliasing in the steep flanks of the multiple multiple move-
out curves. Also, internal multiples cannot be predicted by SRME, unless the data is succes-
sively datumed to every multiple-generating interface. This is obviously a time-consuming
process that is seldom, if ever, carried out. In most situations this is not a serious drawback,
however, since internal multiples are usually weak. The exception is internal multiples from

very strong reflectors such as salt boundaries.

O

Figure 1.5: Schematic map view of a simple situation in which 3D SRME can not predict
a multiple. The subsurface has significant crossline dip such that the surface bounce of the
multiple (indicated by the empty circle), lies outside of the recording patch and therefore the
multiple can not be predicted from the data. ‘intr0—3dsrme_sktch1 ‘ [NR]

PROBLEM DESCRIPTION

The previous section briefly described the weaknesses of the standard multiple attenuation
approaches in particular when applied to sparse 3D data over complex subsurface. Data space

methods cannot handle the wave distortions associated to complex wave travelpaths and 3D



SRME requires data that is not usually acquired.

The issue I address in this thesis is the development of a relatively simple, practical algo-
rithm, that can attenuate both specular and diffracted multiples for 2D and 3D data acquired
with standard marine, narrow-azimuth towed-streamer geometry. The method uses only the
recorded data and does not need costly and often inaccurate massive data interpolation and
extrapolation. It does, however, require a reasonably accurate migration velocity field. The
algorithm works in the image space, meaning it is applied after the data have been migrated.
Since wave equation migration accurately handles complex wave propagation, the method
works well for data acquired over complex subsurface regions such as under salt, again, pro-

vided the migration velocity field is reasonably accurate.

This thesis also makes theoretical contributions that explain the process by which prestack
wave equation migration maps multiples from data space (CMP gathers) to image space (AD-
CIGs). In particular, I develop the equations that explain the residual moveout of canonical
multiples in ADCIGs for both specular and diffracted multiples. I demonstrate that the spec-
ular multiples are focused similar to primaries whereas the diffracted multiples are not. For
3D data I demonstrate that the reflection azimuth dependency as a function of the dip angle is
different for primaries and multiples. Likewise for the aperture angle dependency as a func-
tion of reflection azimuth. I develop a Radon transform that separates the primaries from the

multiples as a function of both aperture and reflection azimuth angles.

I also develop in this thesis a new approach to the matching and adaptive subtraction of
the multiple model from the data. Unlike SRME, the image space Radon transform allows the
estimation of a primary model along with the estimation of the multiple model. I exploit this
capability to design a nonlinear inversion approach that simultaneously matches and adaptively
subtracts from the data both the estimate of the multiples and the estimate of the primaries.
The effect is to reduce the well-known crosstalk problem, i.e., that residual multiple energy

that contaminates the estimate of the primaries.
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THESIS OVERVIEW

The next chapters develop the subject of the thesis for both 2D and 3D data. In both cases I

illustrate the results with synthetic and real data.

Chapter 2: Attenuation of 2D multiples

In this chapter I present the equations that map specular and diffracted 2D multiples from data
space to image space. I implement an apex-shifted Radon transform that separates primaries
from specular and diffracted multiples in the Radon domain as a function of depth, residual
moveout curvature, and apex shift. I then apply the method to a real 2D line from the Gulf of
Mexico plagued with strong subsalt specular and diffracted multiples. I show that most of the

multiples can be attenuated without significantly affecting the amplitudes of the primaries.

Chapter 3: Simultaneous matching and adaptive subtraction of primaries and multiples

In this chapter I address the issue of subtracting an estimated multiple model from data con-
taining primaries and multiples. This is a key step in multiple attenuation methods such as
SRME in which the multiple model is expected to have wavelet differences with respect to the
data. Instead of just matching and adaptively subtracting the multiple model, I simultaneously
match the estimates of both the primaries and the multiples to the data. This has the key ad-
vantage of reducing the crosstalk from the multiples in the final estimate of the primaries. I
illustrate the method with both synthetic and real 2D data in CMP and angle gathers. Further-
more, | show that the method can be used beyond the attenuation of multiples by applying it
to the matching and adaptive subtraction of ground-roll. The adaptive subtraction presented in

this chapter is used to compute the results of Chapter 6.
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Chapter 4: Mapping of 3D multiples to image space: Theory and a synthetic data exam-
ple

The main problem in the attenuation of multiples is with narrow-azimuth towed-streamer 3D
data. In this chapter I extend the basic equations for the residual moveout of specular multiples
in ADCIGs for 3D data. I show that the mapping of the multiples is similar to the 2D case,
except that the crossline dip generates an azimuth dependency that is different for primaries
and multiples. I use a simple 3D synthetic prestack dataset with two primary reflections and
two specular multiples to illustrate the mapping of the multiples to 3D ADCIGs. Since the 3D
ADCIGs are function of both aperture angle and reflection azimuth, their interpretation is not
trivial. I describe in some detail the information contained in the 3D ADCIGs and show how
the multiples and the primaries have very different residual moveout. This chapter lays the

foundation for the application of the method to the real 3D dataset of Chapters 5 and 6.

Chapter 5: Imaging and mapping 3D multiples to image gathers: Example with a Gulf
of Mexico dataset.

In this chapter I illustrate the mapping of 3D multiples to image space with a real 3D dataset
from the Gulf of Mexico. The data has all the usual shortcomings associated with marine
streamer acquisition: sparse sampling in the crossline direction, small crossline aperture,
strong feathering, irregularity in the sail lines and uneven midpoint fold. I use shot-profile
migration to compute SODCIGs and from them compute 3D ADCIGs. I show that in this
case we can discriminate between primaries and multiples in both inline and the crossline
subsurface offsets in SODCIGs and aperture and reflection azimuth in ADCIGs, despite the

relatively narrow range of aperture angles that illuminate the subsalt reflectors.

Chapter 6: Attenuation of 3D subsalt multiples with Gulf of Mexico dataset

In this chapter I tie up the different components presented in the previous chapters. I attenuate
subsalt multiples from the real dataset migrated in the previous chapter. I show that some

multiple attenuation can be achieved by muting the multiple energy away from zero subsurface
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offsets in SODCIGs and stacking the results. I obtain much better attenuation of the multiples

by applying Radon filtering on azimuth-stacked ADCIGs.

Chapter 7: Conclusions

This last chapter summarizes the conclusions of the thesis.



Chapter 2

| mage space mapping and attenuation of 2D

specular and diffracted multiples

SUMMARY

In complex areas, attenuation of specular and diffracted multiples in image space is an at-
tractive alternative to surface-related multiple elimination (SRME) and to data space Radon
filtering. In this chapter I present the equations that map, via wave-equation migration, 2D
diffracted and specular water-bottom multiples from data space to image space. 1 show the
equations for both subsurface-offset-domain common-image-gathers (SODCIGs) and angle-
domain common-image-gathers (ADCIGs). I demonstrate that when migrated with sediment
velocities, the over-migrated multiples map to predictable regions in both SODCIGs and AD-
CIGs. Specular multiples migrate as primaries whereas diffracted multiples do not. In partic-
ular, the apex of the residual moveout curve of diffracted multiples in ADCIGs is not located

at zero aperture angle.

I use the equation I derive for the residual moveout of the multiples in ADCIGs to design an
apex-shifted Radon transform that maps the 2D ADCIGs into a 3D model space cube whose
dimensions are depth, residual moveout curvature and apex-shift distance. Well-corrected

primaries map to or near the zero curvature plane and specularly-reflected multiples map to

13
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or near the zero apex-shift plane. Diffracted multiples map elsewhere in the cube according
to their curvature and apex-shift distance. Thus, specularly reflected as well as diffracted
multiples can be attenuated simultaneously. I show the application of the apex-shifted Radon
transform to a 2D seismic line from the Gulf of Mexico. Diffracted multiples originate at
the edges of the salt body and I show that I can successfully attenuate them, along with the

specular multiples, in the image Radon domain.

INTRODUCTION

In the previous chapter, I described the shortcomings of the standard multiple attenuation
methods when the subsurface is complex or the acquisition geometry is sparse, irregular or
affected by feathering. With 2D data, SRME is very effective except for diffracted multiples

whose surface bounce may be well outside the recording cable.

In this chapter I introduce an alternative method to SRME and data space Radon demul-
tiple. The method attenuates the multiples in the image space rather than in the data space.
Prestack wave-equation depth migration accurately handles the complex wave propagation of
primaries (Biondi, 2006), to the extent that the presence of the multiples allows an accurate
estimation of the migration velocities. The residual moveout of primaries in angle-domain
common-image gathers (ADCIGs), therefore, is likely to be flat. It is not immediately ob-
vious, however, what the residual moveout of the over-migrated multiples is in ADCIGs. In
order to maximize the separation of primaries and multiples in the Radon domain, the ker-
nel of the Radon transform should approximate the functional dependency of the residual
moveout of the multiples as a function of the aperture angle as much as possible. Sava and
Guitton (2003) and Alvarez et. al. (2004) used the tangent-squared approximation of Biondi
and Symes (2004) assuming that the residual moveout of the multiples is the same as that
of primaries migrated with faster velocity. The tangent-squared approximation, however, is a
straight ray approximation that is appropriate for events, such as primaries, whose migration
velocity is likely to be close to the actual propagation velocity. Multiples, on the other hand,
given their large difference in velocity with respect to that of the primaries, are likely to be

severely over-migrated and the straight ray approximation is not appropriate for them.
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Primaries are migrated to zero subsurface offsets in SODCIGs and with flat moveout in
ADCIGs (Biondi, 2006). I show that 2D specular water-bottom multiples, even from dip-
ping water-bottom, are focused by wave-equation migration similar to primaries. Hence, if
migrated with constant water velocity, they too are mapped to zero subsurface-offset in SOD-
CIGs and with flat moveout in ADCIGs. When migrated with the velocity of the primaries,
specular water-bottom multiples are over-migrated and thus do not map to zero subsurface
offsets. For off-end geometry, they are mapped to subsurface offsets with the opposite sign to
that of their surface offsets. I derive the moveout curve of these multiples in SODCIGs and
ADCIGs. I then take the special case of the residual moveout of a specular multiple from flat
water-bottom in ADCIGs and use it to design a Radon transform that accounts for ray-bending
of the multiple raypath at the multiple-generating interface. This Radon transform improves
the separation of primaries and multiples in the Radon domain compared with a Radon trans-

form based on the tangent-squared approximation.

Water-bottom diffracted multiples do not migrate as primary reflections. That is, they do
not focus to zero subsurface offset even if migrated with constant water velocity (Alvarez,
2005). These multiples migrate to both positive and negative subsurface offsets in SODCIGs
depending on the relative position of the diffractor with respect to the receiver (for receiver-
side diffracted multiples). In ADCIGs, these multiples have their apex at non-zero aperture
angle, similar to their behavior in data space (CMP gathers) (Alvarez, 2005). I propose to
attenuate these multiples with an apex-shifted Radon transform similar to that used by Alvarez
et. al. (2004) but replacing the tangent-squared Radon kernel with the new equation that
I derive in this chapter for the residual moveout of the multiples in ADCIGS. Apex-shifted
Radon Apex-shifted transforms were introduced for data interpolation by Trad (2003) and for
attenuation of diffracted multiples in data space by Hargreaves (2003).

In this chapter I limit the application of the method to 2D data. In Chapter 4 I show the
extension of the method to 3D data using the methodology developed by Biondi and Tisser-
ant (2004) to compute 3D ADCIGs. Unlike the 2D ADCIGs used here, the 3D ADCIGs are
a function not only of the aperture angle but also the reflection azimuth angle. More im-
portant, 3D specular multiples have their apex shifted shifted away from zero aperture angle

if the water-bottom or the multiple-generating interface have crossline dip. These multiple,



16 CHAPTER 2. IMAGE SPACE ATTENUATION OF 2D MULTIPLES

therefore, behave as diffracted multiples and can be attenuated with a modified version of the

apex-shifted Radon transform presented in this chapter.

KINEMATICS OF 2D MULTIPLES IN IMAGE SPACE

In this section I give the equations that map first-order water-bottom multiple reflections from
data space (CMP gathers) to image space (SODCIGs and ADCIGs) and study in detail the
special case of a specular multiple from a flat water-bottom. The equation that I derive for
the residual moveout of the multiples in ADCIGs for this special case will be the basis for the
attenuation of the multiples in the Radon domain. Alvarez (2005) gives parametric equations
for other simple cases: specular multiple from a dipping water-bottom and diffracted multiples

from flat and dipping water-bottom.

General formulation

The propagation path of a first-order water-bottom multiple generated by a planar dipping
reflector, as shown in Figure 2.1, consists of four segments, such that the total travel-time for

the multiple is given by
tm:tsl+t52 +tr2 +tr1, (21)

where the subscript S refers to the source-side rays and the subscript  refers to the receiver-
side rays. The data space coordinates are (Mp,hp,tyn) where mp is the horizontal position
of the common-midpoint (CMP) gather and hp is the half-offset between the source and the

receiver.

Wave-equation migration maps the CMP gathers to SODCIGs with coordinates (Mg, hg, Z¢)
where M is the horizontal position of the image gather, and hg and 2z are the half subsurface-
offset and the depth of the image, respectively. As illustrated in the sketch of Figure 2.2, at

any given depth the spatial coordinates of the downward-continued source and receiver rays
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Figure 2.1: Water-bottom multiple.
The subscript s refers to the source
and the subscript I to the receiver.
2d-mul_sktch1 | [NR]

are given by:

XSE = Mp— hD + Vl (tsl Sinols + pfsz sin ﬂs), (2.2)

X, = Mp+hp—V(t, sinar + plr, sin ), (2.3)

where V] is the water velocity, p = V,/V; with V, the sediment velocity, as, «, are the takeoff
angles of the source and receiver rays with respect to the vertical and s and B, are the angles of
the refracted source and receiver rays, respectively. The coordinates of the migrated multiple

in the image space are given by:

X, — X V ) . .
hy = = 5 X —hp— 71 [ts, sinas +t, sinay + p(f, sin s + &, sin )], (2.4)
zz = Vi(ts cosas+ pfs, cos Bs) = Vi(ty, cosar + pfr, cos Br), (2.5)
Xre + X V . .
me = i > . mp + 71 (tsl sinas —tr, sinay + p(fs, sin s — 1, s1n,8r)) , (2.6)

The traveltime of the refracted ray segments fs, and f;, can be computed from the two imag-
ing conditions: (1) at the image point the depth of both rays has to be the same (since we
are computing horizontal subsurface offset gathers) and (2) ts, +tr, = s, +f, which follows
immediately from equation 2.1 since at the image point the total extrapolated time equals the

traveltime of the multiple. As shown in Appendix A, the traveltimes of the refracted rays are
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given by
fsz _ ty, cosar —ts, cosas+ p(ts, +1r,) cos Br ’ 27
p(cos Bs+cos Br)
ts, cosas —ty, cosar + p(ts, +1r,) cos Bs
&, = . (2.8)
p(cos Bs+cos fr)

The refracted angles are related to the takeoff angles by Snell’s law: sin(8s+ ¢) = p sin(as+¢)
and sin(8; — ¢) = psin(oy — @), from which we get

sinfs = psin(as+@)cosyp — \/1 — p2sin®(as + @) sing, (2.9)
sinfy = psin(ay —@)cosp + \/1 — p2sin’(oy — @) sing, (2.10)
cosfBs = \/1 — p2sin’(as + @) cos @ + p sin(as + @) sing, (2.11)
cosfB = \/1 — p? sin®(ay — p)cose — psin(ay —@)sing. (2.12)

In ADCIGs, the mapping of the multiples can be directly related to the previous equations
by the geometry shown in Figure 2.2. The half-aperture angle is given by

Br + Bs
7

= (2.13)
which is the same equation derived for converted waves by Rosales and Biondi (2005). The

depth of the image point in ADCIGs (z¢, ) is given by (Appendix B)
Z:, = Z: —hgtany. (2.14)

Equations 2.4-2.6 describe the transformation performed by wave-equation migration between
CMP gathers (Mp, hp,t) and SODCIGs (Mg, he, Z¢). Equations 2.7-2.12 relate the traveltimes
and angles of the refracted segments to parameters that can in principle be computed from
the data (traveltimes, takeoff angles, reflector dips and velocities). Equations 2.13 and 2.14
provide the transformation from SODCIGs to ADCIGs. These equations are valid for any
first-order water-bottom multiple, whether from a flat or dipping water-bottom. They even

describe the migration of source- or receiver-side diffracted multiples with the diffractor at
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Figure 2.2: Imaging of water-bottom multiple in SODCIG and ADCIG. The subscript D refers
to the data space while the subscript & refers to the image space. The points (Xr¢,Z¢) and
(Xst, Zs¢ ) represent the end points of the source and receiver ray after migration and must be
at the same depth at the image point (for horizontal ADCIGs). The coordinates (Mg, y¢,Z,¢)
correspond to the image point in the angle domain. The coordinates (Mg, hg, Z¢) correspond to
the image point in the subsurface offset gather. The line AB represents the apparent reflector
at the image point. | 2d-mul_sktch3 ‘ [NR]
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the water bottom, since no assumption has been made relating oy and as or the individual
traveltime segments. These equations, however, are of little practical use unless we can relate
the individual traveltime segments (ig, ts,, tr,, t,), and the angles as and o to the known data
space coordinates (Mp, hp, ty) and the model parameters (V, ¢ and p). This may not be easy
or even possible analytically for all situations, but it is for the simple but important case of a

specular multiple from a flat water-bottom.

Specular multiple from flat water-bottom

The traveltime of the first-order water-bottom multiple is given by

4 hp 2 2hp 2
tm=—,/| =— Z2 = [t2O0) +(—) . 2.15
e (2) vz o (52) @19
which is simply the traveltime of a primary at twice the depth of the water-bottom Z,, =
Vit(®)

From the symmetry of the problem, ts, =ts, =t;, =t;, =tm/4 and as = ar, which in turn
means Bs = f;. Furthermore, from Equations 2.7 and 2.8 it immediately follows that st =1s
and f;, = t;, which says that the traveltimes of the refracted rays are equal to the traveltimes

of the corresponding segments of the multiple. Equation 2.4 thus simplifies to

he = hTD(l—,oz), (2.16)
which indicates that the subsurface offset at the image point of a trace with half surface offset
hp depends only on the velocity contrast between the water and the sediments. In particular,
if the trace is migrated with the water velocity, i.e. p = 1, then hg = 0 which proves the
property that the multiple is imaged exactly as a primary. It should also be noted that, since
usually sediment velocity is faster than water velocity, then p> > 1 and therefore the multiples
are mapped to subsurface offsets with the opposite sign to that of the surface offset hp when

migrated with sediment velocity.
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From Equation 2.5, the depth of the image point can be easily computed as

26 = Zun+ 2\ (1 = p?) +422, 2.17)

which for migration with the water velocity reduces to z; = 2Z,,p, showing that the multiple
is migrated as a primary at twice the water depth as is intuitively obvious. Finally, from

Equation 2.6, the horizontal position of the image point reduces to
Mz = Mp. (2.18)

This result shows that the multiple is mapped in the image space to the same horizontal po-
sition as the corresponding CMP even if migrated with sediment velocity. This result is a
direct consequence of the symmetry of the raypaths of the multiple reflection in this case. For

dipping water bottom or for diffracted multiples this is not the case (Alvarez, 2005).

Equations 2.16-2.18 give the image space coordinates in terms of the data space coordi-
nates. An important issue is the functional relationship between the subsurface offset and the
image depth, since it determines the moveout of the multiples in the subsurface-offset-domain
common-image-gathers (SODCIGs). Replacing hp = 2hg /(1 — p?)and Z,p = Z:(0)/(1+p)
in Equation 2.17 we get

_ z(0) z©0)\> h;
Zs——1+p+p\/(l+p> +1_p2 (p#1) (2.19)

which shows that the moveout is a hyperbola (actually, for off-end geometry, half of a hyper-
bola, since we already established that hy < 0 if hp > 0).

Figure 2.3 shows an SODCIG for a specular water-bottom multiple from a flat water-
bottom 500 m deep. The data was migrated with a two-layer velocity model: the water layer
of 1500 m/s and a sediment layer of velocity 2500 m/s. Larger subsurface offsets (which
according to Equation 2.16 correspond to larger surface offsets) map to shallower depths for
the usual situation of p > 1, as we should expect since the rays are refracted to increasingly
larger angles until the critical reflection angle is reached. Also notice that the hyperbola is

shifted down by a factor (1 + p) with respect to its image point when migrated with water
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1000

Figure 2.3: Subsurface offset domain
common image gather of a water-
bottom multiple from a flat water-
bottom. Water velocity is 1500 m/s,
water depth 500 m, sediment veloc-
ity 2500 m/s and surface offsets from
0 to 2000 m. Overlaid is the residual
moveout curve computed with Equa-

tion 2.19. | 2d-odcigl | [CR]
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velocity.

In angle-domain common-image-gathers (ADCIGs), the half-aperture angle reduces to

y = Bs = Br, which in terms of the data space coordinates is given by

20h
y = sin~! [ p D] . (2.20)

\htﬂ

The depth of the image can be easily computed from Equation 2.14. In particular, if the data
are migrated with the velocity of the water, then p = 1, and therefore z¢, =2Z,,p, which means
a horizontal line in the (z,,y) plane at twice the depth of the water-bottom. Equivalently, we
can say that the residual moveout in the (ze,,7) plane is zero, once again corroborating that
the water-bottom multiple is migrated as a primary if p = 1. Equation 2.14 can be expressed

in terms of the data space coordinates using Equations 2.16 and 2.17 and noting that

p sinog ohp

tany =tanfs = ‘ =
V1 - p2sin®as \/425)b +h2 (11— p2)

2.21)

If p =1 this expression simplifies to tany = %‘ib, which is the aperture angle of a primary at

twice the water-bottom depth.

As 1 did with the SODCIG, it is important to find the functional relationship between z,
and y since it dictates the residual moveout of the multiple in the ADCIG. Plugging Equa-
tions 2.16 and 2.17 into equation 2.14, using Equations 2.15, and 2.20 to eliminate hp and
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simplifying we get

cosy (p? —tan® y (1 — p?))

Zy, = Zub|l+ (2.22)
\/ p?—sin’y
0 2 o212
_ Z,(0) 1_l_cosy(,o tan® y (1 — p?)) (2.23)

1+/0 /,OZ—Sinzj/

Once again, when the multiple is migrated with the water velocity (o = 1) we get the expected
result Z;, = Z, (0), that is, flat moveout (no angular dependence). The residual moveout in
ADCIGs is therefore given by

_cosy(p=(1=pHtan’y) | 2
I+p

AnpMO =%Z,(0) -2z, = (2.24)

p2—sin’y
This equation reduces to that of Biondi and Symes (2004) when y is small (Appendix C),
which is when we can neglect ray bending at the multiple-generating interface. Panel (a) of
Figure 2.4 shows the ADCIG corresponding to the SODCIG shown in Figure 2.3. Notice that
the migrated depth at zero aperture angle is the same as that for the zero sub-surface offset
in Figure 2.3. For larger aperture angles, however, the migrated depth increases as indicated
in equation 2.23. The continuous line corresponds to Equation 2.24 whereas the dotted line
corresponds to the tangent-squared of Biondi and Symes (2004). For this model, the departure
of the straight ray approximation can be more than 5% for large aperture angles as illustrated in
panel (b). The relative error represents the different between the two approximations divided

by that the more accurate of equation 2.24.

Specular multiple from dipping water-bottom

I presented the particular case of flat water bottom case in some detail because it lends it-
self to the nice closed-form equation for the residual moveout of the multiples in ADCIGs.
This equations is the basis for the design of the Radon transform to attenuated the multiples.

The specular multiple from a dipping water-bottom has similar characteristics although the
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Figure 2.4: Panel (a) is an ADCIG for a water-bottom multiple from a two flat-layer model.
The dotted curve corresponds to the straight ray approximation whereas the solid curve cor-
responds to the ray-bending approximation. Panel (b) is the relative error between the two

approximations. | 2d-adcigl | [CR]

moveout equations are more involved (Alvarez, 2005) and will not be given here. Instead, I
show in Figure 2.5 the zero subsurface offset section, an SODCIG and its corresponding AD-
CIG. The lines superimposed are the moveout curves computed with the equations in Alvarez
(2005). The zero subsurface-offset section corresponds to a reflector with twice the dip of the

water-bottom. The ADCIG has its apex at zero aperture angle.

Diffracted multiple

The diffracted multiple has very different characteristics compared to the specular multiple.
The residual moveout equations are very involved and were presented in Alvarez (2005). Fig-
ure 2.6 is a summary of the mapping of this multiple to image space for a diffracted multiple
sitting on a dipping water-bottom. The top three panels correspond to subsurface offset sec-
tions taken at 0, -200 and 200 m (panels (a) to (c) respectively). Notice that the moveout of the
multiples looks like migration “smiles” which is one of the tell-tale indications of diffracted
multiples on a migrated angle stack. The middle panels in Figure 2.6 correspond to SODCIGs
taken at lateral positions 1800, 2000 and 2200 m. The diffractor is located at 2000 m and the
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Figure 2.5: Specular multiple from dipping water-bottom. Panel (a) is the zero subsurface-
offset section. Panel (b) is an ODCIG and panel (c) is its corresponding ADCIG. The
solid lines are the moveout curves computed with the equations given by Alvarez (2005).
2d-wb_dip_moveout| [CR]

offsets are positive towards increasing lateral positions. This causes the bottom of the move-
out curve to shift away from zero as the SODCIG is taken away from then location of the
diffractor (compare panels (b) and (c), for example). Panel (b) corresponds to the location of
the diffractor and therefore its bottom is at zero subsurface offset. Finally, the bottom panels
are the ADCIGs of the corresponding SODCIGs in the middle panels. Notice that again, the
apex of the moveout curve moves away from zero aperture angle as the ADCIG is taken at
locations not directly above the diffractor. In all the figures the solid lines are the moveout

curves computed with the equations in Alvarez (2005).

RADON TRANSFORM

In this section I show how to exploit the difference in residual moveout between primaries and
multiples in ADCIG’s given by Equation 2.24 to design a Radon transform that focuses the

primaries and multiples to separate regions of the Radon domain. The general expression for
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Figure 2.6: Diffracted multiple from dipping water-bottom. Top panels are subsurface offset
sections taken at 0, -200 and 200 m (from (a) to (c)). The middle panels are SODCIGs taken
at 1800, 2000 and 2200 m horizontal location (panels (d) to (f)). The diffractor is at 2000
m. Bottom panels are the ADCIGs corresponding to the SODCIGs of the middle panels.
The solid lines are the moveout curves computed with the equations given by Alvarez (2005).
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the Radon transform in the angle domain is (Sava and Guitton, 2003)

2q.y) =2+99(). (2.25)

where q is a measure of curvature and g(y) is the function that approximates the residual
moveout of the multiples as a function of the aperture angle y. Sava and Guitton (2005) and

Alvarez et. al. (2004) used the tangent-squared approximation of Biondi and Symes (2004)

g(y) =tan’y, (2.26)

but for the focusing of the multiples a more accurate approximation is given by Equation 2.24:

1 cosy(p>—(1—p?)tan’y)
—p

227
igs (2.27)

9) =7
p?—sin’y

This approximation is more accurate because it takes into account ray bending at the multiple-
generating interface. This is illustrated in Figure 2.7 which shows a comparison of the Radon
transforms defined be equations 2.27 and 2.26 applied to a synthetic ADCIG. Notice that the
focusing of the primaries does not change since their moveout is zero. The multiples, on the
other hand, are better focused with the new transform (panel (c)) which more closely follows
their residual moveout in the ADCIGs. The better focusing of the multiples translates to a
better estimation of the multiple model (compare panels (d) and (e) computed from panels (b)
and (c), respectively). Notice, however, that this synthetic ADCIG has high aperture angles
for which the difference between the two approximations is greater. As the angle coverage
decreases, so does this difference. In any event, the better focusing of the multiples helps in

separating them from the primaries.
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Figure 2.7: Comparison of Radon transforms for a synthetic ADCIG. Panel (a) shows the AD-
CIG. Panels (b) and (c) correspond to the envelopes of the Radon transform of panel (a) com-
puted with the straight-ray approximation and the ray-bending approximation respectively.
Panels (d) and (e) are the multiple models computed from panels (b) and (c). The ovals high-
light the improved accuracy afforded by the new transform for the multiple model at the large

aperture angles. | 2d-synth1 | [CR]

Apex-shifted Radon Transform

The apex of the residual moveout curve of the diffracted multiples in ADCIGs is shifted away
from zero aperture angle. Therefore, to attenuate the diffracted multiples, I define the trans-

formation from ADCIGs to model space (Radon-transformed domain) as:
mI,q,2) =Y d(y,z=Z+qg(y —I), (2.28)
Y
and from model space to data space as
d(y.2=> Y m.q.Z =z—qg(y —I), (2.29)
q T
where g(y) is given by Equation 2.27 and I' is the lateral apex shift (in units of aperture

angle). In this way, I transform the two-dimensional data space of ADCIGs, d(y,2), into a

three-dimensional model space, m(I",q, Z).
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In the ideal case of migration with the correct velocity, primaries would be perfectly hor-
izontal in the ADCIGs and would thus map in the model space to the zero-curvature (q = 0)
plane, i.e., a plane of dimensions depth and apex-shift distance (I',Z'). Specular multiples
would map to the zero apex-shift distance (I' = 0) plane, i .e., a plane of dimensions depth and
curvature (q,2'). Diffracted multiples would map elsewhere in the cube depending on their

curvature and apex-shift distance.

Sparsity Constraint

In order to minimize the number of model space parameters necessary to represent the data in
the Radon domain, I implemented the transform given by equations 2.28 and 2.29, with the
Radon kernel given by equation 2.27 as a least squares problem with a sparsity constraint. As

a linear transformation, the apex-shifted Radon transform can be represented simply as
d=Lm, (2.30)

where d is the (migrated) data in the angle domain, m is the model in the Radon domain and
L is the forward apex-shifted Radon transform operator. To find the model m that best fits the

data in a least-squares sense, I minimize the objective function:

n m2
f(m) = ||Lm—d||2+€2b221n<1+—|>, 2.31)

2

i=1 b
where the second term is a Cauchy regularization (Guitton and Symes, 2003) that enforces
sparseness in the model space. Here n is the size of the model space, and € and b are two
constants chosen a-priori: € which controls the amount of sparseness in the model space and
b which controls the minimum value below which everything in the Radon domain should be

zeroed. The least-squares inverse of m is given by

m=[L'L+€Q] ' Ld, (2.32)
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where Q is a diagonal matrix whose elements are given by (Sacchi and Ulrych, 1995):

m? -
<1+F> . (2.33)

Because the model space can be large, 1 estimate m iteratively. Notice that the objective
function in equation (2.31) is non-linear because the model appears in the definition of the
regularization term. Therefore, I use a limited-memory quasi-Newton method (Guitton and

Symes, 2003) to find the minimum of f(m).

SYNTHETIC DATA EXAMPLE

In this section I introduce a simple 2D synthetic example to illustrate the mapping of a water-
bottom and a diffracted multiple from data space to image space. Figure 2.8 shows the velocity
model as well as the raypath of the primaries and multiples that were modeled. Figure 2.9
shows the zero offset section and the CMP gather at CMP position 2400 m. The depth of
the deep reflector was chosen so that the multiples and the deep primary came at about the
same zero-offset time and were imaged at about the same depth. Notice that the apex of the
moveout curve of the diffracted multiple is not at zero offset. Moreover, the moveout curve
is not well represented by a hyperbola. Therefore, we cannot attenuate the diffracted multiple

via a standard data-space Radon transform.

After prestack wave-equation migration, the primaries are well focused at zero subsurface
offset as shown in Figure 2.10. Panel (a) is the zero-subsurface offset section whereas panel (b)
is the SODCIG taken at CMP location 3800 m. The water-bottom multiple is mapped to the
negative subsurface offsets while the diffracted multiple is mapped to both positive and nega-
tive subsurface offsets. Notice that in the zero subsurface offset (panel (a)) the water-bottom
multiple and the deep primary are imaged at about the same depth. After transformation to
ADCIGs, the primaries are now flat whereas the multiples shows the expected over-migrated
residual moveout (panel (a) of Figure 2.11). The apex of the diffracted multiple, however,
is not at zero aperture angle. Panel (b) of Figure 2.11 shows the Radon plane taken at zero

apex shift while panel (c) shows the Radon plane taken at the apex-shift of the multiple (14
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Figure 2.8: Synthetic model. Panel (a): velocity model. Panel (b): raypaths of modeled

primaries and multiples. | 2d-synth_vels | [ER]
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Figure 2.9: Synthetic data: Panel (a): zero-offset section. Panel (b): CMP gather at CMP
location 2400 m. | 2d-synth_cmps ‘ [CR]
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degrees). Notice that both the primaries and the water-bottom multiple are well focused in the

zero apex-shift plane whereas the diffracted multiple is well focused at its apex-shift plane.

For the sake of comparison, I also applied the non apex-shifted transform to the data and
eliminated the primaries with the same mute pattern. After inverse Radon transforming the
multiples and subtracting them from the original ADCIG I got the results shown in Figure 2.12.
Panel (a) is the original ADCIG. Panel (b) shows the estimated multiples with the apex-shifted
transform and panel (c) shows the multiples estimated with the standard transform. The apex-
shifted transform was able to recover the diffracted multiple while the standard transform
mistook it for a specular multiple and thus produced the wrong multiple moveout. Notice that
some primary energy leaked into the estimate of the multiples in panel (b). Figure 2.13 shows
the estimated primaries. Panel (a) is the original ADCIG, panel (b) is the difference between
panels (a) and (b) in Figure 2.10 and therefore is an estimate of the primaries obtained with the
apex-shifted transform. Panel (c) is the corresponding estimate with the standard transform.
Some residual multiple energy remains above the deep primary in panel (b) but the primary
was recovered. The estimation of the primaries could be improved by adaptively matching the
estimated multiples to the multiples in the data (as in SRME), before the subtraction. Finally,
panel (c) shows that the poor estimate of the diffracted multiple with the standard transform

causes it to leak almost unattenuated into the estimate of the primaries.

(a) (b)

Depth (m)
1000 500

1500

3000 3600 3800 4000 4400

—-1500 0 1500
Horizontal position (m) Half offset (m)

Figure 2.10: Zero-subsurface offset image (a) and SODCIG at surface location 3800 m (b).
Notice the residual moveout of the diffracted multiple being mapped to both positive and

negative offsets. | 2d-mig_cmps | [CR]
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Figure 2.11: (a): ADCIG of the same SODCIG in panel (b) of Figure 2.10; (b): plane taken
from the apex-shifted Radon cube at I' = 0; (c): plane taken from the apex-shifted Radon cube

at ' = 10 degrees. | 2d-mig_adcig|[CR]
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Figure 2.12: (a): original ADCIG; (b): estimated multiples with the apex-shifted transform;
(c): estimated multiples with the standard transform. | 2d-mig_muls | [CR]
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Figure 2.13: (a): original ADCIG; (b): estimated primaries with the apex-shifted transform;

(c): estimated primaries with the standard transform. |2d-mig_prims | [CR]

GULF OF MEXICO 2D SEISMIC LINE

In this section I introduce the seismic line I use to test the apex-shifted Radon transform. The
line is from the Gulf of Mexico and was shot over a large salt body. The presence of the salt
creates a host of multiples that obscure any genuine subsalt reflections, as shown in the angle
stack of Figure 2.14. Most multiples are surface-related peg-legs with a leg related to the water
bottom, shallow reflectors or the top of salt. Below the edges of the salt we also encounter

diffracted multiples (€.9., CMP position 6000 m below 4000 m depth in Figure 2.14).

Figure 2.15 shows four ADCIGs obtained with wave-equation migration as described by
Sava and Fomel (2003). Notice that although the data is marine, the ADCIGs show positive
and negative aperture angles. I used reciprocity to simulate negative offsets and interpolation
to compute the two shortest-offset traces not present in the original data. The CMP gathers
were then migrated and converted to angle gathers. The purpose of having both positive and
negative aperture angles is to see more clearly the position of the apexes of the diffracted
multiples. The top two ADCIGs correspond to lateral positions directly below the edges of the
salt body (CMP positions 6744 m and 22056 m in Figure 2.14). Notice how the apexes of the

diffracted multiples are shifted away from zero aperture angle (e.g., the seagull-looking event
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Figure 2.14: Angle stack of migrated ADCIGs of 2D seismic line in the Gulf of Mexico.
Notice that multiples below the salt obscure any primary reflections. The ovals highlight
diffracted multiples. ‘ 2d-angle_stack ‘ [CR]

at about 4600 m in panel (a)). For comparison, the bottom panels in Figure 2.15 show two
ADCIGs that do not have diffracted multiples. Figure 2.15(c) corresponds to an ADCIG below
the sedimentary section (CMP 3040 m in Figure 2.14) and Figure 2.15(d) to an ADCIG below
the salt body (CMP position 12000 m in Figure 2.14). In these ADCIGs all the multiples are

specularly-reflected and thus have their apexes at zero aperture angle.

MAPPING TO THE RADON DOMAIN

With ideal data, attenuating both specular and diffracted multiples could, in principle, be ac-
complished simply by zeroing out (with a suitable taper) all the g-planes except = 0O in the
model cube m(Z,q,T") and taking the inverse apex-shifted Radon transform. In practice, how-
ever, the primaries may not be well-corrected and primary energy may map to a other nearby
g-planes. Energy from the multiples may also map to those planes and so we have the usual
trade-off of primary preservation versus multiple attenuation. The advantage of the apex-shift
transform is that the diffracted multiples are well focused to their corresponding I'-planes

instead of being mapped as unfocused noise that interferes with the primaries.
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Figure 2.15: Angle domain common image gathers. (a) under the left edge of the salt, CMP
at 6744 m; (b) under the right edge of the salt, CMP at 22056 m; (c) below the sedimentary
section, CMP at 3040; (d) below the salt body, CMP at 12000 m. [CR]
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To illustrate the mapping of the primaries, the specular multiples and the diffracted mul-
tiples, between the image space (z,y) and the apex-shifted Radon space (Z,q,T"), I chose
the ADCIG in Figure 2.15(a). Although this ADCIG shows no discernible primaries below
the salt, it nicely shows the apex-shifted moveout of the diffracted multiples. This ADCIG
was transformed to the Radon domain with the apex-shifted transform described by equations
2.28 and 2.29. The kernel of the Radon transform is given by equation 2.27 and I applied
the Cauchy regularization given in equation 2.31. Figure 2.16 shows envelopes of the data
in the Radon domain. Panel (a) shows the I" = 0 plane from the (z’,q,I") volume. This plane
corresponds to zero apex-shift and therefore this is where the majority of the specular multi-
ples should map. Figure 2.16(b) shows the zero-curvature = 0 plane, that is, the plane where
the primaries should map. Notice that since the primaries are flat, they are independent of
the apex-shift [' and therefore map as flat lines on this plane. Notice also that there are no
significant primaries on the ADCIG below 2000 m. For comparison, Figure 2.16(c) shows the
I' = 8 deg plane. This corresponds to the apex-shift of the most obvious diffracted multiple
and we see its energy mapped on this plane at about 4000 m. Finally, Figure 2.16(d) shows a
plane at a large curvature, = 7200 m/deg. Notice the energy from the diffracted multiple at
approximately I' = 8 deg.

It is important to emphasize the difference between the standard transform and the apex-
shifted transform. While the I' = 0 plane of the apex-shifted transform is similar to the stan-
dard transform, they are not the same, as shown in Figure 2.17. Both panels in this figure are
plotted with the exact same plotting parameters. Primaries are mapped near the ¢ = 0 line in
both planes while specular multiples are mapped to other g values. Notice how in the stan-
dard transform Figure 2.17(a), the diffracted-multiple energy is mapped as background noise,
especially at the largest positive and negative g values. In the I' = 0 plane of the apex-shifted
transform (panel (b)), however, the diffracted multiples are not present since their moveout
apex is not zero. These multiples, therefore, do not obscure the mapping of the specular mul-
tiples. Notice also that the primary energy is much lower than in Figure 2.17(a) since in the
apex-shifted transform the primary energy is mapped not only to the I' = 0 plane but to other

I" planes as well as illustrated previously in Figure 2.16(b).
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Figure 2.16: Different views from the cube of the apex-shifted transform for the ADCIG at
6744 m. (a): zero apex-shift plane. (b) zero curvature plane. (c): plane at apex shift ' = 8 deg

and (d): plane at curvature g = 7200 m/deg. | 2d-envelopes | [CR]
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Figure 2.17: Radon transforms of the ADCIG in Figure 2.15b. (a): standard 2D transform.
(b): h =0 plane of the apex-shifted 3D transform. Both panels plotted at the exact same clip
value. ‘ 2d-radon_comp ‘ [CR]

MULTIPLE ATTENUATION RESULTS

Rather than suppressing the multiples in the model domain, I chose to suppress the primaries
and inverse transform the multiples to ADCIGs. This is more convenient because the primaries
are not “filtered” through the imperfect forward-inverse Radon transform pair. The primaries
were then recovered by directly subtracting the multiples from the data. I did not apply adap-
tive subtraction to obtain the results presented in this chapter. This is such an important issue
that I designed a new algorithm for it and will present it in the next chapter. Figure 2.18 shows
a close-up comparison of the primaries extracted with the standard 2D Radon transform (Sava
and Guitton, 2003) and with the apex-shifted Radon transform for the two ADCIGs at the top
in Figure 2.15. The standard transform (Figures 2.18a and 2.18c) was effective in attenuat-
ing the specular multiples, but failed at attenuating the diffracted multiples (below 4000 m),
which are left as residual multiple energy in the primary data. Again, this is a consequence
of the apex shift of these multiples. There appears not to be any subsalt primary reflections

in Figures 2.18a and 2.18(b). The flattish reflector at about 4600 m in panel (b) is actually
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residual multiple energy (compare with panel (a)). Similarly for Figures 2.18(c) and 2.18(d).
Figure 2.19 shows a similar comparison for the extracted multiples. Notice how the diffracted
multiples were correctly identified and extracted by the apex-shifted Radon transform, in Fig-
ures 2.19(b) and 2.19(d). In contrast, the standard 2D transform misrepresent the diffracted

multiples as though they are specular multiples as seen in Figures 2.19(a) and 2.19(c).

In order to assess the effect of the improved attenuation of the diffracted multiples on
the angle stack, I processed all ADCIGs. Figure 2.20 shows a close-up view of the stack
of the primaries extracted with the standard Radon transform (panel (a)), the stack of the
primaries extracted with the apex-shifted Radon transform (panel (b)), and their difference
(panel (c)). All panels are plotted with the same plotting parameters. Notice that the diffracted
multiple energy below the edge of the salt (5000 m to 7000 m) that appears as steeply-dipping
noise with the standard transform, has been somewhat better attenuated with the apex-shifted
transform. This is shown in detail in the difference panel in Figure 2.20(c). It is very difficult
to identify any primary reflections below the edge of the salt, so it is hard to assess if the
primaries have been equally preserved with both transforms. It is known, however, that for
this dataset, there are no multiples above a depth of about 3600 m, between CMP positions
3000 m to 5000 m. The fact that the difference panel appears nearly white in that zone shows
that the attenuation of the diffracted multiples did not affect the primaries. Of course, this is
only true for those primaries that were correctly imaged, so that their moveout in the ADCIGs
was nearly flat. Weak subsalt primaries may not have been well-imaged due to inaccuracies
in the migration velocity field and 3D effects. These primaries, therefore, may have been

attenuated with both the standard and the apex-shifted Radon transforms.

For the sake of completeness, Figure 2.21 shows the extracted multiples with the standard
and the apex-shifted Radon transforms. Again, the main difference is largely in the diffracted

multiples.

DISCUSSION

In this section I discuss some important practical aspects of my method. I start, however, with

a discussion on the relative merits of attenuating the multiples in image space as opposed to
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Figure 2.18: Comparison of primaries extracted with the 2D Radon transform (a) and (c) and
with the apex-shifted Radon transform (b) and (d). Notice that some of the diffracted multiples
remain in the result with the 2D transform. ‘Zd—comp_priml ‘ [CR]
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Figure 2.19: Comparison of multiples extracted with the 2D Radon transform (a) and (c) and
with the apex-shifted Radon transform (b) and (d). ‘Zd—comp_multl ‘ [CR]
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Figure 2.20: Comparison of angle stacks for primaries. Panel (a) corresponds to the primaries
obtained with the standard Radon transform. Panel (b) corresponds to the primaries obtained
with the apex-shifted Radon transform and panel (c) is the difference between panels (a) and
(b). The ovals correspond to the diffracted multiples. ‘ 2d-comp_prim1_stack ‘ [CR]
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Figure 2.21: Comparison of angle stacks for multiples. Panel (a) corresponds to the multi-
ple model computed with the standard Radon transform. Panel (b) corresponds to the mul-
tiple model computed with the apex-shifted Radon transform. Notice the difference in the
attenuation of the diffracted multiples. The ovals correspond to the diffracted multiples.
2d-comp_multl_stack ‘ [CR]
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the industry standard of attenuating them in data space.

Image space vs. Data space

In principle, attenuating the multiples in data space has the important advantage that the es-
timation of the migration velocity field is not affected by the presence of the multiples. This
is only true, however, provided that the level of attenuation is such that no significant resid-
ual multiple energy remains (that could be mistaken as primaries) and that the primaries are
unaffected by the attenuation of the multiples. As discussed before, this is unlikely to be the
case for data-space Radon filtering when the subsurface is complex. Furthermore, any residual

multiple energy will distort the imaging of the primaries resulting in a deficient final image.

SRME can effectively attenuate all multiples with a bounce at the water surface, but only if
all necessary data is collected. Virtually in all instances of real 3D data acquisition, the cross-
line sampling is too coarse, the cross-line aperture is too small, the short offsets are missing,
and acquisition obstacles and cable feathering produce irregular geometry. The data need to
be interpolated and extrapolated to satisfy the requirements of 3D SRME. This is not a trivial
endeavor and the performance of SRME greatly depends on it. Moreover, diffracted multiples
and specular multiples from an interface with steep cross-line dip, may have bounce points

well outside the cross-line aperture making them hard or impossible to predict.

Attenuating the multiples in image space solves the problem of the complex wave prop-
agation of primaries and multiples. Prestack wave-equation migration takes care of the com-
plexity of the wavefield propagation and makes the primaries very likely to be flat in ADCIGs
and therefore more easily separable from the multiples in the Radon domain. No data inter-
polation or extrapolation is necessary because no multiples are predicted. Since very accurate
migration velocities are always necessary to get a good depth image, however, postponing the
multiple attenuation step until after migration does not come without a price. Computation of

an accurate migration velocity field may be compromised by the presence of the multiples.
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Sensitivity to errors in migration velocities

From the point of view of the attenuation of the multiples, it is important that the migration
velocities be accurate enough for the primaries to be flat and the multiples to exhibit residual
moveout in ADCIGs. This is likely to be the case for water-bottom and peg-leg multiples
since water velocity is very different from sediment velocity, but may not be so for internal
multiples. Therefore, the method is likely to be successful in attenuating water-bottoms and
peg-leg multiples even if there are small errors in the estimation of the migration velocity field.

Attenuation of internal multiples will require more accurate migration velocities.

Radon transform parameters

The performance of the Radon transform to focus the primaries and multiples to separate
regions of the transformed domain, depends on the choice of curvature parameters and apex-
shift values. In particular, curvatures should range from small negative values to allow for the
possibility of slightly under-migrated primaries, to large enough values to accommodate the
maximum curvatures of the over-migrated multiples. I have found that these are not particu-
larly critical parameters as long as the curvature sampling is fine enough to avoid aliasing in
the Radon domain. Similarly for the apex-shift parameters. They are not critical, since their
role is only to provide room for the mapping of the diffracted multiples, thus preventing them
from interfering with the primaries and the specular multiples that map to the zero apex-shift
plane. A critical step is the design of the mute pattern to eliminate the primaries and keep
the multiples. There are several ways that this could be implemented. I constructed a mask
of ones for the multiple regions and zeros for the primary region, smoothed it laterally and in

depth and multiplied it by the transformed data.

An important, and somewhat difficult parameter to estimate, is the one that controls the
Cauchy regularization (parameter b in equation 2.33). We want the data in the ADCIG to
be explained in the Radon domain by as few parameters as possible but avoiding the risk of
attenuating the contribution from weak subsalt primaries. This is a trial and error parameter

and it requires some testing to get a satisfactory value.
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Comment on diffracted multiples

The results shown in the previous section demonstrate that with the apex-shifted Radon trans-
form it is possible to attenuate, although not completely remove, the diffracted multiples. It
should be noted, however, that in our seismic section it is very difficult to find a legitimate pri-
mary reflection below the salt and in particular below the edge of the salt, where the contami-
nation by the diffracted multiples is stronger. It is somewhat disappointing that the attenuation
of the diffracted multiples did not help in uncovering any meaningful primary reflections in
our example. I expect the situation to be different with other datasets. I should also emphasize
that adding the extra dimension to deal with the diffracted multiples does not in itself resolve
the usual trade-off between primary preservation and multiple attenuation. We saw this limi-
tation in this case, which forced us to let some residual multiple energy leak into the extracted
primaries. The flatter the primaries are in the ADCIGs, and the more accurately the kernel of
the Radon transform approximates the residual moveout of the multiples, the better are our

chances of reducing the residual multiple energy.

Extension to 3D data

With 3D data, the ADCIGs are function of the reflection azimuth as well as the aperture angle
(Biondi and Tisserant, 2004). The ADCIGs, therefore, are three dimensional and even for
the specular multiples the Radon transform will also be three-dimensional. For the diffracted
multiples, the apex shift is a function of both the aperture angle and the reflection azimuth and

the Radon transform would be more complicated. This issue will be addressed in Chapter 4.

CONCLUSIONS

To attenuate multiples in the image space via filtering in the Radon domain, we need an ac-
curate representation of their residual moveouts in either SODCIGs or ADCIGs. Accounting
for ray-bending at the multiple-generating interface increases the focusing power of the Radon

transform and therefore the separation between primaries and multiples.
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The apex-shifted Radon transform in ADCIGs to map from (z,y) to (Z,q,h) has proven
to be effective in attenuating specular and diffracted multiples in 2D marine data. The residual
moveout of both multiples in ADCIGs is well-behaved and the extra dimension provided by
the apex-shift allows the attenuation of the multiples without compromising the integrity of

the primaries.
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Chapter 3

Simultaneous adaptive matching of primaries

and multiples

SUMMARY

In this chapter, I develop a method to match estimates of primaries and multiples to data con-
taining both. The method works with prestack or poststack data in either data space or image
space and addresses the issue of cross-talk (leakage) between the estimates of the primaries
and the estimates multiples. I pose the problem as a non-linear optimization in which non-
stationary filters are computed in micro-patches to simultaneously match the estimates of the
primaries and the multiples to the data, in a least-squares sense. I apply the method iteratively
by updating the estimates of the primaries and the multiples after the least-squares solution is
found. Only a few of these iterations are needed. The computer cost is a negligible fraction
of the cost of computing the estimate of the multiples with convolutional methods such as
SRME. I show, with several synthetic and real data examples, that the matched estimates of
both primaries and multiples have little cross-talk. I also apply the method to the separation of
spatially-aliased ground-roll and body waves and show that most residual ground-roll contam-
inating the estimate of the body waves can be eliminated. This method is applied in chapter 6
to adaptively match and subtract the multiple estimate from a 3D real dataset from the Gulf of

Mexico.
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INTRODUCTION

Most methods to attenuate multiples perform, in one way or another, two complementary
but clearly distinguishable steps: first, estimate a model for the multiples, and second, adap-
tively match and subtract the estimate of the multiples from the data to get the estimate of
the primaries. As described in chapter 1, Surface Related Multiple Elimination (Berkhout and
Verschuur, 1997; Verschuur and Berkhout, 1997; Weglein et al., 1997; Dragoset and Jerice-
vic, 1998; Dragoset, 1999) uses the auto-convolution of the data to estimate the multiples
whereas moveout-based methods use filtering in either the frequency-wavenumber or a Radon-
transform domain (Hampson, 1986; Sava and Fomel, 2003; Alvarez et al., 2004) to estimate
the multiple model. Whatever the method, the estimate of the multiples is likely to be con-
taminated with residual primary energy and to have errors in amplitude, phase and frequency
content. After adaptive subtraction, the estimated primaries are likely to suffer from undesired

residual multiple energy, or weakened primaries, or both (Guitton, 2005a).

In this chapter I assume that the multiple model has already been estimated by some
method and concentrate on the adaptive subtraction step to get the estimated-matched pri-
maries. I present a new adaptive matching algorithm that simultaneously matches estimates
of the primaries and the multiples to the data. In contrast, the most standard algorithms adap-
tively match the multiples only. Matching also the estimate of the primaries help constrain the
matching of the multiples thus reducing the leak of residual multiples (so-called cross-talk) on

the estimated primaries.

The new adaptive-matching algorithm estimates, in the least-squares sense, non-stationary
filters (Rickett et al., 2001) that simultaneously match both the estimates of the primaries and
the multiples to the data. These filters act on micro-patches i.e small, overlapping pieces of
data (Claerbout and Fomel, 2002) and can handle inaccuracies in the estimated multiples in
terms of both amplitudes and kinematics. Once the solution to the least-squares problem is
computed, I iteratively re-estimate the multiple and primary models until the residual (the sum
of the matched primaries and multiples minus the data) is close to zero. In my experience, as

few as three to five iterations of the least-squares inversion (“‘outer” iterations) seem sufficient.

I apply this new method to two synthetic datasets contaminated with multiples. In the



51

first test, I match kinematically perfect estimates of primaries and multiples contaminated
with 40% of cross-talk and show that for this simple case the method produces a cross-talk-
free result. Then I apply the method to an inaccurate estimate of both the primaries and
the multiples obtained via migration-demigration as described in Alvarez (2006). Even with
a poor initial estimate of both primaries and multiples, with strong cross-talk on both, the
matched results are very good, with little cross-talk. To illustrate the method with stacked
data, I apply it to a migrated section of the Sigsbee model. Here the multiples were estimated
with an image space version of SRME (Artman and Matson, 2006). The results show that the
method attenuated most of the multiples and produced a largely multiple-free estimate of the

primaries.

The method performs well with real data, as I demonstrate by applying it to match the
estimated multiples computed in the previous chapter. I adaptively matched and subtracted
the multiple estimate of each individual ADCIGs and then stacked the estimated primaries to
form an angle stack of primaries only. The method performed very well and the multiples

were nicely attenuated in the angle stack.

Finally, to illustrate that the method may have applications beyond the matching of pri-
maries and multiples, I apply it to a different problem, namely the separation of ground-roll
and body-waves. I use a shot gather from a land dataset contaminated with strong, spatially-
aliased, ground-roll and show that most of the residual ground-roll can be attenuated in the
final estimate of the body waves. In a way, this is a more challenging problem because the
non-stationarity characteristics of the ground-roll and the body waves are different. The re-
quirements of filter lengths and patch sizes to match the data are therefore different for the
ground-roll and the body-waves. I chose to preserve the body waves even if that meant allow-

ing some residual ground-roll.

DESCRIPTION OF THE METHOD

Conceptually, the first step of the new method is to form the convolutional matrices of both the
estimated multiples M and the estimated primaries P. In practice, these are huge matrices that

are not explicitly formed but are replaced by equivalent linear operators (Claerbout and Fomel,
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2002). Next, I compute non-stationary filters in micro-patches (that is, filters that act locally on
overlapping two-dimensional partitions of the data) to match the estimated multiples and the
estimated primaries, to the data containing both. I compute the filters by solving the following

linear least-squares inverse problem:

- -
(M wp|| "] ~ d 3.1)
_fp_
%
eA ~ 0 (3.2)
_fp_

where fr, and fy are the matching filters for the multiples and primaries respectively, u is a
parameter to balance the relative importance of the two components of the fitting goal (Gui-
tton, 2005b), d is the data (primaries and multiples), A is a regularization operator, (in my
implementation a Laplacian operator), and € is the usual parameter to control the level of

regularization.

Once convergence is achieved, each filter is applied to its corresponding convolutional

matrix, and new estimates for M and P are computed:

Miyi < Mifmi (3.3)

Here i represents the index of the outer iteration of the linear problem described by Equa-
tions 3.1 and 3.2. Notice that I hold x constant although it could be changed from iteration i
to iteration i 4+ 1. Also notice that the regularization operator A and the regularization param-
eter € in Equation 3.2 could be different for fy, and fy. I have chosen to keep them the same to
limit the number of adjustable parameters. This choice worked very well in all my tests. The
updated versions of the convolutional matrices M; ;| and Pj are plugged into equations 3.1
and 3.2 and the process repeated until the cross-talk has been eliminated or significantly atten-

uated.
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EXAMPLES WITH SYNTHETIC DATA

As a first example, I will consider the synthetic dataset shown in panel (a) of Figure 3.1. There
are two primaries (black) and four multiples (white). The traveltimes of both primaries and
multiples were computed analytically from a three flat-layer model: water layer, a sedimentary
layer and a half space. The estimates of the multiples (b) and primaries (c) were computed
by adding 40% of the primaries to the multiples and 40% of the multiples to the primaries,
respectively. The goal is to simulate a situation in which the kinematics of the estimates of

primaries and multiples are both correct but there is strong cross-talk (leakage) between them.

Figure 3.2 shows the estimated multiples after one, two and three outer iterations of the
algorithm. The corresponding results for the estimated primaries are shown in Figure 3.3. In
both figures we see that the cross-talk is substantially reduced after the first outer iteration and
is completely eliminated after the third. Notice the hole in the top multiple and the bottom
primary in the final estimates. This is actually present in the data (panel (a) in Figure 3.1) and
is an artifact because both primaries and multiples were modeled with the same amplitude and

opposite polarity.

Consider now the more realistic situation of kinematic and offset-dependent amplitude
errors in the original estimates of both primaries and multiples, as well as noise as shown in
Figure 3.4. The multiple and primary estimates were obtained via migration-demigration as
described in Alvarez (2006). These are imperfect estimates with cross-talk on primaries and

multiples and other noises.

Panel (a) of Figures 3.5 and 3.6 show the results after one outer iteration, whereas panels
(b) and (c) of the same figures show the results after three and five outer iterations respectively.

There is still some localized cross-talk from the multiples into the primaries.

The next example uses the well-known Sigsbee model (Paffenholz et al., 2002) to illustrate
the method in the image space. For this example, therefore, “data” means the migrated image
with primaries and multiples. This dataset has the advantage that, along with the modeled
data (primaries and multiples), there exists a related dataset without the free surface multiples
(http://www.delphi.tudelft.n/SMAART/S2Breadme.htm). Panel (a) of Figure 3.7 shows the
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Figure 3.1: Synthetic CMP gather (a) showing two primaries (black) and four multiples (white)
from a three flat-layer model. The initial estimates of multiples (b) and primaries (c) are

contaminated with 40% cross-talk. ‘ adaptive-synl_estimates| ‘ [ER]
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Figure 3.2: Matched estimates of multiples after one (a), two (b) and three (c) outer iterations

of the algorithm. |adaptive-synl_matched_muls ‘ [ER]
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Figure 3.3: Matched estimates of primaries after one (a), two (b) and three (c) outer iterations

of the algorithm. ‘ adaptive-synl_matched_prims ‘ [ER]
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Figure 3.4: Original CMP gather (a), initial estimate of the multiples (b) and initial estimate

of the primaries (c). ‘ adaptive-syn2_estimates| ‘ [CR]
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Figure 3.5: Matched estimates of multiples after one (a), three (b) and five (c) outer iterations

of the algorithm. ‘ adaptive-syn2_matched_muls ‘ [CR]
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Figure 3.6: Matched estimates of primaries after one (a), three (b) and five (c) outer iterations

of the algorithm. | adaptive-syn2_matched_prims ‘ [CR]
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modeled data, panel (b) the data without free surface multiples (b), and panel (c) the estimated
free surface multiples in the image space computed with an image space version of SRME
(Artman and Matson, 2006). All panels are plotted at the exact same clip value. Notice that
the estimate of the multiples is accurate only in kinematics, not in amplitudes or frequency
content. The estimate of the multiples was computed with an image space version of SRME
(Artman and Matson, 2006).

In contrast with the previous examples, in this case I do not have an independent initial
estimate of the primaries. I could subtract the estimate of the multiples from the data, but the
corresponding estimate of the primaries is too distorted. Using such a poor primary estimate
actually hurts the chances of matching the multiples to the data. Another option is to use the
data itself as the initial estimate of the primaries. 1 found, however, that a better alternative
is to do a first iteration setting i = 0, meaning only the multiples need to be matched. Once
matched, the multiples are subtracted from the data to get the estimate of the primaries for the

next iteration.

Figures 3.8 and 3.9 show a close-up view of the matched primaries and multiples, respec-
tively, after one, two and three outer iterations. After the first iteration, the most obvious
multiples contaminating the estimate of the primaries have been attenuated (compare panels
(a) of Figures 3.7 and 3.8) but strong residual multiple energy remains. The second iteration
helps attenuate the multiples further, although it is hard to appreciate in these small figures.
See, for example the multiple inside the salt and in the bottom right corner of panel (b). The

third iteration cleans up most of the noise, although it also weakens the subsalt primaries.

On the estimate of the multiples, again the first iteration extracts the most significant multi-
ples and the second iteration locally corrects the amplitudes. The third iteration actually hurts
the estimate of the multiples because the effect of the regularization term becomes significant
as the match of both the primaries and the multiples to the data improves. The net result is an
estimate of the primaries that is close to the primaries in the original image. Because of the

need for regularization, the estimate of the multiples, however, is weaker than it should.
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Figure 3.7: Sigsbee migrated dataset. Data (a), migrated model without surface multiples (b)
and initial estimates of multiples (c). ‘adaptive—sgsb_estimatesl ‘ [CR]
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Figure 3.8: Estimated primaries after one (a), two (b) and three (c) outer iterations of the
algorithm. | adaptive-sgsb_matched_prims ‘ [CR]




60 CHAPTER 3. ADAPTIVE MATCHING

Depth (ft)
20000

30000

Depth (ft)
20000

30000

Depth (ft)
20000

CMP (ft)

Figure 3.9: Estimated multiples after one (a), two (b) and three (c) outer iterations of the
algorithm. | adaptive-sgsb_matched_muls ‘ [CR]
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EXAMPLES WITH REAL DATA

I will now illustrate the method with real data. First, I will match and subtract the multiple
model for the real dataset from the Gulf of Mexico introduced in Chapter 2 and then I will

show an example of attenuating spatially-aliased ground-roll.

Gulf of Mexico data

I start with the Angle-Domain Common-Image Gather (ADCIG) shown in Figure 3.10. Panel

(a) is the initial data, panel (b) the estimated multiples and panel (c) the estimated primaries.

Depth (m)
4000 3500 3000

4500

5000

Angle

Figure 3.10: ADCIG from the Gulf of Mexico line of chapter 2 (a), initial estimate of the multi-

ples (b), and the primaries (c). Note the crosstalk on both panels. ‘ adaptive-adcigl_estimates]
[CR]

The estimate of the multiples was obtained with Radon transform in the image space pre-
sented in chapter 2 (without the apex-shift) and the estimate of the primaries was obtained
simply by subtracting it from the data. Notice the residual primary energy just below 3000
m in the estimate of the primaries. Note also the residual energy from the multiples in the

estimate of the primaries.
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Figure 3.11: Estimated primaries after one (a), five (b) and ten (c) outer iterations. Notice how
the residual multiples decrease with the outer iterations although are not completely elimi-
nated. | adaptive-adcigl_matched_prims ‘ [CR]
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Figure 3.12: Estimated multiples after one (a), five (b) and ten (c) outer iterations. Here
too, the residual primaries decrease and almost disappear after the 10th outer iteration.
adaptive-adcigl _matched_muls ‘ [CR]
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Figure 3.11 shows the ADCIG after one, five and ten outer iterations. The first iteration
attenuates the strongest residual multiples (compare panel (a) of Figure 3.11 with panel (c) of
Figure 3.10). Subsequent iterations further reduce the residual multiples. Also, although hard
to see in the hard copy, the primary energy that contaminated the estimate of multiples below
3000 m has been mapped back to the primaries. Figure 3.12 shows the corresponding results

for the multiples. Notice again that the residual primary energy has been severely attenuated.

To show the impact of the better matching of the multiples in the angle stack, I applied the
same steps to all the 900 ADCIGs in the seismic line. Figure 3.13 shows the angle stack of
the data (primaries and multiples) and the angle stack of the initial estimates of the multiples
and the primaries. Recall that this initial estimate of the primaries was obtained by direct
subtraction of the estimate of the multiples from the data (without adaptive subtraction). All
the panels are plot at the exact same clip value. Note that although most multiples have been

attenuated some multiple energy remain below the salt body.

In order to concentrate the comparison of the different estimates of the multiples and pri-
maries to the region where the multiples are present, I windowed the data to below 2600 m.
Figure 3.14 shows the comparison between the initial estimate of the multiples (a windowed
version of panel (c) in Figure 3.13) plot at a lower clip (panel (a)) and the results of applying
the matching algorithm after one and five outer iterations (panels (b) and (c) respectively). The
first outer iteration didn’t improve much, but after five outer iterations the result is much better
with the specular multiples largely reduced in amplitude. The diffracted multiples still remain

because the Radon filtering did not account for the apex-shift in this example.

Ground-roll

As a final example, consider the problem of separating spatially-aliased ground-roll from body
waves in land data. This a more challenging application of the algorithm because the body
waves have curvature that changes rapidly with both offset and time so to match it I need
small filters in relatively small patches. The ground-roll, on the other hand, has little global
curvature (although it may have strong local curvature due to aliasing) and matching it is

more successful with large filters in large patches. A refinement to the method could use
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Figure 3.13: Comparison of angle stacks for the data (panel (a)), the initial estimate of the mul-
tiples (panel (b)) and the initial estimate of the primaries (panel (c)). ‘adaptive—initial_stacks
[CR]
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Figure 3.14: Comparison of windowed angle stacks for the initial estimate of the primaries
(panel (a)), the estimate of the primaries after one outer iteration (panel (b)) and after five
outer iterations (panel (c)). ‘adaptive-matched_pn'm_stacks‘ [CR]
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different regularization operators or at least different regularization parameters € on the non-
stationary filters for the primaries and the multiples. For the sake of simplicity, [ used the same

regularization for both.

Figure 3.15 shows the original shot as well as the initial estimates of the body waves
and the ground-roll. The ground-roll estimate was computed simply by high-cut filtering the
data to 24 Hz using a Butterworth filter with six poles. I allowed significant energy from the
body waves to leak into the estimate of the ground-roll to illustrate the problem described in
the previous paragraph. Similarly, the estimate of the body waves was computed by low-cut
filtering the data to 18 Hz also with a Butterworth filter with 6 poles. Since I don’t want to
reduce the low frequency components of the signal too much, I allowed strong ground-roll to
leak into the estimate of the body waves. The purpose is to eliminate this ground-roll without
hurting the signal and ideally, mapping back some of the body-waves from the estimate of the

ground-roll.
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Figure 3.15: Land shot gather with strong ground-roll (a), initial estimate of ground-roll (b),
and body waves (c). ‘adaptive—shotl_estimates1 ‘ [ER]

Figure 3.16 shows the estimate of the body-waves after one, five and 10 outer iterations

of the proposed algorithm. Even after just the first iteration, most of the ground-roll has been
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Figure 3.16: Estimate of body waves after one outer iteration (a), after 5 outer iterations (b) and
after 10 outer iterations (c). Notice how after the fifth iteration the ground-roll is essentially

gone. adaptive-shotl_matched_bw‘ [ER]
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Figure 3.17: Estimate of ground-roll after one outer iteration (a), after 5 outer iterations (b)
and after 10 outer iterations (c). Some of the body waves have been removed in panel (c) but

much still remains. ‘adaptive-shotl_matched _gr‘ [ER]
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eliminated and after five iterations it is almost gone. For this example I used just two patches in
time and one in offset. Figure 3.17 shows similar results for the ground-roll. Since the patches
were so large, the energy of the leaked body-waves were only slightly attenuated (see the

reflector at about 1.7 secs). This energy was mapped back to the estimate of the body-waves.

DISCUSSION AND CONCLUSIONS

The standard approach to match the estimated multiples directly to the data and obtain the
primaries by subtraction of the matched multiples often leads to weakened primaries and/or
contamination with residual multiples. By exploiting the estimates of both, multiples and pri-
maries, we prevent the matching algorithm from attempting to match weak residual primaries
along with the multiples. Furthermore, we obtain simultaneous estimates of both the primaries

and the multiples that are guaranteed to be consistent with the original data.

As with most inversions, the performance of the algorithm depends critically on the choice
of the inversion parameters. There are no guaranteed combinations of parameters that work in

every case, but we now discuss the most important:

Patch size

The size of the overlapping patches is a function of the non-stationarity of the data. Smaller
patches represent rapidly changing data better but are more expensive and likely to match
small patterns of correlated noise. For the examples on multiples we used patches that were
just a few samples long (less than 10 in all axes). For the ground-roll example, we used patches

200 samples long in the time axis and 80 samples long in the offset axis.

Non-stationary filter lengths

The length of the filter depends on the character of the noise model and the size of the patch.

We found that, for matching the multiples, short filters (2 to 4 samples in each axes) worked
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well but for the ground-roll example a longer filter gave better results (27 samples in time and

2 in offset) because the nature of the noise and the signal were so different.

Balancing primaries and multiples

The parameter © in Equation 3.1 can be used to give more relative weight to the estimates of
the primaries or the multiples. In particular, setting it to zero reduces the algorithm to the more
standard multiples-only matching. We found that this is not a critical parameter and a value of

one works well and was used in all the examples in this paper.

Regularization

As with any inversion problem, the choice of regularization is important to impose constraints
of the admissible models. For the multiple matching problem, since the character of both the
primaries and the multiples is similar, it is best to use the same regularization for estimating
the primary and multiple non-stationary filters. In an example like the ground-roll attenuation,
where the character of the signal and the noise is so different, it may be better to use different
regularization operator A (or at least a different level of regularization €) for the estimate of
the two filter banks. We used the same regularization for the noise and the signal in all of our

examples.

Number of outer iterations

The algorithm tends to converge rather quickly, so only a few outer iterations are required
(two or three) to get close to a reasonably good answer. For the ground-roll example 10 outer

iterations were used.

It should be emphasized that the algorithm, as presented, is independent of the method
employed to obtain the initial estimates of the multiples and the primaries. It should also
be stressed that the algorithm does not rely on explicit knowledge of the moveouts of the

primaries or the multiples. It only relies on the fact that the data is the sum of the multiples



70 CHAPTER 3. ADAPTIVE MATCHING

and the primaries. The method can be used not only to match primaries and multiples but in
general to match estimates of noise and signal to data containing both. I showed an example
with the separation of ground-roll and body-waves with land data, but other applications may

also be possible.
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Chapter 4

Mapping of 3D multiplesto image space:
Theory and synthetic data example.

SUMMARY

In Chapter 2 I showed that in 2D, specularly-reflected multiples, when migrated with the ve-
locity of the primaries, map to subsurface offsets with the opposite sign to that of their surface
offset in Subsurface-Offset-Domain Common-Image Gathers (SODCIGs). In Angle-Domain
Common-Image Gathers (ADCIGs) they map with curvature towards increasing depths. In
this chapter I extend these ideas to 3D and show, with a 3D synthetic prestack dataset, that
specularly-reflected multiples in 3D have a similar behavior with an interesting addition: in
3D ADCIGs, the primaries and multiples exhibit different azimuth dependence as a function
of the dip of the reflecting interface generating the multiple. This attribute is used to discrimi-
nate between primaries and multiples in 3D ADCIGs and therefore help in the attenuation of

the multiples.

71
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INTRODUCTION

Given the relative simplicity of the Radon method applied in the image space, as shown in
chapter 2, extending its application to account for the effect of crossline offset seems attrac-
tive. The first step in that direction is to understand the moveout of the multiples on 3D
Subsurface-Offset-Domain Common-Image Gathers (SODCIGs) and Angle Domain Com-
mon Image Gathers (ADCIGs). In 3D, the ADCIGs are function of the aperture angle and the

reflection azimuth (Biondi and Tisserant, 2004).

I show in this chapter that the residual moveout equation of a 3D specular water-bottom
multiple from a flat water-bottom in 3D ADCIGs is a direct extension of the 2D equation
presented in Chapter 2 after a simple rotation of coordinates to account for the source-receiver
azimuth. The raypath of the specular water-bottom multiple in this case is confined to one
vertical plane and is therefore essentially a 2D multiple. For a water-bottom that dips in the
inline direction only, the raypath of the multiple is contained in a vertical plane only if the
source-receiver azimuth is in the inline direction. For other directions, and for all directions
if the water-bottom dips in the crossline direction, however, the propagation of the multiple is

not contained in a plane.

In this chapter I concentrate on the mapping of the multiples to image space and leave their
attenuation for later chapters. I will illustrate the mapping of the water-bottom multiple from
a water-bottom dipping in the crossline direction using a very simple 3-D synthetic prestack

dataset provided by ExxonMobil.

3D ADCIGS

The mathematical formalism and the methodology for computing 3D ADCIGs as a function
of the aperture angle y and the reflection azimuth ¢ was given by Biondi and Tisserant (2004).
They showed that for the primaries the ADCIGs as a function of the aperture angle, for a fixed
reflection azimuth, is flat only for those aperture angles that illuminate the reflector at that
reflection azimuth and appear to have curvature at other aperture angles even if the migration

was carried out with the correct migration velocity field. I will show that for the multiples the
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3D ADCIGs are not flat as a function of aperture angle for fixed azimuth angles. Instead, they

exhibit a residual moveout curve similar to that of 2D multiples that I showed in Chapter 2.

KINEMATICS OF 3D MULTIPLES IN IMAGE SPACE

I will first consider the simplest case of a flat water bottom. The residual moveout equations
for both SODCIGs and ADCIGs will be the basis for the design of the Radon kernel in the

same way as for the 2D case in Chapter 2.

Flat water-bottom

Figure 4.1 shows a sketch of a specular water-bottom multiple from a flat water-bottom. The
inline direction is oriented in the X direction and the crossline direction in the Yy direction.
Because both the surface and the water-bottom are flat, the multiple reflection happens entirely
in the vertical plane directly below the source-receiver line as is intuitively obvious. Following
the discussion in chapter 2, the inline and crossline subsurface offsets of the multiple (hs, and

hg, ) are, respectively:

hp hp cos¢
hee = (1—p)—2=(1-pH)—="
Ex (I=p%) 5 (I—=p7) 5

hp hp sin
hy = (-p) =(1-pH 2

where hp, and hDy are the components of the surface offset vector in the inline and crossline

directions, and ¢ is the azimuth of the source-receiver line with respect to the inline direction.

The travelpath of the multiple itself is azimuthally invariant and so the depth of the image
point Z¢ and its location are the same as in chapter 2 (equations 2.17 and 2.18). The residual

moveout equations of the multiple in the inline and crossline directions are given by slightly
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Figure 4.1: Raypath for a 3D Water-
bottom multiple from a flat water-
bottom. The multiple propagation is
entirely contained in a vertical plane.
3dsynth-3d_mul_sktchl [[NR] [ N

modified versions of equation 2.19:
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Notice that the azimuthal invariance of the depth and spatial location of the image means that,
in terms of the subsurface offset magnitude and reflection azimuth (which for a flat reflector
equals the surface azimuth), the residual moveout of the multiple in the SODCIG is exactly
the same as in the 2D case of chapter 2. Figure 4.2 shows the inline SODCIG (panel (a))
taken at zero crossline offset and the crossline SODCIG (panel (b)) taken at zero inline offset.
The data was modeled directly in CMP gathers and therefore is completely regular in inline
and crossline surface offsets. I modeled both positive and negative crossline surface offset and

hence the residual moveout of the multiple spans both positive and negative subsurface offsets.

Dipping water-bottom

In the previous section I discussed the simple model of a flat water-bottom. The extension of
the residual moveout equations of the water-bottom multiple from 2D to 3D was trivial in that
case. But what happens when the water-bottom has dip? Consider first the simpler case of dip
in the inline direction only. The propagation of the water-bottom multiple is contained in the

vertical (X, Z) plane (recall that in my convention the crossline direction is along the Yy axis)
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Figure 4.2: SODCIG for a water-bottom multiple from a flat water-bottom. Panel (a) is the
inline subsurface offset gather at zero crossline subsurface offset and panel (b) is the crossline
subsurface offset gather at zero inline subsurface offset. | 3dsynth-sodcig ‘ [CR]

only for those source-receiver combinations whose azimuth is along the X direction as shown

in Figure 4.3.

Figure 4.3: Raypath for a 3D
water-bottom multiple from a water-
bottom dipping in the inline direc-

tion only. The multiple propaga- \V \ //
tion is entirely contained in a vertical 7
plane only when the source-receiver \ \&&

azimuth is along the inline direction. / B
3dsynth-3d_mul_sktch2 ‘ [NR] 3 B

For all other source-receiver azimuths and for water-bottom with crossline dip, the multiple
reflection path can no longer be considered a simple extension of the 2D case via a rotation of
coordinates. The ray from the source to the reflector to the surface is contained in the plane
normal to the reflector as required by Snell’s law. On the other hand, the ray from the bounce
point at the surface to the reflector to the receiver cannot be contained in the same plane since
the surface is flat and therefore its normal is vertical. This reflection has to be contained in a

vertical plane. This means that the surface bounce cannot lie in the line that joins the source
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and the receiver (see Figure 4.4). The coordinates of the bounce point at the surface, the
coordinates of the reflection points on the water-bottom and the traveltime of the multiple can

be computed with the equations given by Ross et al (1999).

Figure 4.4: Raypath for a 3D Water-
bottom multiple from a water-bottom
dipping in the crossline direction
only. The multiple propagation is
not entirely contained in one plane. ) N
The ray from the source to the re- -
flector to the surface bounce (SB) de- /
fine one plane while the ray from
the surface bounce to the reflector to
the receiver is contained in a differ-
ent plane. ‘3dsynth—3d_mul_sktch3 ‘
[NR]

Rather than attempting to derive convoluted equations for the residual moveout of the 3D
multiples in SODCIGs or ADCIGs that could never be used in any reasonably practical Radon
kernel, I will use the simpler equations for the flat water-bottom as I did for the 2D case in
Chapter 2. In order to analyze the mapping of a crossline-dipping water-bottom multiple to

image space, [ will use a 3D prestack synthetic dataset provided by ExxonMobil.

DESCRIPTION OF THE SYNTHETIC DATA

The velocity model used to generate the synthetic data is shown in Figure 4.5. The water
bottom is deep, flat in the inline direction and dipping at 15 degrees in the crossline direction.
The only reflector is a plane dipping 3 degrees in the inline direction and 15 degrees in the

crossline direction.

The acquisition geometry consists of 10 receiver lines, each with 240 receivers spaced 25
m, with the first receiver at an inline offset of 100 m from the source. The maximum inline
offset is therefore 6075 m. The receiver line separation is 100 m and the source is flip-flop

with the two sources separated 50 m in the crossline direction and centered between the two
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Figure 4.5: 3-D velocity model. Panel (a) is the inline section taken at CMP-X=2000 m
and panel (b) is the crossline section taken at CMP-Y=10000 m. The water-bottom dips in
the crossline direction only. The reflector dips gently (3 deg) in the inline direction as well.
3dsynth-model_vel ‘ [CR]

middle streamers. There are a total of 6 sail lines with each sail line separated from the next
by a crossline distance of 450 m. With this arrangement, the crossline fold is just one and
the fold in the inline direction is 60. Figure 4.6 shows a schematic of two adjacent sail lines
illustrating that there is no overlap between the CMP coverage of each sail line. Figure 4.7
shows the receiver map, the source map, the azimuth-offset distribution and the fold map, all

typical of a dual source acquisition.

Figure 4.8 shows a typical common source record with the 10 receiver lines plotted side-
by-side. There are four reflections: the water-bottom primary, the deeper reflector primary,
the water-bottom multiple and the peg-leg multiple between the water-bottom and the deeper
reflection. Notice the change in polarity of the multiples compared to the primaries. Figure 4.9
shows a close up of the wavelet and the wavelet spectrum which shows that the wavelet has a

DC component.
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Figure 4.6: Schematic of fold cov-

erage of two adjacent sail lines.
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Figure 4.7: Top left: receiver map. Top right: source map. Bottom left: azimuth-offset

distribution. Bottom right: fold map. | 3dsynth-attributes ‘ [CR]
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Figure 4.8: A typical “shot” gather showing the 10 receiver lines. Notice the polarity inversion

of the multiples. | 3dsynth-shot | [CR]
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Figure 4.9: Close up of the seismic wavelet (a) and its frequency spectrum (b). Notice the
uncharacteristic presence of low frequencies usually absent in field data. ‘3dsynth-spectrum
[CR]
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DATA SUBSET FOR S-R MIGRATION

The original dataset contains 6,764,207 traces (about 44 GB). Choosing a small, meaning-
ful, “complete” five-dimensional subset of data for source-receiver migration is not trivial,
because the acquisition geometry makes the offset distribution of adjacent CMPs different in
both inline and crossline directions. This is illustrated in Figure 4.10 which shows the offset
distribution inline for a few adjacent CMPs. The offset distribution repeats only every fourth
CMP. Although not shown, the situation in the crossline direction is worse. There are 20 dif-
ferent crossline offsets (from -475 to 475 m), but for any CMP line taken at a fixed crossline

position, all traces correspond to the same crossline offset.

The input to the source-receiver migration algorithm is a regular 5-D cube D(t,m,h),
where m is the vector of surface position, h is the vector of surface offsets and t is the travel-
time. In order to create such a cube, even for a small dataset, a large number of null traces need
to be inserted. For example, for a 4 by 4 km square of full-fold CMP data, we have: 51200
CMPs (at 12.5 by 25 m bin) each with 240 inline offsets (100 to 6075 m at 25 m sampling)
and 20 crossline offsets (-475 to 475 m at 25 m sampling) for a total of 440 million traces.
Since each trace has 1751 samples (7 seconds at 4 ms sampling interval), this means a dataset
of almost 800 GB.

In order to make a more manageable dataset, further data reduction is necessary. Here I
am particularly interested in the effect of crossline dip in the moveout of the multiples after
migration, therefore I chose to subsample the data in the inline coordinates only. I subsampled
the inline CMP axis such that every other CMP was discarded. This has the advantage of not
only halving the number of CMPs but also halving the number of inline offsets as can be seen
in Figure 4.10 since now the inline offset interval is 50 m rather than 25 m. I also subsampled
the time axis to 16 ms, which required that the data be filtered to a maximum frequency of
32 Hz. The original wavelet had frequencies up to about 60 Hz as illustrated in Figure 4.9.
High-cut filtering is acceptable in this case because vertical resolution is not critical for my
purposes. I also limited the inline offsets to 4000 m which sacrifices the steeper flanks of
the moveout of the multiples as shown in Figure 4.8. With these reductions, the dataset size

becomes about 70 GB after some padding in all spatial directions to avoid or at least lessen
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Figure 4.10: Schematic showing the unequal inline offset distribution of adjacent inline CMPs.
The stars represent the receivers and the small circles represent the CMP positions. The table
on the bottom left lists the inline offset distribution of a few traces corresponding to four
arbitrary adjacent CMPs numbered 1 to 4 as indicated by the arrows. Notice that the adjacent
CMPs have different inline offset distribution. | 3dsynth-sketch3 ‘ [NR]

migration artifacts.

Figure 4.11 shows a near offset cube of the five-dimensional selected dataset. Notice that
there are only six crossline CMPs for a given inline CMP location, corresponding to the six
sail lines, and there is no data redundancy in the crossline direction. Similarly, only every
other inline CMP position has a trace with a given crossline CMP location because of the dual

shot geometry.

Panel (a) of Figure 4.12 shows the inline distribution of offsets for an inline CMP section
taken at crossline CMP position 2212.5 and crossline offset of -12.5 m. Here again, note the
on-off pattern of the offset distribution due to the dual shot source as indicated in the sketch in
Figure 4.10. Similarly, panel (b) of Figure 4.12 shows the distribution of crossline offsets for
a CMP section in the crossline direction taken at inline CMP location 8400 and inline offset

of 100 m.
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Figure 4.11: Near offset cube (100 m offset inline and -25 m offset crossline). Panel (a) is the
inline section at CMP-Y=1712.5 m while panel (b) is the crossline section at CMP-X=9925

m. | 3dsynth-zoff1 | [CR]

PREPROCESSING

Before attempting to do the full source-receiver migration on the data, I applied some prepro-

cessing described briefly in this section.

Data infill

The input data was first bandpass-filtered to remove the DC component and to limit the high
frequencies to 32 Hz, and subsampled to 16 ms. It was then infilled with null traces in both
offset dimensions, padded to add negative inline offsets (to allow room for the multiples after
migration), padded to extend the crossline aperture, and sorted into a five dimensional regular

cube of time, offsets and CMP coordinates.
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Figure 4.12: 3D data. Panel (a) is the inline section taken at 100 m inline offset, -25 m crossline
offset and CMP-Y=-12.5 m. Panel (b) is the inline offset gather at CMP-X=8550 m, CMP-
Y=-12.5 m and -25 m crossline offset. Panel (c) is the crossline section at CMP-X=8400 m,
100 m inline offset and 25 m crossline offset. Panel (d) is the crossline offset gather at CMP-
X=8400 m, CMP-Y=1837.5 m and 100 m inline offset. Notice the data sparsity, especially in
the crossline direction. | 3dsynth-inline-xline ‘ [CR]
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Datuming

The regular cube was then datumed to just above the water-bottom to avoid spending migra-
tion time on downward continuation through the water layer. Figure 4.13 shows a comparison
of one CMP 3D gather before (left) and after datuming (right). Notice that datuming not only
saves propagation time but also allows a significant reduction of the data to be migrated be-
cause the offsets decrease as the recording surface is “moved” closer to the reflectors, making
the positions of sources and receivers closer. Notice also that the holes in both offsets and

CMPs have been healed by the propagation.

Common-Azimuth Migration

In order to choose the key migration parameters such as depth step, number of frequencies
and especially the minimum amount of padding of negative subsurface offsets needed to ac-
commodate the migration of the multiples, I ran some tests using common-azimuth migration
(Biondi and Palacharla, 1996). Figure 4.14 shows the inline dimensions (CMP and offset) of
an SODCIG after common-azimuth migration. Notice that the multiples have been mapped to
the negative subsurface offsets and to shallower depths, consistent with the results of Chap-

ter 2.

SOURCE-RECEIVER MIGRATION

After the data reduction afforded by the datuming and appropriate padding in offsets, I input
to the source-receiver migration a very small dataset with only 32 CMPs in the inline direc-
tion, 144 CMPs in the crossline direction, 120 offsets in the inline direction, 24 offsets in the
crossline direction and 200 frequencies. The data was migrated with 600 depth steps at 10 m

(starting at the depth of the water-bottom at zero crossline CMP or about 1000 m).

Figure 4.15 shows the inline dimensions of one SODCIG. Again, note that the multiples
migrate to the negative subsurface offsets and are well separated from the primaries, which

map around zero subsurface offset.
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Figure 4.13: Before-after datuming comparison. Panels (a) and (c) correspond to the inline
CMP section at CMP-Y=-12.5 m, 150 m inline offset and -25 m crossline offset, before and
after datuming, respectively. Panels (b) and (d) correspond to the inline offset gather at CMP-
X=8550 m, CMP-Y=-12.5 m and -25 crossline offset, before and after datuming, respectively.
Notice that the datuming, besides shifting the data upwards, also healed the holes in the acqui-
sition and reduced the offset coverage. ‘3dsynth-datum_comp ‘ [CR]
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Figure 4.14: Common-azimuth migration. Panel (a) is the migrated inline section at CMP-
Y=662.5 m, zero inline subsurface offset and -25 m crossline subsurface offset. Panel (b) is
the inline subsurface offset gather at CMP-X=8400 m, CMP-Y=662.5 m and -25 m crossline
subsurface offset. Notice in panel (b) how the multiple migrated towards the negative subsur-

face offsets. | 3dsynth-cam1 | [CR]

In contrast with the inline direction, the sampling of the crossline offsets and CMPs is
very coarse and the results of the migration are not nearly as good. This is illustrated in
Figure 4.16 which shows a cube of crossline CMPs as a function of crossline offset. Although
the primaries have been relatively focused toward zero subsurface offset, there is still a lot of
energy smearing to both positive and negative crossline subsurface offsets. Even worse, the
multiple looks almost as focused as the primaries because of the lack of crossline data and

insufficient crossline migration aperture.

Figure 4.17 shows a zero subsurface-offset cube of the migrated data. The image is good
in the inline direction and somewhat noisy in the crossline direction. The large sparsity of the

crossline offsets create migration artifacts.
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Figure 4.15: Source-receiver migration. Panel (a) is the migrated inline section at CMP-
Y=1212.5 m, zero inline subsurface offset and 25 m crossline subsurface offset. Panel (b)
is the inline subsurface offset gather taken at CMP-X=8400 m, CMP-Y=1212.5 m and 25

m crossline subsurface offset. Notice again how the multiple migrates toward the negative
subsurface offsets. | 3dsynth-pre3dmig1 ‘ [CR]
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Figure 4.16: Source-receiver migration. Panel (a) is the migrated crossline section at CMP-
X=8450 m, zero inline subsurface offset and zero crossline subsurface offset. Panel (b) is the
crossline subsurface offset gather taken at CMP-X=8450 m, CMP-Y=912.5 m and zero inline
subsurface offset. |3dsynth-pre3dmig3 ‘ [CR]
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Figure 4.17: Source-receiver migration. Panel (a) is the migrated inline section at CMP-
Y=912.5 m, zero inline subsurface offset and zero crossline subsurface offset. Panel (b) is the
migrated crossline section at CMP-X=8400 m, zero inline subsurface offset and zero crossline
subsurface offset. The image in the inline direction is good, but in the crossline direction has
artifacts associated to the sparse sampling in that direction. |3dsynth-pre3dmig2 ‘ [CR]

MAPPING TO 3D ADCIGS

In 3D angle gathers, the multiples and the primaries behave differently not only in terms of
aperture angles but also in terms of reflection azimuth. For computational convenience, I first
windowed the SODCIGs in depth and computed the ADCIGs for the water-bottom primary
only. Panel (a) of Figure 4.18 shows the result for the ADCIG at CMP-X=8500 m and CMP-
Y=837.5 m. It is flat for a given azimuth although the range of aperture angles as a function
of the azimuth is limited. For zero aperture angle, by definition there is no azimuth resolution
(the incident and reflected rays coincide) and therefore all azimuths are seen as equally likely
to contribute to the image. Similarly, I windowed the water-bottom multiple and computed
the ADCIG as shown in panel (b) of Figure 4.18. The depth slice shows different azimuth
dependency compared with the primary. While the range of azimuths decrease with increasing
aperture angle for the primary, it does not for the multiples (compare the two depth slices). As a

function of aperture angle for a given azimuth, the multiple shows the expected over-migrated
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residual moveout. At zero aperture angle there is no azimuth resolution.

It is interesting to analyze the angle gathers as a function of azimuth for different aperture
angles. The water-bottom primary and the water-bottom multiple behave very differently as
shown in Figures 4.19 and 4.20. For the primary, as the aperture angle increases, the angle
gather as a function of azimuth becomes narrower as a consequence of the increase in azimuth
resolution. For large enough aperture angles, the incident and reflected rays are no longer any
where near co-linear and so nicely define a reflection plane whose azimuth is well defined
(see panels (d) an (e)), except for an artifact due to insufficient padding when computing the
ADCIG. For the multiple, as the aperture angle increases, the gather as a function of azimuth
curves up because it is over-migrated. There is no similar increase in azimuth resolution
because for the multiple there is not a clear notion of a reflection plane. Recall that, because
of the crossline dip, the ray from the source to the reflector to the surface bounce point is
contained in a plane normal to the reflector, whereas the ray from the bounce point to the
reflector to the receiver is contained in a plane normal to the surface, that is, a vertical plane.
The full multiple trajectory, from the source to the receiver, is therefore not contained on a

single plane.

Another interesting piece of information that 3D angle gathers can give us is the range of
aperture angles that are illuminated at a particular reflection azimuth angle. Figure 4.21 shows
the angle gathers of the water-bottom primary as a function of aperture angle for five reflection
azimuth angles: (a)-40, (b)-20, (c)0, (d)20 and (e)40 degrees. The moveout of the primary
is flat for those aperture angles that are actually illuminated at the corresponding reflection
azimuth. Given that both the water-bottom and the deep reflector dip in the same crossline
direction, the reflection azimuth coverage is good in that direction but is poor in the opposite
direction (positive azimuths with my sign convention). Notice that the angle gather may even
curve down as if it were over-migrated for those reflection azimuths not actually illuminating
the reflector. At first glance this is counter-intuitive, since the primary was migrated with the
exact primary velocity (Biondi and Tisserant, 2004). The curvature is due to poor illumination

and not to velocity errors.

Similarly, Figure 4.22 shows the corresponding gathers for the water-bottom multiple re-

flection. Unlike the primary, the multiple shows residual curvature at all azimuths. Not only
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Figure 4.18: 3D ADCIG at CMP-X=8500 m and CMP-Y=837.5 m for the water-bottom pri-
mary (a) and the water-bottom multiple (b). The depth slice is taken at the depth of the primary
(1220 m) in panel (a) and at the depth of the multiple (3840 m) in panel (b). The primary was
correctly migrated and therefore its moveout is flat. The multiple was over-migrated and so
exhibits residual moveout as a function of the aperture angle. ‘ 3dsynth-3dadcigs ‘ [CR]
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Figure 4.19: 3D ADCIG for the primary water-bottom reflection as a function of azimuth.
The different panels correspond to different aperture angles: (a) 0, (b) 5, (¢) 10, (d) 15 and
(e) 20 degrees. As the aperture angle increases, the azimuth resolution increases as well.
‘3dsynth-az _gathl ‘ [CR]

50 —50 50 —-50 50 —50 50 —-50
AZlmuth (deg) Ammuth (deg) Aznmuth (deg) Ammuth (deg) Aznmuth (deg)

Depth (m)
4000 3900 3800 3700 3600 3500

Figure 4.20: 3D ADCIG for the water-bottom multiple reflection as a function of azimuth.
The different panels correspond to different aperture angles: (a) O, (b) 5, (¢) 10, (d) 15 and
(e) 20 degrees. As with the primaries, there is no azimuth resolution at zero aperture angle.
In contrast to the primary, however, the azimuth resolution does not increase with increasing
aperture angle. | 3dsynth-az_gath2 ‘ [CR]
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Figure 4.21: 3D ADCIG for the primary water-bottom reflection as a function of aperture
angle. The different panels correspond to different reflection azimuth angles: (a)-40, (b)-20,
()0, (d)20 and (e)40 degrees. | 3dsynth-ap_gath1 ‘ [CR]
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Figure 4.22: 3D ADCIG for the first-order water-bottom multiple reflection as a function of
aperture angle. The different panels correspond to different reflection azimuth angles: (a)-40,
(b)-20, (c)0, (d)20 and (e)40 degrees. | 3dsynth-ap_gath2 ‘ [CR]
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that, but because of the crossline dip, the over-migrated multiple illuminates the reflector at

positive and negative azimuths.

AZIMUTH ILLUMINATION

As 1 showed in the previous section, for a given non-zero aperture angle, the residual moveout
of the primaries and the multiples in 3D ADCIGs is very different as a function of azimuth.
In this section I explore the possibility of using this azimuth dependence as a tool to attenuate

the multiples.

Stack of all azimuths

I start by stacking the 3D ADCIGs for the multiple and the primary over all azimuths and
aperture angles. The result should be their migrated images. Figure 4.23 shows a comparison
of the stack cubes of the primary and the water-bottom multiple. Panel (a) is the inline stacked
section of the primary at crossline CMP-Y=1500 m. Panel (b) is the crossline stacked section
of the primary at inline CMP-X=8450 m. Panel (c) is the inline stacked section of the mul-
tiple taken at crossline CMP-Y=462.5 m and panel (d) is the crossline stacked section of the
multiple taken at inline CMP-X=8450 m. All panels are clipped at the maximum amplitude of
the primary which would have been the case if they would have both been in the same panel.
Notice that the vertical scale is not the same for both panels nor is the scale of the crossline
axis. While the primary and the multiple appear to have the same dip in the crossline direc-
tion, the dip of the multiple is about twice greater. The multiple looks so washed out because
its maximum amplitude is only about one twentieth the maximum amplitude of the primary.
Figure 4.24 shows the same figure but with panels (a) and (b) clipped at maximum amplitude
of the the primary and panels (c) and (d) clipped at the maximum amplitude of the multiple so

that we can assess better the character of the multiple.
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Figure 4.23: Stack over reflection azimuth and aperture angle of the 3DADCIGs computed
for the water-bottom primary (panel (a)) and the water-bottom multiple (panel (b)). All panels
clipped at the maximum amplitude of the primary. |3dsynth-full_az_stack_clipl ‘ [CR]
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Figure 4.24: Stack over reflection azimuth and aperture angle of the 3DADCIGs computed
for the water-bottom primary (panel (a)) and the water-bottom multiple (panel (b)). Panels (a)
and (b) clipped at the maximum amplitude of the primary. Panels (c) and (d) clipped at the
maximum amplitude of the multiple. ‘ 3dsynth-full_az_stack_clip2 ‘ [CR]
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Stack of selected azimuths

To select the combinations of aperture angle and reflection azimuths that more likely corre-
spond to the primaries, I created a mask of ones and zeros and smoothed it. Figure 4.25 shows
the mask. Compare with the depth slice in panel (a) of Figure 4.18. I then applied the mask

and obtained, for both the primaries and the multiples.

50

Figure 4.25: Mask to select the aper-
ture angle-reflection azimuth com-
bination illuminating the primary.
White is one. |3dsynth-ap_az_mask
[CR]
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To assess how much of the multiple can be attenuated in the angle stack of the data I
stacked the masked versions of both the primary and the multiple. In both cases I normalized
by the number of traces (azimuths and aperture angles) that actually contributed to the stack
given the mask. Figure 4.26 shows the results and is completely analogous to Figure 4.23. All
panels are clipped at the maximum amplitude of the masked primary. The azimuth filtering
decreased the overall energy of the already weak multiple. To better see the effect of the
azimuth filtering, I plotted in Figure 4.27 the same data such that the primary is clipped at its
maximum masked value and the multiple is clipped at the amplitude of the masked primary
divided by the ratio between the maximum amplitudes of the un-masked primaries and the
un-masked multiples, so that the figure is directly comparable to Figure ??. Notice that the
azimuth filtering decreased the overall amplitude of the multiple but did not appreciably alter

its character.

Azimuth of the multiple reflection

In the previous section I showed that, while the primaries were illuminated only by a relatively
narrow range of azimuths at large aperture angles, the multiples were illuminated at a much
wider range of azimuths and showed no increase in azimuth resolution as the aperture angle in-

creased. This is not only due to the multiple being over-migrated. It is also due to the crossline
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Figure 4.26: Stack over reflection azimuth and aperture angle of the masked 3D ADCIGs for
the water-bottom primary (panel (a)) and the water-bottom multiple (panel (b)). All panels
clipped at the maximum amplitude of the primary. |3dsynth-masked_az_stack_clipl ‘ [CR]
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Figure 4.27: Stack over reflection azimuth and aperture angle of the masked 3D ADCIGs for
the water-bottom primary (panel (a)) and the water-bottom multiple (panel (b)). Panels (a) and
(b) clipped at the maximum amplitude of the masked primary and panels (c) and (d) clipped at
that amplitude divided by the ratio between the maximum amplitude of the un-masked primary

and the maximum amplitude of the un-masked multiple. ‘3dsynth-masked_az_stack_clip2‘
[CR]
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dip of the water-bottom that makes the multiple path not being contained in a single plane. To
emphasize this point, I migrated again the data with water velocity. In the absence of crossline
dip, the multiple would behave exactly as a primary and would be well focused in SODCIGs
and ADCIGs and show the same dependence with azimuth as the primary does. Figure 4.28
shows the inline SODCIG corresponding to exact same location as that in Figure 4.15. Notice
how the multiple is now focused at zero inline subsurface offset while the deep primary (2000
m depth) is under-migrated and curves down. Similarly in Figure 4.29 that is equivalent to
Figure 4.16. Notice that the water-bottom primary is migrated exactly as it was before since
its migration velocity has not changed. Notice also the weak peg-leg multiple under-migrated
at below 4000 m depth in panel (b).
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Figure 4.28: Migration with constant velocity. Panel (a) is the migrated inline section at
CMP-Y=1212.5 m, zero inline subsurface offset and 25 m crossline subsurface offset. Panel
(b) is the inline subsurface offset gather taken at CMP-X=8400 m, CMP-Y=1212.5 m and
25 m crossline subsurface offset. Notice again how the multiple is focused as a primary.
‘ 3dsynth-mig3d_inline_const_vel ‘ [CR]

To verify the azimuth dependence of the multiple migrated with the right velocity, I com-
puted new ADCIGs. Figure 4.30 is equivalent to Figure 4.20. Although the multiple behaves
like a primary in the inline SODCIGs, it behaves different from a primary in ADCIGs as a

function of azimuth. Compare Figures 4.20 and 4.30. This is also emphasized in Figure 4.31
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Figure 4.29: Migration with constant velocity. Panel (a) is the migrated crossline section at
CMP-X=8450 m, zero inline subsurface offset and zero crossline subsurface offset. Panel (b)
is the crossline subsurface offset gather taken at CMP-X=8450 m, CMP-Y=912.5 m and zero
inline subsurface offset. | 3dsynth-mig3d_xline_const_vel ‘ [CR]

which shows the residual moveout of the multiple as a function of aperture angle for fixed az-
imuth. This figure is the equivalent of Figure 4.22 for the primary. The effect of the crossline is
to force the multiple reflection to take place in two different planes: one from the source to the
reflector to the surface and a different one from the surface to the reflector to the receiver. The

multiple, therefore, even though it was migrated with the correct velocity, is not equivalent to
a primary ADCIGs.

DISCUSSION

In principle, primaries and multiples can be separated not only in ADCIGs but even in SOD-
CIGs. For this dataset, however, the crossline dips of the reflectors were relatively minor so
that little difference existed in the crossline component of the SODCIGs between the primaries
and the multiples. The discrimination between primaries and multiples in this case is exclu-

sively in the inline subsurface offset direction. I will show in Chapters 5 and 6 with a real
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Figure 4.30: 3D ADCIG for the water-bottom multiple reflection migrated with water ve-
locity as a function of azimuth. The different panels correspond to different aperture an-
gles: (a) 0, (b) 5, (¢) 10, (d) 15 and (e) 20 degrees. Compare with Figures 4.19 and 4.20.
‘ 3dsynth-az_gath2_const_vel ‘ [CR]
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Figure 4.31: 3D ADCIG for the first-order water-bottom multiple reflection migrated with
water velocity as a function of aperture angle. The different panels correspond to different
reflection azimuth angles: (a)-40, (b)-20, (c)0, (d)20 and (e)40 degrees. Compare with Fig-
ures 4.21 and 4.22. ‘3dsynth—ap_gath2_const_vel‘ [CR]
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3D data example that, for subsalt reflections, and in general when the crossline dips are high,
the discrimination between primaries and multiples can also happen in the crossline subsur-
face offset direction (provided enough crossline subsurface offsets were computed and enough

crossline migration aperture was used).

Primaries and multiples can also be discriminated on the basis of their residual moveouts
in 3D ADCIGs. Furthermore, in 3D ADCIGs there is the additional advantage of the multiples
and the primaries behaving differently as a function of azimuth for a given aperture angle and
as a function of aperture angle for a different azimuth. This differential azimuth dependency
can be exploited to compute a three-dimensional Radon transform that is a function of aperture
angle and azimuth similar to the apex-shifted Radon transform of chapter 2. For the sake of
computer time, in Chapter 6 I will take the simpler route of attenuating the multiples as a
function of aperture only by first stacking the data over azimuths. I use a slight modification

of the methodology presented in Chapters 2 and 3.

In this chapter I make no attempt to actually compute a multiple model, and thereby es-
timate the primaries, for two reasons: first, the model is so simple that the multiples and the
primaries separate completely as a function of depth in the Radon domain, defeating the pur-
pose of separating them as a function of curvature. Second, a full application of the ideas
presented in this chapter will be applied in Chapter 6 with all the challenges of real data and
therefore it would be redundant to present it here. The value of this chapter is that the simple
model allows a relatively straight forward interpretation of the mapping of the multiples in the
five-dimensional image spaces of SODCIGs and ADCIGs, which would have been difficult
with real data. The lessons learned in this chapter will prove useful in interpreting the less

straight forward results of Chapter 6.

Another important result of this chapter is the realization that, despite its theoretical appeal,
source-receiver migration is not an ideal imaging tool for these kinds of sparse geometry (even
without feathering). For the imaging of the real dataset, therefore, I will use shot profile
migration. The main advantage is that each shot can be migrated separately, feathering is
easier to handle and, more importantly, there is no need to create a gigantic, regular, five-

dimensional dataset.
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CONCLUSION

Although the migration results were somewhat limited because of the huge amount of data
needed to form a complete five-dimensional dataset, even for a very small area, they do show
that with 3D data we can discriminate between primaries and multiples in the image space on
the basis of their different residual moveouts in SODCIGs or ADCIGs, and as a function of
azimuth in 3D ADCIGs.
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Chapter 5

| maging and mapping 3D multiplesto image
gathers: Example with a Gulf of Mexico

dataset

SUMMARY

In this chapter, I migrate a real 3D seismic dataset from the Gulf of Mexico with shot profile
migration. The dataset contains specular water-bottom multiples, peg-leg multiples associated
with a large, shallow salt body, and diffracted multiples originating at the salt edges. Both
the water bottom and the salt body have significant cross-line dip which makes it difficult to
model the trajectory of the multiples and to apply 3D SRME. The location of the multiples
in the image domain is severely affected by the presence of the salt and thus do not follow
the geometry of the multiple-generating interface. As a consequence, some multiples could
easily be interpreted as primaries. I show that primaries and multiples (even subsalt) can be

discriminated by their different moveouts in SODCIGs and ADCIGs as in Chapter 4.
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INTRODUCTION

The Gulf of Mexico dataset, provided by VeritasDGC, was acquired over a complex salt body
with structure in both the inline and the cross-line directions. The water-bottom dips in some
places as much as 11 degrees in the cross-line direction making the mapping of the multiples
in the image-space cube difficult to predict. The presence of the salt distorts the multiples so
much that in many cases it is difficult to discern with any certainty which events are multiples
and which events are primaries in the migrated cube. An important tool for that purpose are
the SODCIGs where the multiples can be identified by their tendency to map away from zero
inline and crossline subsurface offsets, and the ADCIGs where primaries should be flat as a

function of aperture angle while multiples exhibit residual moveout as I showed in Chapter 4.

I first migrate a sail line, with shot profile migration, to assess the possibility of discrimi-
nating between primaries and multiples on inline subsurface offsets, where, according to the
results of Chapter 4, there is better chance of imaging the multiples. The results are encour-
aging and show in several places that enough differential curvature exists between primaries
and multiples in inline SODCIGS and ADCIGs even below salt. The image cube, however, is
poor because of the large crossline dips that require that much more than one sail line be mi-
grated in order to capture the flanks of the salt bodies and in one case even its top and bottom.
The multiples, of course, are also improperly migrated in just one sail line. I then migrate the
entire dataset with a large crossline migration aperture. Due to computer limitations, only a
relatively small inline migration aperture was used and no prestack image gathers were cre-
ated. The image cube shows great improvement in the image of the salt flanks as well as the
top and bottom salt reflections that were missing from the migration of only one sail line. The
steepest salt flanks are still poorly imaged because of the limitations in the amount of available
data. This image cube was used to select a smaller dataset below a small salt body, to perform
a full-fledged shot profile migration with the computation of prestack images in both the inline

and crossline directions.

In this chapter [ will compare the different prestack image domains and show the behavior
of the primaries and multiples, in particular subsalt multiples. I will defer until the next chapter

the actual attenuation of the multiples.
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DESCRIPTION OF THE DATA

Acquisition geometry

The 3D dataset consists of 20 sail lines each with four active streamers and dual flip-flop
shooting. The separation between streamers is 160 m and between receivers is 25 m. The shot
interval is 37.5 m (between the flip and the flop). The minimum offset inline is 240 m and
each streamer has 288 receivers for a maximum inline offset of 7175 m. Figure 5.1 shows
the acquisition template. Figure 5.2 shows a map view of the subset of the shots used in this
thesis. Although most sail lines were straight in the East-West direction, a few had significant

curvature.

288 receivers (25m)

_,-f—"'A“——_
80m 160 m
R F40m
k_‘,_i
240 m
7275 m

Figure 5.1: Sketch of the basic acquisition geometry ‘ 3dreal-acq_sktchl ‘ [NR]

The strong currents present in the area caused significant feathering. Figure 5.3 shows an
example for the sail-line at cross-line distance 11440 m (see Figure 5.2. The feathering angle
is about 25 deg with respect to the inline direction. For most shots, the feathering was in the

same South-North direction. Figure 5.4 shows the fold of coverage that in some places depart
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Figure 5.2: Map view of the source locations. | 3dreal-shots_map ‘ [CR]

significantly from its design value of 48. Some of the short source lines in Figure 5.2 were

acquired as infill to avoid large coverage holes.

Migration velocity model

The migration velocity model (provided by Norsk Hydro), shows a large, complex salt body
with steeply dipping flanks in both inline and cross-line directions (Figure 5.5). The water-
bottom itself dips in some places as much as 11 degrees in the cross-line direction, although it

is relatively flat in the inline direction.

SHOT PROFILE MIGRATION

Attempting to migrate and compute 3D angle gathers for the entire dataset would be way too
expensive, so I started by migrating the data without computing prestack 3D images. The

idea is to obtain a good image that can be used to select a smaller, subsalt dataset, on which
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Figure 5.3: Map view of the receiver cables for one shot illustrating typical feathering. The
feathering angle is about 25 deg with respect to the inline direction. |3dreal-feathering ‘ [CR]
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Figure 5.4: Fold map illustrating relatively uniform coverage. | 3dreal-fold | [CR]
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Figure 5.5: Subsurface velocity model. Note the strong dips in both the inline and cross-line
directions. | 3dreal-vmodel | [CR]

to compute the image gathers. Table 5.1 shows the parameters and data extent used for this

migration.
Table 5.1: Migration parameters and data extent for full migration.
Inline Crossline
Min CMP | Max CMP | Aperture (m) | Min CMP | Max CMP | Aperture (m)
5000 32000 10000 10000 14000 4000

In order to efficiently migrate the data with shot profile migration, I removed the time
samples before the water-bottom arrival. This is equivalent to time-shifting the data (changing
its origin) and I compensated for it by applying a linear frequency shift to the source wavelet.
The propagation through the water layer was done in two depth steps and from there down the
depth sampling was 10 m. The propagation was done with a Phase Shift Plus Interpolation
algorithm (Gazdag and Sguazzero, 1984; Biondi, 2006). For the sake of computer time, only
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two reference velocities, computed with Lloyd’s algorithm (Clapp, 2004), were used to prop-
agate the data at each depth step. Four hundred frequencies were used from 6 to 40 Hz. A
total of 8600 shots were migrated. Figure 5.6 shows an inline section taken at CMP-Y=11840
m. Again, recall that the depth axis is with respect to an arbitrary reference. The migrated
data was filtered in depth and a gain proportional to the depth squared was applied for dis-
play purposes. Both the top and bottom reflections of the smaller salt body are well imaged,
as are most subsalt reflections directly below it. The salt bottom reflection for the larger salt
body is also well imaged but its right flank is poorly imaged because of lack of data. The
available dataset did not extend enough beyond CMP-X=25000 m to capture the correspond-
ing reflections. Notice what seems to be a multiple below 4000 m depth, specially around
CMP-X=16000 m. The rectangle encloses the subset image that was deemed most promising
to illustrate the attenuation of subsalt multiples. A new shot profile migration, including the

computation of prestack images was carried out on this subset of the data.

2000

Depth (m)

4000

6000

10000 15000 20000 25000
CMP_X (m)

Figure 5.6: Shot profile migration. Inline image section at crossline CMP 11440 m. The
rectangle encloses the subset of the image for which a new migration was performed including
the computation of prestack images. | 3dreal-mignooffs_inline ‘ [CR]

Figure 5.7 shows the crossline image section taken at CMP-X=12000 m. Notice that the
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bottom of the salt and the subsalt reflections deteriorate to the left of about CMP-Y=11500
m. This again is due to lack of available data to the left of CMP-Y=10000 m. Here again the

rectangle encloses the subset of the data to attempt the attenuation of subsalt multiples.

2000

Figure 5.7: Shot profile migration.
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PRESTACK MIGRATED IMAGES

Based on the results of the previous section, I computed the full-fledged shot profile migration
of the selected sub-salt dataset, including the computation of three-dimensional image gathers.
The migration parameters and the range of data migrated are summarized in table 5.2. Four
reference velocities were used at each depth extrapolation step, chosen with Lloyd’s algorithm.
Two hundred and fifty frequencies were used in the range 6-38 Hz. Three hundred depth

extrapolation steps were taken at 10 m depth interval. A total of 4300 shots were migrated.

The result of the shot profile migration is a five-dimensional cube that is challenging to
visualize. I will show some of the more common prestack subsets of the data to give an idea

of the mapping of both primaries and multiples in the migrated domain. Figure 5.8 shows
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Table 5.2: Migration parameters and data extent. The minimum and maximum offsets refer to
the subsurface offsets for the SODCIGs.

Inline
Min CMP | Max CMP | Min OFF (m) | Max OFF (m) | Aperture (m)
9000 17000 -750 250 8000
Crossline
Min CMP | Max CMP | Min OFF (m) | Max OFF (m) | Aperture (m)
10000 14000 -600 600 4000

the 3D image cube taken at zero inline and zero crossline subsurface offsets. The top panel
shows a depth slice at 4630 m where there is a hint of a multiple cutting through the primary
reflections shown in the inline section (left panel) and pointed to by the arrow. This inline
section is taken at CMP-Y=13000 m. The right panel shows the crossline section at CMP-
X=14400 m. It is very difficult to discriminate which of these subsalt reflections are primaries
and which are multiples without the help of prestack migrated images. The image in the
crossline direction (right panel) is not nearly as clear because of the relatively few crossline
CMPs that went into the prestack migration. This makes the identification of multiples in that

panel even more difficult.

Ideally, the primaries should migrate to zero inline and zero crossline subsurface offsets.
Errors in migration velocity and illumination problems may make them shift away from zero
subsurface offsets, but in most situations these shifts away from zero subsurface offset are
minor when compared to those of the multiples for which the difference between propagation
and migration velocity is large. Therefore, we can expect that the primaries and the multiples
be relatively easy to identify by their mapping in both the inline and crossline subsurface
offsets. Figure 5.9 shows one 3D SODCIG taken at the spatial location CMP-X=14400 m
and CMP-Y=13000 m (see Figure 5.8). The inline offset gather (panel (a)), corresponds to
OFF-Y=0 while the crossline offset gather (panel (b)), corresponds to OFF-X=-500 m. In the
inline offset gather we see that the primaries map near zero offset (above 3000 m) whereas
the multiples map entirely to the negative subsurface offsets (around 4500 m and below 5500

m). Since the crossline offset gather is taken at the inline offset of the multiple (-500 m), the
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Figure 5.8: Shot profile migration. Zero subsurface offset cube. Top panel is a depth slice at
6430 m, left panel is the inline section at crossline 13000 m and right panel is the crossline

section at inline 14400 m. |3dreal-3dzoff | [CR]
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primaries are absent and the multiples map to both positive and negative subsurface offsets.
This is a consequence of the geometry of acquisition that had positive inline surface offsets
only but positive and negative crossline surface offsets. Notice also that more subsurface
offsets, specially in the crossline direction, should have been computed in order to capture the

multiples in their entirety.

3500

4000

Figure 5.9: Shot profile migration.
SODCIG at CMP-X=14400 m and
CMP-Y=13000 m. Panel (a) is the in-
line offset gather taken at OFF-Y=0
and panel (b) is the crossline off-
set gather taken at OFF-X=-500 m.
3dreal-gather_14400_13000 ‘ [CR]
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Figure 5.10 shows a subset of the five dimensional hyper-cube taken at CMP-Y=13000 m
and OFF-Y=0 m. There is, therefore, no crossline information on this figure. Panels (a) and
(c) show the inline sections at zero and -400 m inline subsurface offsets respectively, while the
middle panel shows the inline gather at CMP-X=14400. Since the crossline offset is zero in
all the panels, we can expect to see the primaries near the zero inline offset in panel (b) and
as the dominant reflections in panel (a). The multiples (at least those that did not map away
from zero crossline offset), we can expect to find at the negative inline offsets in panel (b) and
as the dominant reflections in panel (c). Notice how it would have been very hard to visually

distinguish primaries and multiples without the aid of these prestack images.

To take an even closer look at the multiples, Figure 5.11 shows a similar figure to Fig-
ure 5.10 but for CMP-X=9900 m. This time both panels (a) and (c) correspond mostly to
multiples. An interesting observation is that the residual moveout of the multiple in panel

(b) seems to have its bottom away from zero inline subsurface offset, indicating perhaps a
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Figure 5.10: Inline section and inline offsets at CMP-Y=13000 m and OFF-Y=0. Panel (a) is
the inline section at zero inline offset. Panel (b) is the inline offsets at CMP-X=14400 m and
Panel (c) is the inline section at -400 m inline offsets. Panel (a) should be mostly primaries
while panel (c) should be mostly multiples. ‘ 3dreal-inlinel_0_13000 ‘ [CR]

diffracted multiple. Furthermore, recall that this inline plane is taken at zero crossline offset.

The situation is even more manifest if the section is taken at a crossline offset away from zero.

Finally, to illustrate the mapping of the multiples in the crossline direction, Figure 5.13
shows the subset taken at CMP-X=14000 m and OFF-X=0. As with the previous two figures,
panel (a) corresponds to the crossline section at OFF-Y=0 while panel (c) is a similar section
at OFF-Y=-400 m. The middle panel corresponds to the crossline offset gather. Here also the
primaries should map to panel (a) while some of the multiples (those that did not map away
from zero inline offset), should map to panel (c). In panel (b) we can see that the primaries
map near zero crossline offset while the multiples map away from zero both to positive and
negative subsurface offsets. Similarly, Figure 5.14 shows the subset taken at the same CMP-X
location but at OFF-X=-600 m. Both panels (a) and (c) should now correspond to multiples

and no primaries should be mapped to any of these panels.
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Figure 5.11: Inline section and inline-offset gather at CMP-Y=13000 m and OFF-Y=0. Panel
(a) is the inline section at zero inline offset. Panel (b) is the inline offsets at CMP-X=9900 and
Panel (c) is the inline section at -200 m inline offsets. Panel (a) is mostly primaries and panel
(c) is mostly multiples. | 3dreal-inline2_0_13000 |[CR]
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Figure 5.12: Inline section and inline-offset gather at CMP-Y=13000 m and OFF-Y=-400.
Panel (a) is the inline section at zero inline offset. Panel (b) is the inline offsets at CMP-
X=14400 and Panel (c) is the inline section at -500 m inline offsets. Panel (a) has some

contributions from primaries and multiples whereas panel (c) should be almost exclusively
multiples. | 3dreal-inline1-400_13000]| [CR]
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Figure 5.13: Shot profile migration. Crossline section and crossline offsets at CMP-X=14000
m and OFF-X=0. Panel (a) is the crossline section at zero crossline offset. Panel (b) is the
crossline offsets at CMP-Y=12760 m and Panel (c) is the crossline section at -400 m crossline

offsets. Panel (a) should be mostly primaries while panel (c) should be mostly multiples.
3dreal-xline1_0_14000 ‘ [CR]
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Figure 5.14: Shot profile migration. Crossline section and crossline offsets at CMP-Y=14000
m and OFF-X=-600. Panel (a) is the crossline section at zero crossline offset. Panel (b) is the
crossline offsets at CMP-Y=13300 m and Panel (c) is the crossline section at -240 m crossline
offsets. Both panels (a) and panel (c) should be multiples. ‘3dreal—xline1—600_14000 ‘ [CR]
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MULTIPLES IN ADCIGS

I will now show the results of computing the 3D angle gathers from the SODCIGs shown in the
previous section. Figure 5.15 shows two 3D angle gathers. The first one (panel (a)) is taken at
CMP_X=14000 m and CMP_Y=13500 m and the second one (panel (b)) at CMP_X=11000 m
and CMP_Y=13000 m. The 3D ADCIG in Panel (a) shows two strong primaries at the top and
and weak multiples at the bottom. Notice in the depth slice a pattern similar to the one obtained
for the synthetic data primary in Chapter 4 (recall panel panel (a) of Figure 4.18). Notice also
that the azimuth coverage of the primaries decreases (that is, the azimuth resolution increases),
as the aperture angle increases. The two primaries focus at slightly different azimuths as seen
in the azimuth gather of panel (a). The 3D ADCIG in Panel (b), on the other hand, shows a
weak primary at the very top and a strong multiple at the bottom. Again, the depth slice is
consistent with the one obtained for the synthetic data multiple in Chapter 4 (recall panel (b)
of Figure 4.18) and, contrary to the primary, shows a broad range of azimuth coverage at large

aperture angles.

In order to investigate the variation of the residual moveout of primaries and multiples
with reflection azimuth, I plot in Figure 5.16 the angle gather at location CMP_X=13000 m
and CMP_Y=13000 m for aperture angles of 0, 5, 10, 15 and 20 degrees. At zero aperture
angle (panel (a)), neither the primaries nor the multiples show any azimuth resolution. As
the aperture angle increases, the primaries are focused to a relatively narrow range of az-
imuths (panel (e) above 5500 m) whereas the multiples are essentially scattered. Similarly,
Figure 5.17 shows the same gathers but at location CMP_X=14000 m and CMP_Y=14000
m. Again, notice the azimuth focusing of the weak primaries at the top (panel (e)) and the
upswings of the multiple (panels (c), (d) and (e)). The lack of azimuth focusing of the multi-
ples with increasing aperture angle is a consequence of the crossline dip and velocity lateral
velocity variations that cause the multiple path to be very complex with no defined azimuth

even for large aperture angle.

Finally, to investigate the variation of the residual moveout of the primaries and the mul-
tiples with aperture angle, Figures 5.18 and 5.17 show angle gathers at reflection azimuths of

-40, -20, 0, 20, 40 at the same locations as Figures 5.16 and 5.19, respectively. Notice that in
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Figure 5.15: 3D angle gathers. (a) at CMP_X=14000 m and CMP_Y=13500 m.
(b) at CMP_X=11000 m and CMP_Y=13000 m. Notice the strong primaries above
5500 m depth in panel (a) and the strong multiple below 6000 m depth in panel (b).
3dreal-3d_gaths_14000_13500-11000_13000 ‘ [CR]




119

Depth (m)
4000 3500

4500

5000

—-30 0 30 —-30 0 30 —-30 0 30 -30 0 30 -30 0 30
Azimuth (deg) Azimuth (deg) Azimuth (deg) Azimuth (deg) Azimuth (deg)

Figure 5.16: 3D angle gathers as a function of azimuth for aperture angles of 0, 5, 10, 15 and 20
degrees (panels (a) through (e)). The gather is taken at CMP_X=13000 m and CMP_Y=13000
m. | 3dreal-3d_az_13000_13000 | [CR]
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Figure 5.17: 3D angle gathers as a function of azimuth for aperture angles of 0, 5, 10, 15 and 20

degrees (panels (a) through (e)). The gather is taken at CMP_X=11000 m and CMP_Y=13000
m. |3dreal-3d_az_11000_13000 | [CR]
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both figures the moveout of the primaries is flat at all the azimuths that illuminate the reflector
whereas the multiple shows the expected over-migrated moveout. It is interesting to see that
the multiple essentially disappears in panel (e) of Figure 5.18 indicating that it was not illumi-
nated at that azimuth (at least not in the aperture range of 0 to 20 degrees). This is somewhat
in contrast to the results for the synthetic data in Chapter 4 that indicated that the multiple was
illuminated with an azimuth range similar to that of the primary (compare the depth slices in
panels (a) and (b) of Figure 4.18. This is not the case with this real data (compare the depth
slices in panels (a) and (b) of Figure 5.15) for which the multiples seem to be illuminated

preferentially at small aperture angles. A similar behavior is well known with 2D data.

(d) (e)
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Figure 5.18: 3D angle gathers as a function of aperture angle for reflection azimuths of -40,
-20, 0, 20 and 40 degrees (panels (a) through (e)). The gather is taken at CMP_X=13000 m
and CMP_Y=13000 m. ‘ 3dreal-3d_ap_13000_13000 ‘ [CR]

DISCUSSION

The results of Chapter 4 indicated that we could discriminate between primaries and multiples
in inline subsurface offset gathers but perhaps not in the crossline subsurface offset. In this

chapter I showed that we can discriminate between primaries and multiples in both subsurface
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Figure 5.19: 3D angle gathers as a function of aperture angle for reflection azimuths of -40,
-20, 0, 20 and 40 degrees (panels (a) through (e)). The gather is taken at CMP_X=11000 m
and CMP_Y=13000 m. ‘ 3dreal-3d_ap_11000_13000 ‘ [CR]

offset directions if there is enough crossline dip.

A full 3D migration with large inline and crossline migration apertures is necessary to
correctly image the multiples. To attenuate the multiples we need to compute prestack image
gathers as a function of subsurface offset or aperture and azimuth angles. Below salt both
primaries and multiples are illuminated only by a narrow range of aperture angles. This makes
the difference in moveout between primaries and multiples relatively small. In fact, if we
consider only inline subsurface offset gathers at zero crossline subsurface offset and vice-
versa, the difference in moveout may indeed be too small. But we need to remember that in a
way that is the worst case scenario because the difference between the moveout of primaries
and multiples in inline subsurface offsets is larger at non-zero crossline subsurface offsets and
vice-versa. Similarly for the 3D ADCIGs.

It is challenging to fully appreciate all the information in the five-dimensional SODCIGs
or ADCIGs and just looking at individual planes gives only glimpses of the true difference

between the primaries and the multiples. The main message of this chapter is that we can
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indeed discriminate between them even for subsalt reflections. In the next chapter I go into

the craft of actually attenuating the multiples in the Radon domain.

CONCLUSIONS

Complex subsurface distorts multiples and make their identification difficult in the image
space. SODCIGs help in discriminating between primaries and multiples but are expensive
to compute. 3D ADCIGs are even more expensive to compute but can be used to attenuate the

multiples as will be shown in the next chapter.
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Chapter 6

Attenuation of subsalt multipleswith Gulf of

M exico dataset

SUMMARY

In Chapter 5 I showed, with the real 3D dataset, that multiples could be identified relatively
easily in SODCIGs and ADCIGs even below salt. In this chapter I will show the results of
attenuating the subsalt multiples in both SODCIGs and ADCIGs. A reasonably good level
of multiple attenuation is achieved by simply muting the multiple energy that mapped away
from zero subsurface offsets and stacking the results. This simple strategy do not completely
attenuate the multiples, but provide a quick and dirty way of getting a reasonably accurate
estimate of the primaries. Better results can be achieved by going to the expense of apply-
ing Radon filtering in 3D-ADCIGs. I applied the same approach used in 2D in Chapter 2 on
azimuth-stacked ADCIGs. The results are good. Some multiple energy remains, but the bulk
of it is well attenuated. A full 3D Radon transform that accounts for azimuth and aperture an-
gle has the potential for even better attenuation of the multiples but it would be very computer

intensive.

123



124 CHAPTER 6. 3D MULTIPLE ATTENUATION WITH GOM DATA

INTRODUCTION

The standard migrated cube corresponds to zero inline and zero crossline subsurface offset and
therefore avoids the bulk of the multiples which migrate away from zero subsurface offset in
both directions. We could also think of this migrated cube as analogous (although not equal)
to an angle stack. The stack itself is effective in attenuating some of the multiples, especially
at large aperture angles. A direct way to improve the power of the stack is to mute the multiple
energy that mapped away from zero subsurface offsets and stacking the results. The idea
is that, specially under salt, primaries are not just migrated to zero subsurface offsets but to a
small region around them. By stacking in SODCIGs we can improve the relative amplitudes of
the primaries and the residual multiples. This simple strategy does not completely attenuate the

multiples, but provides a quick way of getting a reasonably accurate estimate of the primaries.

In order to improve the level of multiple attenuation, I apply Radon filtering in 3D-
ADCIGs. I applied the same method described for 2D data in Chapter 2 on azimuth-stacked
ADCIGs. This is appropriate because the primaries are flat for those azimuths that illuminate
them. I show that the multiples exhibit nice obvious curvature as a function of the aperture
angle and therefore are well focused in the Radon domain. As I did in Chapter 2, I then muted
out the primaries in the Radon domain to estimate a multiple model. Subtraction from the data
provides an estimate of the primaries. These estimates were then used to adaptively match and
subtract the multiples in the way presented in Chapter 3. The results are good, with most of

the multiple energy being attenuated.

MULTIPLE ATTENUATION IN SODCIGS

Since multiples map away from zero in inline and crossline subsurface offsets whereas the
primaries map near zero subsurface offset when migrated with an accurate primary velocity,
there is an opportunity to attenuate the multiples directly in SODCIGs without having to com-
pute 3D-ADCIGs, apply Radon filtering, and do adaptive matching. This would not only be
easier but also much less expensive. We have a good approximation for the residual moveout

of the multiples in SODCIGs so we could apply a Radon transform directly to the SODCIGs
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to focus the multiples. The problem is that, unlike in ADCIGs, the primaries do not have
flat residual moveout. Applying a Radon transform would map the primaries to all curvatures
in the Radon domain, thus making it difficult to separate them from the multiples. An even
simpler alternative is to apply a tapered mute in SODCIGs as a function of subsurface offsets
to get rid of anything that mapped away from zero inline and zero crossline subsurface offset.
Stacking the muted SODCIGs should, therefore, attenuates some of the multiples. We cannot
expect to get rid of the multiples completely, because some energy from the multiples map

into the same region as the primaries, especially in crossline subsurface offsets.

Figure 6.1 shows a comparison of an inline section taken at crossline position CMP-
Y=13200 m of the stacked cube of the un-muted SODCIGs (panel (a)) and the muted SOD-
CIGs (panel (b)). Muting the large subsurface offsets resulted in a stacked section where the
primaries are better defined and the main multiple is moderately attenuated (pointed to by the
arrow). We know from Chapter 5 that this is a strong multiple. This multiple had little cur-
vature in the crossline subsurface offsets and therefore survived the mute and stack process.
Likewise, Figure 6.2 shows the comparison on a crossline section taken at CMP-X=13300 m.
Again, the main multiple, pointed to by the arrow, has been only moderately attenuated. In
general, multiple attenuation directly in SODCIGs leaves significant residual multiple energy

and is only a quick and inaccurate solution.

It should be noticed that we do not usually stack the SODCIGs. The zero inline and
zero crossline subsurface offset cube should be a good approximation to the angle stack in
a manner analogous to a CMP stack section being a good approximation to the zero offset
section in data space. I am stacking the SODCIGs here simply to illustrate that the difference
in the mapping of the primaries and the multiples is so large in SODCIGs that a good level
of multiple attenuation can be achieved simply by muting and stacking. I am assuming that
the primaries were migrated with a migration velocity accurate enough that they do not have

significant curvature in SODCIGs, which is consistent with the results of Chapter 5.
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Figure 6.1: Comparison of stacked SODCIGs for Inline section at CMP-Y=13200 m.
Panel (a) corresponds to un-muted SODCIGs and contains primaries and multiples. Panel
(b) corresponds to the muted SODCIGs and should have less energy from the mul-
tiples. The arrow points to the main multiple that was only moderately attenuated.
| 3dreal2-inline_sodcig_stk_13200 | [CR]
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Figure 6.2: Comparison of stacked SODCIGs for crossline section at CMP-X=13300 m.
Panel (a) corresponds to un-muted SODCIGs while panel (b) corresponds to the muted SOD-
CIGs. The strong multiple, pointed to by the arrow, was attenuated but not eliminated.
‘ 3dreal2-xline_sodcig_stk_13300 ‘ [CR]

MULTIPLES IN RADON DOMAIN

I showed in the previous section that some level of multiple attenuation was possible in the
image space without Radon filtering, but much of the multiple energy remained. In order to
improve the level of multiple attenuation, Radon filtering is necessary. In this section I apply

a direct extension of the Radon transform presented in Chapter 2.

The primaries in 3D angle gathers as a function of azimuth, for large aperture angles,
are localized to the reflection azimuth of the reflecting plane. The multiples, on the other
hand, due to the effect of crossline dip, may have strong moveout as a function of azimuth
except at zero aperture angle for which there is no azimuth resolution. This was shown for
the synthetic dataset in Chapter 4 and again in Figure ??. Exploiting this variation, however,
is not easy, since the multiple trajectory is hard to approximate by an explicit equation of
the type presented in Chapter 2. Instead, I applied the Radon transform to 3D ADCIGs after
stacking over azimuth. Figure 6.3 shows two 3D ADCIGs (stacked over azimuth) along with

the envelopes of their Radon transforms. Planes (a) and (b) correspond to the ADCIG at
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location CMP-X=10000, CMP-Y=12000 whereas panels (c) and (d) correspond to the ADCIG
at CMP-X=13800 CMP-Y=13000. Panels (a) and (b) are meant to illustrate a location in which
the multiple dominates and little primary energy is present. Panels (c) and (d), on the other
hand, illustrate a location where significant primary energy exits. It is very encouraging that
the moveout of the multiple in ADCIGs is so well defined and therefore well focused in the
Radon domain. Notice how the Radon transform nicely maps the multiples in both panels (b)
and (d) away from zero curvature, thus separating them from the primaries (at zero curvature,

see for example the top of panel (d)).
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0 10000 Q 10 20 Q 10000
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Figure 6.3: Radon transform of two azimuth-stacked 3D ADCIGs. Panel (a) is the AD-
CIG at CMP-X=10000 CMP-Y=12000 and panel (b) is its Radon transform. Panel (c)
is the ADCIG at CMP-X=13800 CMP-Y=13000 and panel (d) is its Radon transform.
| 3dreal2-radon_10000_12000_13800_13000| [CR]

In the next section I will show the multiple models obtained by muting the primary region

in the Radon domain and taking the inverse transform just as I showed in Chapter 2.

MULTIPLE ATTENUATION ON ANGLE GATHERS

In this section I will show the results of multiple attenuation computed with azimuth-stacked

3D angle gathers.
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Results on ADCIGs

Figure 6.4 shows a comparison of the ADCIG at CMP_X=10000 and CMP_Y=12000 m
stacked over azimuth (as in panel (a) of Figure 6.3 but plotted with a different clip value),
the initial estimate of the multiples (panel (b)), the initial estimate of the primaries (panel (c)),
the matched estimate of the multiples (panel (d)) and the matched estimate of the primaries
(panel (e)). The matched estimates of primaries and multiples were computed with the algo-
rithm presented in Chapter 3. The effect of matching is not too striking because our version
of the Radon transform is optimized to produce amplitudes close to the model. Nonetheless,
notice that the matching mapped back to the multiple panel the residual multiple energy that
contaminated the initial estimate of the primaries (just below 6000 m depth in panel (c)).
Compare panel (c) and (e). Figure 6.5 shows a similar comparison for the ADCIG taken at
CMP-X=13800 m CMP-Y=13000 m as in panel (c) of Figure 6.3. The multiple is well recov-

ered.
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Figure 6.4: Multiple attenuation in ADCIG at CMP_X=10000 and CMP_Y=12000 m. Panel
(a) is the original ADCIG. Panel (b) is the initial multiple estimate. Panel (c) is the initial
primary estimate. Panel (d) is the matched multiple estimate and panel (e) is the matched
primary estimate. | 3dreal2-comp-2d-ap-10000-12000| [CR]




130 CHAPTER 6. 3D MULTIPLE ATTENUATION WITH GOM DATA

Depth (m)
6000 5500

6500

7000

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Aperture (deg) Aperture (deg) Aperture (deg) Aperture (deg) Aperture (deg)

Figure 6.5: Multiple attenuation in ADCIG at CMP_X=13800 and CMP_Y=13000 m. Panel
(a) is the original ADCIG. Panel (b) is the initial multiple estimate. Panel (c) is the initial
primary estimate. Panel (d) is the matched multiple estimate and panel (e) is the matched
primary estimate. | 3dreal2-comp-2d-ap-13800-13000 | [CR]

Results on inline sections from the angle stacked-cube

To assess the level of multiple attenuation on the stacked images, I applied the Radon filtering
approach to all the azimuth-stacked 3D ADCIGs and stacked them over aperture angle. I will
show the results of the multiple attenuation on three inline angle stacks. Panel (a) of Figure 6.6
shows the inline angle stack at CMP_Y=11600 m before multiple attenuation. Panel (b) shows
the angle stack of the matched multiples and panel (c) shows the angle stack of the matched
primaries. The main multiple reflection has been nicely attenuated and, above CMP-X=10000
m we seem to have uncovered a weak flattish primary (pointed by arrow A). The oval points

to residual multiple energy that intersects another weak primary.

Figure 6.7 shows a similar comparison for the inline angle stack at CMP-Y=12400 m. In
this section there are two strong multiples. One on the left hand side (see panel (b)), which
seems to be the same multiple in panel (b) of Figure 6.6, and the flat event cutting across the

primary reflections on the right hand side of panel 6.7(b). Both multiples have been attenuated
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Figure 6.6: Inline angle stack at CMP_Y=11600 m. Panel (a) is the angle stack of the original
data while panel (b) is the angle stack of the matched multiples and panel (c) is the angle stack
of the matched primaries. ‘ 3dreal2-comp-2d-inline-stack-11600 ‘ [CR]
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although not completely eliminated. Arrows A and B point to the weak residual energy from
each multiple. Notice also on the left-hand side of panel 6.7(b) what appear to be diffractions.
These could be diffracted multiples that were imperfectly attenuated (see panel 6.7(c)). There
was some evidence of the presence of diffracted multiples in a few prestack images but because
of computer limitations no attempt was made to target them with the apex-shifted Radon

transform of Chapter 2.

Figure 6.8 shows a similar comparison for the inline angle stack at CMP-Y=13200 m.
In this section we again see one strong multiple that seems to be the same in shown in the
previous two sections (panel (b) of Figures 6.6 and 6.7). Here again, the attenuation of the
multiple has uncovered a weak primary (pointed by arrow A). Although the attenuation of the

multiple was successful, some weak residual energy remains pointed to by arrow B.

Results on crossline sections from the angle-stacked cube

Although the quality of the migrated image in the crossline direction is not very good, it is still
important to assess the level of multiple attenuation in crossline sections taken from the angle

stack. I will show the results for three crossline sections.

Panel (a) of Figure 6.9 shows the crossline angle stack at CMP_X=13300 m before multi-
ple attenuation. Panel (b) shows the angle stack of the matched multiples and panel (c) shows
the angle stack of the matched primaries. Here also, the multiple has been nicely identified
despite the poor signal-to-noise ratio. Some energy from the multiple remains as indicated by

the ovals.

Figure 6.10 shows a similar comparison for the crossline angle stack at CMP-Y=15500 m.
Again, most of the multiple has been attenuated although some still remains on the left edge
as indicated by the oval. Notice also at the top of panel (b) that some energy from the primary

leaked into the multiples.

Figure 6.11 shows a similar comparison for the crossline angle stack at CMP-X=15500 m.
This section has a different character than the previous two and multiples would have been

even more difficult to identify. There seem to be two different multiples, one coming from the
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Figure 6.7: Inline angle stack at CMP_Y=12400 m. Panel (a) is the angle stack of the original
data while panel (b) is the angle stack of the matched multiples and panel (c) is the angle stack
of the matched primaries. ‘ 3dreal2-comp-2d-inline-stack-12400 ‘ [CR]
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Figure 6.8: Inline angle stack at CMP_Y=13200 m. Panel (a) is the angle stack of the original
data while panel (b) is the angle stack of the matched multiples and panel (c) is the angle stack
of the matched primaries. ‘ 3dreal2-comp-2d-inline-stack-13200 ‘ [CR]
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Figure 6.9: Crossline angle stack at CMP_X=13300 m. Panel (a) is the angle stack of
the original data while panel (b) is the angle stack of the matched multiples and panel

(c) is the angle stack of the matched primaries. The ovals point to residual multiples.
| 3dreal2-comp-2d-xline-stack-13300 | [CR]
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Figure 6.10: Crossline angle stack at CMP_X=14400 m. Panel (a) is the angle stack of the
original data while panel (b) is the angle stack of the matched multiples and panel (c) is the
angle stack of the matched primaries. ‘ 3dreal2-comp-2d-xline-stack-14400 ‘ [CR]
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left end which may be the same in the previous two sections and another one below it in the
middle of the section. Subsalt multiples are so broken up that it is hard to say if these two
multiple segments could come from different multiple-generating interfaces or from the same

one. The oval points at residual multiple energy.
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Figure 6.11: Crossline angle stack at CMP_X=15500 m. Panel (a) is the angle stack of
the original data while panel (b) is the angle stack of the matched multiples and panel (c)
is the angle stack of the matched primaries. The oval points at residual multiple energy
3dreal2-comp-2d-xline-stack-15500 ‘ [CR]

DISCUSSION

Muting out the most significant energy contribution from the multiples directly in SODCIGs is
an easy but not very accurate way of attenuating the multiples. The problem arises because part
of the multiple energy maps close to zero inline and especially crossline subsurface offsets.
The higher the dips in the inline and crossline direction, the better the chances of the multiples
mapping away from the zero inline and crossline subsurface offsets where the primaries map
and the better the chances to estimate a reasonably accurate multiple model with this straight
forward approach. The approach is more likely to fail for subsalt multiples because of poor
illumination of both the primaries and the multiples. Primaries in particular are more likely
to be spread around the zero subsurface offsets rather than been nicely focused. Errors in
migration velocity also cause the primaries to not focus tightly around zero subsurface offsets.

Muting the SODCIGs is therefore unlikely to give an acceptable level of multiple attenuation
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in the more challenging situations where data space methods are more likely to fail

Converting the SODCIGs to ADCIGs allows the computation of an accurate multiple
model provided that the primaries were illuminated at large enough aperture angles to pro-
vide good discrimination with respect to the multiples. I showed here that even though the
multiples were illuminated only by aperture angles less than 20 degrees that was enough to
separate them from the primaries in the Radon domain. Radon filtering in true ADCIGs is the
best way to exploit the moveout difference between primaries and multiples. Choosing the
Radon parameters is not trivial but involves the same considerations that were pointed out in

the discussion section of Chapter 2 so I will not repeat them here.

I would like to point out that there is room to improve the results of the multiple attenuation
further by either of two changes to the approach I used here: (1) we could design yet another
Radon kernel that directly maps the entire ADCIG into the Radon transform as function of
one or two global curvature parameters. This will be a very computer intensive approach since
the non-linear inversion used in computing the sparse Radon transform will then have to be
done in a higher-dimensional space. The mute pattern will also be more difficult to design and
apply. These are research ideas that may provide better results although with much more effort
and computer cost. (2) we could apply the 2D version of the apex-shifted Radon filtering to
the azimuth-stacked ADCIGs or an apex-shifted full 3D version of the Radon filtering to the
3D ADCIGs. This will obviously be an extremely computer intensive problem but is the most
accurate and flexible application of the method to target both the specular and the diffracted

subsalt multiples.

CONCLUSIONS

Multiple attenuation in the image space is effective even below salt. Radon filtering of azimuth-
stacked ADCIGs is a reasonable compromise between accuracy and computer cost that pro-

duces a very nice level of multiple attenuation.
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Chapter 7

Conclusions

The attenuation of multiples reflections in complex subsurface areas is best done in the im-
age space. This domain is smaller, regular, and the primaries are guaranteed to map to well
known regions: near zero subsurface offsets in SODCIGs and to flat, well focused events in
ADCIGs. Multiples have predictable (to first order) residual moveout in this domains and we

can separate them from the primaries in the Radon domain.

In Chapter 2 I showed the approach in detail for the 2D case. I presented the equations
for the residual moveout of the specular water-bottom multiples in SODCIGs and ADCIGs
and use them to design a new Radon kernel that improves the focusing of the multiples in that
domain. I attenuated specular and diffracted multiples with synthetic and real data using an

apex-shifted version of the Radon transform.

Before subtracting the estimated multiples from the data to estimate the primaries, we need
to make sure that differences in phase and amplitude between the data and the multiple model
are taken into account. In Chapter 3 I presented a new approach to simultaneously match
estimates of multiples and primaries to the data. I posed the adaptive matching as a least-
squares problem to estimate non-stationary filters for both the primaries and the multiples.
The process is iterative with the estimates of the primaries and multiples being updated every
time the least-squares solution is found. I showed that we can get good results with relatively

few iterations and illustrated the method with synthetic and real data.
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I extended the ideas of Chapter 2 to 3D in Chapter 4 and used a synthetic 3D prestack
dataset to illustrate the mapping of both primaries and multiples to SODCIGs and ADCIGs.
In particular I showed that primaries and multiples behave differently in ADCIGs not only as
a function of aperture angle but also as function of azimuth. While the azimuth resolution of
primaries increases with the increase of aperture angle, the multiples never show any azimuth
resolution at all. This is a consequence of the crossline dip that prevents them from traveling

in a single plane even in constant velocity.

In Chapter 5 I illustrate the mapping of subsalt primaries and multiples from a real 3D
dataset from the Gulf of Mexico. The five-dimensional prestack image cubes of SODCIGs
or ADCIGs are challenging to visualize on paper but I showed that, similar to the results in
2D and with the 3D synthetic example, the multiples map away from zero subsurface offsets
in SODCIGs and with non-flat residual moveout as a function of aperture angle in ADCIGs.
SODCIGs are shown to be a simple but useful tool in identifying multiples and telling them
apart from primaries. I also showed that, despite the relatively narrow range of aperture angles
that illuminate both the primaries and the multiples, enough difference in residual moveout

exists between them to make it possible to attenuate the multiples in the Radon domain.

For the sake of computer time, I applied the Radon filtering on azimuth-stacked ADCIGs.
The final results of the multiple attenuation, presented in Chapter 6, show that the most signif-
icant multiples were indeed attenuated. I showed that on individual azimuth-stacked ADCIGs
as well as inline and crossline sections. Most of the multiple energy was attenuated but some
multiple energy remained and some weak energy from the primaries still mapped into the

multiples.

I believe that there is ample opportunity to refine the basic procedure I developed in this
thesis and I look forward to seeing improvements from other researchers. Attenuation of

multiples is still a germane problem in our industry.



Appendix A

Traveltime of refracted rays

In this Appendix I derive equations 2.7 and 2.8. From equation 2.5 we have:
ts, cosas + pls, cos Bs = t;, cos o + pty, cos By, (A.D

and, from the imaging condition (the sum of the traveltime of the extrapolated rays at the

image point has to be equal to the traveltime of the multiple) we have
t52 + tl’z == fsz + frz. (A.Z)

Solving those two equations for {s, and f;, we get

ty, cosar —ts, cosas+ p(ts, +1r,) cos Br

i , A3
S p(cos Bs +cos Br) (A
[, = [COses—ty coser +plly F)cosfs (A4)
p(cos Bs +cos Br)

It is interesting to check these equations in two particular cases:

1. For a specular multiple from a flat water-bottom, we have as = oy, Bs = Br, ts, =1, =
tr, = t, and therefore we get {5, =ts, and f, = t;, as the geometry of the problem

requires. Notice that this is true for any p.
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2. For a specular water-bottom multiple migrated with water velocity (p = 1), we have
Bs = as and By = or. Furthermore, since the multiple behaves as a primary, (ts +

ts) cosas = (t;, +1tr,) coso and we again get fs, = ts, and f;, = t;,.



Appendix B

|mage Depth in ADCIGs

Figure B.1 shows the basic construction to compute the image depth in ADCIGs based on the
image depth in SOCIGs. Triangles ABD and CBD are congruent since they have one side
common and the other equal because | AB| = |BC| = h¢. Therefore, 6 = 7/2 — ; 4+ 6. Also,
triangles AED and FCD are congruent because |AD| = |[CD]| and also | AE| = |CF| (Biondi
and Symes, 2004). Therefore, the angle ¢ in triangle DCF is the same as in triangle AED.

We can compute § from the condition

b
9+8+ﬁs = E’
L B+5+6+ps = =
2 r s — 2,
5 — Pr —PBs
2

The depth of the image point in the ADCIG, from triangle ABC, is therefore
* . T
%:Q+z:4+m@mwmm«5—@+®. (B.1)

Replacing the expression for § we get, after some simplification (and taking sign(hg) = —1)

Br + Bs
2

Z, :Z§+Z*:Zg—hgtan( ) = Z¢ — hg tan(y). (B.2)

143



144 APPENDIX B. IMAGE DEPTH IN ADCIGS
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Appendix C

Residual Moveout in ADCIGs

In this appendix I show that, for a flat reflector, the residual moveout of the multiples in
ADCIGs reduces to the tangent-squared expression derived by Biondi and Symes (2004) for

the residual moveout of under-migrated primaries:

AnpMmoO = (0 — 1)tan? Yy Zon. (C.1)

Start with Equation 2.23

7 = Z, (0) 1+COSJ/(,02—(1—/02)t3112V)
y i b
1+/0 /,02—Sin2'}/

where z, (0) is the normal-incidence migrated-depth, (i.€. Zo) in the previous equations.

(C.2)

There is an important and unfortunate difference in notation here, however, because p in
equation C.1 is the ratio of the migration to the true owness whereas p in equation C.2 is the
ratio of the migration to the true velocity. Therefore, in order to get a better idea of how the
approximation for the RMO of the multiples (accounting for ray bending at the reflector inter-

face) relates to that of the primaries (neglecting ray bending), I rewrite equation C.2 replacing
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p by 1/p and z, (0) with z, to get:

+Cmyﬂf%p”—0m¥y) 2y

Z, =P : (C.3)
V1= p?sin’y I+p
Since AN\ O = 20 — Z:, we get:
1—(p? — 1)tan?
A%MFlfmﬂ (p )mylh. (C4)
V1= p2sin’y TP
For small y, siny & 0 and cosy = 1, therefore
2 2 X 2
AngMo = (p” — Dtan "Ti, = (p— Dtan" y 2. (C.5)

This is the same as equation C.1 save for the unit vector n. This result is intuitively appealing
because it shows that the approximation of neglecting ray bending at the reflecting interface

deteriorates as the aperture angle increases which is when the ray bending is larger.
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