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ABSTRACT

We explore the classic signal and noise separation problem of removing lin-
ear events from shot-gathers through several inversion schemes using a com-
bined modeling operator composed of both hyperbolic and linear radon trans-
forms. Data are inverted simultaneously for both linear and hyperbolic move-
out which provides two model-space outputs. These are forward modeled
seperately to provide an output data-space devoid of one of the model-space
components. We employ this approach to analyze the removal of direct ar-
rivals and ground-roll from shot-gathers. Inversion schemes used imnclude:
1) bound-constrained, 2) Cauchy norm regularization, 3) Huber norm approx-
imating thel1 norm, and 4) thel2 norm using linear least-squares. Synthetic
tests and four field shot-gathers are used to demonstrate the approach. Methods
1, 2, and 3 are designed to provide sparse model-space inversions. In the real
data examples, the least-squares solution is able to better achieve the signal to
noise separation goal despite its model-space being often less appealing.



1. Introduction
Chen et al.(1999) introduces the idea that inversion problems solved with a sparse-
ness constraint on the output model-space can be applied to data sets with an over-
complete modeling operator. Over-complete means that the dictionary of transform
kernels has (many) more terms than a strict basis transformation such as the standard
DFT. For example, this could be realized by using several different modeling opera-
tors or even a over-sampled version of a single operator such as a Fourier transform
with several times more frequency resolution than the compact support definition of
DFT theory. Further, inDonoho and Huo(1999) the mathematics are presented to
prove that the combined suite of model space kernels are orthogonal to each other
if the inversion satisfies several requirements. Their goal is super-resolution during
the analysis of a signal. These investigations are presented within the framework
of inversion through linear programming techniques. Futher, the papers imply that
these desirable properties are realized with the use of an inversion methodology us-
ing a l 1 norm on the model-space.Artman and Sacchi(2003) made preliminary
efforts to investigate these properties, but were stalled due to the instability and
expense, when applied to the much larger and more complicated data domains of
seismic data, of the linear programming technique.Trad et al.(2003) present results



of such a combined operator inversion scheme using the Cauchy regularization.
Guitton(2004) explores the novel result that two bound-constrained inversions

(bounded by zero from below and above) contain orthogonal null-spaces. Therefore,
summing the results of two such inversions can significantly enhance the sparseness
of the model space compared to that produced by an inversion which is free to
output both positive and negative values for the inverted model. The cost for this
improvement is an extra inversion of identical size and cost. This characteristic is
shared with the linear programming techniques used for the super-resolution prob-
lem, though the inversion algorithm is the L-BFGS.

We will compare the inverted models from several inversion schemes, and their
concomitant data-space realizations. Inversion schemes that will be analyzed are:1)
bound-constrained (BC), 2) Cauchy norm regularization (Cauchy), 3) Huber norm
approximating thel1 norm (l1), and 4) thel2 norm using linear least-squares (l2).
The combined operator of Hyperbolic and Linear Radon Transforms will be used in
all the inversion schemes on both synthetic data and three field shot gathers.



2. Theory
The addition of a second simultaneous linear operator expands the usual linear inver-
sion equations to the slightly more complicated linear operator (Claerbout, 1999),

L = [L1 L2]

and a correspondingly longer model vector

m =

[
m1

m2

]
.

This simple introduction leads to the form of the inversion goals used here
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where subscriptsh andl refer to the hyperbolic (HRT) and linear (LRT) radon trans-
forms and we add identity operator regularization to provide damping.



3. Synthetic examples
The first concern when solving inversion problems with over-complete dictionaries
is the potential for introduction of cross-talk (Claerbout, 1992) into the model-space.
A synthetic data set was created to test the method to assure that this technique
does not allow this to happen. Figure1 shows the inverted models produced with
the various methods compared to the least-squares solution. The first panel is a
bandlimited model from which data were forward modeled, and the last four panels
show the models produced by the various inversion procedures.

While the first two inversion schemes produce very sparse model-spaces with
no cross-talk, thel1 andl2 products contain the familiar parabolas in the LRT do-
main due to data-space hyperbolas and ellipses in the HRT domain from the linear
events in the data.

The models produced by all the results are very good. The clip level is deliber-
ately set very low to bring out artifacts. While the first two methods produce very
sparse results, thel1 andl2 results contain sweeping artifacts and readily identifiable
cross-talk between the two model domains.

Figure2 shows the forward modeled data from the models produced from the
various inversion techniques. The first panel is the starting data. Once again, the clip



Figure 1: Synthetic model-space examples. The model-space contains both radon
domains. Thus, half way across the slowness axis the plot changes from represent-
ing energy in the hyperbolic radon domain to events in the linear radon domain. The
origin and sampling interval for both domains are the same in this example. Panel
(a) is the band-limited model. Panel (b) shows the BC inversion result. Panel (c)
shows the Cauchy result. Panel (d) shows thel1 result. Panel (d) shows thel2 result.
syn1 [CR]



level has been set quite low to bring out the artifacts of the latter inversion schemes.
Amazingly, the two sparse inversion schemes, especially the Cauchy inversion in
panel (c), were able to remove much of the 0.000001 variance noise added to the
data. A small amount of corrilary chatter can be seen in the Cauchy,l1, andl2 data
domains linear.

The inversion schemes designed for sparse model domains have produced mod-
els with no cross-talk between the two operators. Thel1 andl2 inversions have al-
lowed the transmission of energy between the two domains. However, the forward
modeled data from all the methods show more than adequate results with only minor
noise introduced in the immediate vicinity of the various events. Importantly, even
the very steeply dipping events are well modeled despite being severely aliased. It
should be noted however, that the first two schemes will not produce satisfactory
data-space results given realistic split-spread gathers. Their short-comings are from
linear events that do not continue completely across the entire data domain. The
sparse model domains do not have sufficient freedom to add fictitious model energy
to cancel events that do not exactly eminate from the origin of the shot (ie. exit the
gather att = 0,x = 0). Throughout this effort, only off-end gathers will be used.



Figure 2: Forward modeled data from the inversion results presented in Figure1.
Panel (a) is the band-limited model. Panel (b) shows the BC inversion result. Panel
(c) shows the Cauchy result. Panel (d) shows thel1 result. Panel (d) shows thel2
result. syn2 [CR]



4. Noise separation in field data
Four shot-gathers are used to explore the efficacy of this method to remove linear
events from shot-gathers. The paradigm is that linear events due to direct arrivals
and ground-roll are noise and hyperbolic events due to subsurface reflectors should
be maintained. The simple approach is to forward model only the linear model-
space which can will then be directly subtracted from the data.

Figure3 shows the data examples that will be used. They are shots 08, 14 and
25 from the Yilmaz shot-gathers. The three examples contain a nice compilation
of common land data artifacts to be attacked through the removal of linear events.
Direct arrivals, refractions, and ground-roll are all experienced to some degree both
at early time and obscuring primaries late in the sections. A strong linear wavetrain
dominates the early time of shot 08, Panel (a). Shot 14, Panel (b), has faint linear
events at late time and several slopes at early time. The non-hyperbolic moveout at
5.2 seconds is a nice marker for judging the quality of the various inversion schemes.
The obvious ground-roll in shot 25, Panel (c), is the main goal to eliminate.



Figure 3: Shots from the Yilmaz data collection. Panel (a) is shot 08, Panel (b) is
shot 14, Panel (c) is shot 25.d [ER]



4.1. Radon domain
Figure 4 through6 contain the inverted model domains associated with the four
techniques explored herein. Clearly the sparsity of the results decrease toward the
right. Direct interpretation of the model domain would be easier and more accurate
with the BC, Cauchy, andl1 results. Distict trains of energy in the hyperbolic and
linear domains are visible. Without the clip set so low, thel2 result is not as bad as
these panels make it seem. A distinct fairway of energy, marginally larger than that
presented in thel1 result is visible. Velocity analysis of the gathers would likely be
more accurate with the results that impose sparsity, especially at late times.

In general thel1 inversion produced consistantly better model space realiza-
tions. While the differences are often minor, the method provides consistant, stable,
high quality results.

4.2. Data residuals
The data-space residuals of the inversion schemes are presented in Figures7 through
9. The clip level in all cases are the same as the data in Figure3. The sparse model-
spaces produce residual panels less like the original data than thel2 norm inversion.



Figure 4: Model-space inversions of shot-gather 08 (Panel (a) from Figure3). The
first half of the panels is HRT space and the second half is LRT space. Panel (a)
shows the BC, Panel (b) the Cauchy, Panel (c) thel1, and Panel (d) thel2 inverted
model spaces.m.08 [ER]



Figure 5: Model-space inversions of shot-gather 14 (Panel (b) from Figure3). The
first half of the panels is HRT space and the second half is LRT space. Panel (a)
shows the BC, Panel (b) the Cauchy, Panel (c) thel1, and Panel (d) thel2 inverted
model spaces.m.14 [ER]



Figure 6: Model-space inversions of shot-gather 25 (Panel (c) from Figure3). The
first half of the panels is HRT space and the second half is LRT space. Panel (a)
shows the BC, Panel (b) the Cauchy, Panel (c) thel1, and Panel (d) thel2 inverted
model spaces.m.25r [ER]



This results in data residuals often indistinguishable from the original data to the
eye for the sparse schemes.

4.3. Noise subtraction
Figures10through12show the efficacy of this simple signal to noise subtraction al-
gorithm facilitated by the combined modeling operator inversion scheme presented
here. Only the LRT model-space is forward modeled back into the data-space for
subtraction from the original data. In every case the least-squares approach pro-
duces the best signal enhancement. Gather 14 produces a lot of acausal noise that
could be muted, though the direct arival was the main target for this gather. That
being the case, it could also be considered a poor result.

The sparesness oriented schemes produce gathers with little to no improvement
in signal-to-noise ratio while altering the amplitude variation, and sometimes kine-
matics, of the gathers.



Figure 7: Data-space residuals of shot-gather 08 (Panel (a) from Figure3). Panel (a)
shows the BC, Panel (b) the Cauchy, Panel (c) thel1, and Panel (d) thel2 inversion
results. r.08 [ER]



Figure 8: Data-space residuals of shot-gather 08 (Panel (b) from Figure3). Panel (a)
shows the BC, Panel (b) the Cauchy, Panel (c) thel1, and Panel (d) thel2 inversion
results. r.14 [ER]



Figure 9: Data-space residuals of shot-gather 08 (Panel (c) from Figure3). Panel (a)
shows the BC, Panel (b) the Cauchy, Panel (c) thel1, and Panel (d) thel2 inversion
results. r.25r [ER]



Figure 10: Signal estimate for shot-gather 08 (Panel (a) from Figure3). Panel (b)
shows the BC, Panel (c) the Cauchy, Panel (d) thel1, and Panel (d) thel2 inversion
results. s.08 [ER]



Figure 11: Signal estimate for shot-gather 14 (Panel (b) from Figure3). Panel (b)
shows the BC, Panel (c) the Cauchy, Panel (d) thel1, and Panel (d) thel2 inversion
results. s.14 [ER]



Figure 12: Signal estimate for shot-gather 25 (Panel (c) from Figure3). Panel (b)
shows the BC, Panel (c) the Cauchy, Panel (d) thel1, and Panel (d) thel2 inversion
results. s.25r [ER]



5. Comments and conclusions
It will be noted that because the ground roll is very aliased and dispersive in these
gathers, the linear radon operator has great difficulty describing these events with
a single kernel in the model domain. While the least squares inversion will intro-
duce energy into the model-space to combine these events, as well as cancel acausal
energy above the direct arrival in the data-space, the sparse inversions are not capa-
ble of stopping events that do not cross the entire data-space. For this reason, only
one-sided gathers have been used for this analysis.

These techniques are particularly sensitive to noisy, unbalanced traces. For this
reason all gathers have been trace-balanced, gained as a function of time, and noisy
traces zeroed. Last, it should be noted that CMP-gathers should be used for this
analysis instead of shot-gathers to insure that all of the subsurface hyperbolas do
not have an apex shift.

While the bound-constrained, Cauchy, andl1 inversion schemes produce a more
pleasing model-space, this investigation shows it is of limited use in this application
of separating the linear from hyperbolic events in a CMP gather. While the least-
squares inversion does allow the introduction of cross-talk between the two model-
spaces, the noise subtraction technique is better implemented within this frame-



work. This conclusion can be evaluated in terms of the sometimes disparate goals
of analysis versus synthesis. If analysis is the goal, the sparseness optimized inver-
sion schemes clearly outperform the least-squares model product. Velocity picking
would be much better performed with these results. Of the three, this exploration
shows thel1 scheme to be more tolerant in terms of the combined ease of param-
eter selection and quality of the model-space. For noise (linear event) separation,
the least-squares solution enjoys both a high quality result and tolerance in terms of
parameter selection. Further, the least-squares solution is much faster and requires
fewer iterations. Purposefully halting the inversion after less than 30 iterations was
important to avoid the inversion making efforts to fit the noise in the data. How-
ever, to realize a sparse model domain, at least 100 iterations were required for the
other, slower, techniques. Full investigation into the ramifacations of prematurely
stopping the sparse inversion schemes was not performed.

For the purpose of removing linear events with a combined HRT-LRT inversion
scheme a data-space solution is required. For this problem, the extra expense of
fine-tuning the model-space is wasted.
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