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Imaging complex geologic structure with single-arrival
Kirchhoff prestack depth migration

François Audebert∗, Dave Nichols‡, Thorbjørn Rekdal∗∗,
Biondo Biondi§, David E. Lumley§§, and Hector Urdaneta§

ABSTRACT

We compare various forms of single-arrival Kirchhoff
prestack depth migration to a full-waveform, finite-
difference migration image, using synthetic seismic
data generated from the structurally complex 2-D
Marmousi velocity model. First-arrival-traveltime
Kirchhoff migration produces severe artifacts and image
contamination in regions of the depth model where
significant reflection energy propagates as late or mul-
tiple arrivals in the total reflection wavefield. Kirchhoff
migrations using maximum-energy-arrival traveltime
trajectories significantly improve the image in the

complex zone of the Marmousi model, but are not as
coherent as the finite-difference migration image. By
carefully incorporating continuous phase estimates with
the associated maximum-energy arrival traveltimes, we
obtain single-arrival Kirchhoff images that are similar
in quality to the finite-difference migration image.
Furthermore, maximum-energy Green’s function trav-
eltime and phase values calculated within the seismic
frequency band give a Kirchhoff image that is (1) far
superior to a first-arrival–based image, (2) much better
than the analogous high-frequency paraxial-ray Green’s
function image, and (3) closely matched in quality to
the full-waveform finite-difference migration image.

INTRODUCTION

Kirchhoff prestack depth migration

The Kirchhoff migration method is popular in seismic explo-
ration imaging because of its potential for I/O flexibility and
computational efficiency. A major advantage of Kirchhoff mi-
gration is the ability to process arbitrary subsets of input or
output data. For example, a target-oriented migration can be
performed to image a small subset of the complete image, thus
saving a great computational expense. Selected input data gath-
ers can be migrated individually to check image quality control.
Constant-offset Kirchhoff migrations can be used for tomo-
graphic velocity estimation (van Trier, 1990; Etgen, 1990) and
AVO analysis (Lumley, 1993). In contrast, non-Kirchhoff meth-
ods based on full wavefield extrapolation are constrained to
correspond to a physically realizable experiment, which often
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implies intensive simultaneous processing of large input and
output data volumes.

Another major advantage of the Kirchhoff migration meth-
od is the ability to accommodate irregular trace spacings. The
Kirchhoff migration procedure involves an integration of the
seismic wavefield along the recording surface, which in prac-
tice is cast as a discrete summation. Irregular sampling of
the wavefield along the recording surface is easily handled
by the discrete sum. In contrast, Fourier-domain and finite-
difference (FD) methods require regular sampling along the
recording surface to take advantage of efficient fast Fourier
transform (FFT) and FD operator implementations to process
the wavefield. Since 3-D seismic data acquisition geometries of-
ten produce irregular trace spacings, the Kirchhoff migration
method is currently the only practical approach to migrating
3-D prestack seismic data.
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Kirchhoff Green’s functions

A major disadvantage of Kirchhoff migration is that it may
fail to image seismic data accurately in the presence of complex
seismic velocity structure (Geoltrain and Brac, 1993; Godfrey
et al., 1993). This undesirable property is not caused by a break-
down in the theory per se, but by the approximations that are
commonly introduced in the representation and calculation of
the Green’s function traveltime and amplitude functions that
define the Kirchhoff migration integral. In the most general
case, the exact Green’s functions are frequency-dependent, and
consequently the Kirchhoff migration is a multidimensional
integral of the wavefield with frequency-dependent weights
and phase rotations. Unfortunately, the numerical evaluation
of such an integral is prohibitively expensive. A practical im-
plementation requires some simplifying assumptions about the
form of the Green’s functions.

The simplest and least expensive Green’s function repre-
sentation assumes a single wavefield arrival from each source
position, given as a single traveltime, amplitude, and phase
value at each point in the subsurface. This oversimplifica-
tion of the Green’s function may degrade the quality of the
Kirchhoff migration image when a complex velocity field
causes multipathing, i.e., when many wavepaths connect a
single-source/receiver location with a single depth location.

When multipathing occurs, the use of first-arrival Green’s
functions computed by finite-differencing the eikonal equation
(van Trier and Symes, 1991) or by optimization methods based
on Fermat’s principle (Moser, 1991) do not yield satisfactory
images, as demonstrated in Geoltrain and Brac (1993). This
is because first arrivals do not contribute to significant reflec-
tion energy below complex velocity overburden. Gray and May
(1994) have recently shown that by limiting the propagation
angle of a modified finite-difference eikonal solver, and thus
selecting arrivals corresponding to a local body-wave travel-
time instead of the global first arrival, the Kirchhoff migration
image can be improved compared to using first-arrival Green’s
function traveltimes. Gaussian Beam migration (Hill, 1990) is
a promising new variation of the Kirchhoff method that nat-
urally incorporates multipath arrivals in the migration image,
but still relies on conventional high-frequency ray assumptions
for the Green’s function representation.

OUR CONTRIBUTION

In this paper, we demonstrate that a careful choice of a single
best arrival that approximates the true multipath arrivals can
lead to an accurate Kirchhoff migration image. We show that if
the single-valued Green’s functions are carefully estimated, the
quality of the images produced by Kirchhoff migration in the
presence of complex velocity fields is close to the quality of
the images produced by full-waveform, finite-difference migra-
tion. The key element for achieving this result is the estimation
of traveltimes, amplitudes, and phases of the “effective” most-
energetic arrival. We also demonstrate the importance of using
the correct phase when multiple arrivals are present. Phase
rotation of the most energetic arrival is caused by caustics and
by phase-mixing when multiple arrivals are superimposed.

We implement two methods for computing the most ener-
getic arrival in a 2-D isotropic velocity model, and compare
them with an accurate method for computing the first-arrival
traveltime. The first method uses paraxial ray tracing to

compute the traveltimes, phases, and amplitudes of seismic ar-
rivals (Keho and Beydoun, 1988; Rekdal and Biondi, 1994).
The second method takes into account the band-limited na-
ture of the seismic wavefield by directly solving the Helmholtz
equation in the frequency domain for few frequencies within
the seismic bandwidth (Nichols, 1996).

In the next section, we review the theoretical foundations
of Kirchhoff migration and their relationship with the param-
eterization of the Green’s functions. Next, we discuss three
methods for computing Green’s functions (first-arrival, parax-
ial, and band-limited), and discuss their characteristics using a
model example. Finally, we show the result of applying these
methods of Green’s function computation to a Kirchhoff mi-
gration of the Marmousi seismic data set.

KIRCHHOFF MIGRATION THEORY

In our implementation of Kirchhoff migration, we define a
kinematic prestack depth migration equation that is suitable
for either 2-D or 3-D data acquisition and incorporates single-
arrival traveltime and phase estimates. In the Appendix, we
start with the Helmholtz scalar wave equation (Morse and
Feshbach, 1953),

{∇2 + (ω/v)2}P(x, ω) = S(x, ω), (1)

and derive a frequency-domain Kirchhoff prestack depth mi-
gration equation (A-8) incorporating the full frequency-
dependent Green’s functions as

R(x) ≈
∫
ω

∫
xs

∫
xr

W[n̂ · ∇Gr (x, ω)]G∗s(x, ω)

×P(xr , ω; xs) dxr dxs dω. (2)

Equation (2) is a weighted zero-lag correlation of the source
and reflected wavefields, where W is the migration weight func-
tion defined by equation (A-7), Gs and Gr are the source and
receiver Green’s function solutions to equation (1), P is the
recorded scalar seismic data, ω is the temporal angular fre-
quency, and x, xs, and xr are the spatial coordinates of the
subsurface, source, and receiver points, respectively. G∗s is the
frequency-domain complex conjugate of Gs. The recording sur-
face x = xr is defined by the unit normal vector n̂.

To proceed, we assume a parametric form for the Green’s
functions Ga such that:

Ga(x, ω; xa) ≈ Aa(x; xa)e±i (ωτa+φa), (3)

where opposite signs are chosen in the exponential for the
source (outgoing), and receiver (reverse-time extrapolated)
Green’s functions, respectively. The parameters Aa, τa, and φa

are amplitudes, traveltimes, and phase rotations for a single-
arrival Green’s function from an arbitrary location xa to x.
These parameters are often estimated by conventional high-
frequency asymptotic ray methods, but may also be estimated
within the seismic band as discussed in the Green’s function
section of this paper.

Given the parametric form (3), an efficient time-domain
version of equation (2) can found after an inverse temporal
Fourier-transform as follows:

R(x) ≈
∫

xs

∫
xr

cos θr Ŵeiφsr P̂(xr , xs; t = τsr) dxr dxs,

(4)
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where the “obliquity factor” cos θr is a function of the incident
angle at each receiver with respect to the surface normal, and
is obtained as the dot product (vr∇τr · n̂). The Kirchhoff space-
time migration equation (4) is a weighted diffraction stack of
the preprocessed, deconvolved (but not divergence-corrected)
data P̂, after phase-rotation by the Green’s function parame-
ters φsr = φs + φr , evaluated along the diffraction trajectories
given by the Green’s function traveltimes τsr = τs + τr .

The phase rotation is implemented by noting that

eiφsr = [cosφsr + sinφsrH], (5)

where H is the Hilbert transform operator which has the
frequency-domain representation:H(ω) = iω/|ω|.

We define kinematic migration by setting the migration
weights Ŵ to unity, and explicitly expand the phase rotation
operation to derive our desired kinematic Kirchhoff prestack
depth migration equation

R(x) ≈
∫

xs

∫
xr

cos θr [cosφsr P̂(xr , xs; t = τsr)

+ sinφsrH{P̂(xr , xs; t = τsr)}] dxr dxs. (6)

Equation (6) is suitable for 2-D migration if all spatial coordi-
nates are 2-D vectors, i.e., x = (x, z), and P̂ is preprocessed by
the half-time derivative operator

√
iω. However, equation (6)

is equally suitable for 3-D migration if all spatial coordinates
are 3-D vectors, i.e., x = (x, y, z), and P̂ is preprocessed by the
full-time derivative ∂t . Equation (6) gives accurate estimates
of reflectivity amplitudes for near-offset data, and provides an
efficient and robust structural imaging condition when a full
range of offset data is migrated. This can be shown by com-
paring the amplitude behavior of the dynamic and kinematic
imaging conditions defined in Lumley (1989) at near and far
offsets.

GREEN’S FUNCTION COMPUTATION METHODS

We compare three different methods for computing para-
metric Green’s functions. The method described in Podvin and
Lecomte (1991) represents the first class of methods that com-
putes first-arrival traveltimes in a high-frequency asymptotic
limit. Paraxial ray tracing (Beydoun and Keho, 1987) repre-
sents the second class of high-frequency methods that can com-
pute multiple and maximum energy arrivals in addition to first
arrivals. The third method is a nonhigh-frequency band-limited
Green’s function computation (Nichols, 1996) that estimates
the most energetic arrival for a band-limited wavefield.

Asymptotic Green’s functions

Most methods used to compute parametric Green’s func-
tions for Kirchhoff migration are based upon the high-
frequency ray approximation of the elastodynamic equation.
First, P- and S-waves are assumed to be totally decoupled.
Second, a high-frequency approximation is made. In the high-
frequency limit the traveltimes are independent of the ampli-
tudes. The raypaths and the traveltimes are found by solving
the eikonal equation (Aki and Richards, 1980)

∇τ · ∇τ − 1
v2
= 0. (7)

If amplitudes are desired, they can be computed by solving the
associated transport equation

∇2τ + 2
∇A0

A0
· ∇τ = 0. (8)

High-frequency methods are only valid if the physical param-
eters in the medium vary slowly over a wavelength, thus they
break down at discontinuity interfaces. This problem can be
overcome by using a ray method between interfaces and some
other scheme to cross the interface. Snell’s law, and phase pa-
rameter and ray parameter matching have been used success-
fully with kinematic and dynamic ray methods in layered me-
dia. Unfortunately, the cost of computing all possible arrivals
becomes overwhelming when many interfaces are present.

Ben-Menahem and Beydoun (1985) present an analysis of all
the ray validity conditions. Most of them are not fulfilled strictly
even in quite smooth velocity models. Amplitude and phase
appear to be more sensitive than traveltimes to the violation
of the ray validity conditions. In practice, traveltimes that are
computed in violation of the ray validity conditions are often
reasonably accurate estimates of the true traveltimes.

First-arrival traveltimes.—When only first-arrival travel-
times are required, methods based on finite differencing the
eikonal, or even simpler methods based on Fermat’s princi-
ple (Moser, 1991; Podvin and Lecomte, 1991) can be very ef-
ficient. We tested Podvin and Lecomte’s method, which com-
putes first-arrival traveltimes without amplitude information.
Traveltimes are computed at the nodes of a rectangular grid of
constant slowness cells. The incremental traveltimes are com-
puted using Huygens’ principle, with a local point-source ap-
proximation from the nodes and a plane-wave approximation
from the edges and faces of the slowness cells. Fermat’s princi-
ple is invoked to retain only absolute minimum traveltimes. Al-
though more recent implementations allow the tracking of mul-
tiple branching and multiple arrivals, we have only tested the
method with first-arrival traveltimes. This method always finds
the true first-arrival, which may include head-wave arrivals.

Maximum amplitude arrival traveltimes.—As an example
of a method that can calculate traveltimes and amplitudes of
multiple arrivals, we used a paraxial ray tracing code. The trav-
eltime and curvature of the wavefront are computed from the
dynamic ray equations (Beydoun and Keho, 1987). This local
approximation to the wavefront is used to estimate the travel-
times in the vicinity of the rays. The dynamic ray-tracing equa-
tions are valid in the far-field from a point source and far from
singularities in weakly inhomogeneous media. With these pro-
visions, the stationary traveltimes are computed correctly along
the central ray. However, the extrapolation of traveltimes in the
vicinity of a central ray is very sensitive to errors in the dynamic
parameters. Therefore, in rough models a fairly dense fan of
rays has to be computed. In practice, some smoothing of the
model is usually required to limit the number of rays. As with
all ray-based methods, there are “shadow-zones” in the model,
which are regions where no geometric ray can be found. The
paraxial approximation can be used to estimate traveltimes in
these regions, but the estimates become increasingly unreliable
at large distances from the ray.

In our tests using paraxial ray tracing, the Green’s func-
tions are computed in a smoothed model. The exact model
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is smoothed with a Gaussian bell operator, with a half-width
equal to the wavelength at a frequency of 30 Hz. If multiple
rays give an estimate at the same location, the most energetic
arrival is chosen. If two events interfere at the time of the most
energetic arrival, they are phase-merged into a single equiva-
lent arrival (Rekdal and Biondi, 1994).

Band-limited Green’s functions

The calculation of band-limited Green’s functions is a new
method that provides a traveltime solution in a user-defined
frequency bandwidth rather than in a high-frequency approx-
imation (Nichols, 1996). This approach calculates monofre-
quency Green’s functions for a sparse set of frequencies G(ω j )
and then finds a parametric model consisting of one or more im-
pulsive events that match these functions. Each impulsive event
is characterized by a traveltime τ , amplitude A, and a phase φ.
We then seek an n-event model that matches the computed
frequency-domain Green’s function for all frequencies. The
Green’s function is then simply the sum of the discrete events

n∑
i=1

Ai e
iφi eiωτi = G(ω j ).

This implementation is a single-event approximation that
seeks to find the traveltime, amplitude, and phase of the max-
imum energy arrival. A small number of frequencies (8–16)
in the seismic frequency band are extrapolated outward from
the source location using a paraxial one-wave equation in polar

FIG. 1. Marmousi velocity model. The velocity model used to create and migrate the Marmousi seismic data set.

coordinates. At each radius, a parametric approximation to the
wavefield is estimated by picking the peak of the Green’s func-
tion energy within a time window centered around the trav-
eltime at the previous radius. This method is intermediate in
cost between calculating all the frequencies of the full Green’s
function and calculating the solutions at only one frequency,
the infinite frequency, as in asymptotic methods.

The main advantage of this method is that the solution is
an estimate of the Green’s functions in the seismic frequency
band, not the Green’s function at an unrealistic high frequency,
and is therefore more likely to be representative of wave prop-
agation at seismic wavelengths (Biondi, 1992). There are no
restrictions on the smoothness of the velocity model with this
method.

COMPARISON OF TRAVELTIME TRAJECTORIES

An exploding diffractor test

Since the computed traveltimes play the central role in the
Kirchhoff migration integral, they have to be correct or at least
correspond to significant events. We compare the traveltimes
computed by the three different methods with a full wavefield
generated from a point source in the Marmousi velocity model.
The model is shown in Figure 1. The source was located at a
depth of 2500 m and at a horizontal distance of 6000 m. The
wavefield was recorded at the surface. The shot wavefield was
modeled with a two-way acoustic finite-difference algorithm,
and is displayed as the ideal Green’s function in Figures 2–4.
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We extracted traveltimes for the various Green’s function com-
putation methods from the precomputed tables created for the
Kirchhoff migration program. These tables contain traveltimes
from regularly sampled surface locations to each point in the
subsurface.

The shot experiment as described above is an exploding
diffractor experiment. The modeled data represents the true
band-limited diffracted wavefield for a exploding diffractor lo-
cated within the Marmousi reservoir. In a full-waveform mi-
gration algorithm, this wavefield would be correlated with the
zero-offset field data to obtain an image of the subsurface
diffractor location.

FIG. 2. Podvin’s method. First-arrival traveltimes at the surface, for a source at the target depth point.

FIG. 3. Paraxial method. Maximum energy arrival traveltimes at the surface, for a source at the target depth point.

Migration diffraction curves

The computed traveltimes define the actual diffraction curve
τsr used in the kinematic Kirchhoff integral of equation (6). The
aim of this comparison is to see how much of the true wavefield
is captured in the kinematic migration. A perfect migration
would integrate the complete wavefield into the point diffrac-
tor. Instead the kinematic migration chooses one summation
path, defined by one traveltime value for each surface loca-
tion. All events that lie along this integration path are summed
coherently (provided they have a same phase) and properly
migrated. Any arrivals not captured by this summation path
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are incorrectly over- or undermigrated. The single-event kine-
matic migration produces the combination of one correctly mi-
grated image from the captured arrivals, together with an over-
migrated image from the later arrivals, and an undermigrated
image from the earlier arrivals. Unfortunately, those three mi-
grated sections are produced at the same time. They cannot be
separated. The hope is that the migrated section produced by
the captured arrivals will be more energetic than the other two.
This is more likely to be the case if the captured arrivals are the
most energetic ones, and if they are summed with a coherent
phase rotation.

First-arrival traveltimes.—The first arriving traveltimes cal-
culated by Podvin’s method were computed on a resampled
version of the original Marmousi velocity model. The original
4 × 4 m gridded velocity model of Marmousi was resampled
to a 12.5× 12.5 m grid of constant slowness cells. No smooth-
ing was used except that required by the resampling and only
first-arrival traveltimes were computed.

In Figure 2 the computed traveltimes from Podvin’s method
are superimposed upon the full diffraction wavefield. The trav-
eltimes are plotted as white-filled circles. We observe that this
method tracks the first-arrival traveltime accurately. However,
the first arrivals contain almost none of the total wavefield en-
ergy. Hence, integrating only the first arrivals would not be
sufficient to produce a clear image at this depth point. We can
expect the remaining energy to be overmigrated and produce
artifacts.

Paraxial maximum-amplitude arrivals.—For the asymptotic
maximum-amplitude arrivals, we used a grid size of 8 × 8 m
for the velocity model, which was represented with bicubic
splines. We used a Runge Kutta solver to solve the dynamic
and kinematic ray equations. The density of rays was adapted
to give maximum distance between two neighboring rays of
75 m wherever geometrical rays existed.

FIG. 4. Band-limited method. Maximum energy arrival traveltimes at the surface, for a source at the target depth point.

In Figure 3, the maximum energy arrival computed using
the paraxial ray method is overlaid upon the full diffraction
wavefield. The method seems to do a good job of picking the
most energetic arrivals. A significant portion of the energy is
captured. Note however, that some of the arrivals are not zero
phase, especially on the central diffraction, which makes judg-
ment of the accuracy of the traveltimes somewhat subjective.

Band-limited traveltimes.—For the purposes of this study, we
used 16 frequencies in the 10–60 Hz range in the band-limited
traveltime estimation. The velocity model was resampled onto
a polar coordinate grid by bilinear interpolation in slowness.
The polar grid was sampled every 0.7◦ in the dip direction and
every 11.11 m in the radial direction.

Figure 4 shows the traveltimes computed using this method.
As with the paraxial ray tracing, the arrivals may not be zero
phase, so the traveltimes overlaid on the modeled data may
be half a wavelength away from a peak. On the whole this
method does a good job of picking out the maximum energy
arrival at each location. In a few places, it chooses an event
that is weaker apparently than another. This may be caused by
either an inaccuracy of the method for selecting the maximum-
energy arrival, or by our use of a one-way wave equation in the
traveltime calculation and a two-way wave equation in the FD
modeling code.

COMPARISON OF MIGRATION IMAGES

In this section, we compare a variety of Kirchhoff prestack
depth migrations to a reference full-waveform finite-difference
migration of the 2-D Marmousi seismic data set. The Marmousi
prestack data consist of 240 synthetic marine shot gathers mod-
eled over the complex velocity model shown in Figure 1. Each
shot gather contains 96 traces at a record length of 2.9 s sampled
at 4 ms intervals. The seismic data were generated by acoustic
two-way, finite-difference wave-equation modeling (Versteeg
and Grau, 1990).
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We have used the exact Marmousi velocity model for both
the finite-difference and Kirchhoff migrations. Some of the
Green’s function methods internally smooth the input veloc-
ity model to satisfy ray validity conditions, ensure numerical
stability, and approximate frequency-dependent behavior, as
discussed in the previous section. In reality, a model of this
complexity cannot be realistically estimated from field seis-
mic data. Our choice of the exact Marmousi model demon-
strates that Kirchhoff migrations can image at least as well as
finite difference shot profile migration if they are both provided
with the velocity model that generated the seismic reflection
data.

Finite-difference, shot-profile migration

To assess the quality of our Kirchhoff migrations, we chose
a finite-difference shot profile migration of the Marmousi data
as our ideal reference image. We used a one-way, 70◦, explicit
finite-difference wave propagation algorithm, with the stan-
dard cross-correlation imaging condition. As is common prac-
tice, we divergence-corrected the shot gather data prior to
shot profile migration to balance the output image amplitudes.
In contrast, the data are not divergence-corrected prior to
Kirchhoff migration because Kirchhoff migration weights can
perform the (potentially more accurate) amplitude recovery
internally during the migration procedure.

The shot-profile–migrated image inherently incorporates the
multi-arrival and band-limited nature of seismic data by di-
rectly solving the wave equation with a finite difference opera-
tor. Figure 5 shows the finite-difference, shot-profile migration
to be an excellent image of the Marmousi model and serves
as a reference image to calibrate our Kirchhoff migration im-
ages. We will show in the following sections that, with careful
Green’s function evaluation criteria, we can obtain a single-
arrival Kirchhoff migration image that matches the quality of
this reference migration image.

FIG. 5. The full-waveform migrated image obtained with a finite-difference shot-profile migration and a correla-
tion imaging condition.

Kirchhoff prestack depth migrations

In the next three subsections, we compare several modes
of Kirchhoff prestack depth migration to the reference finite-
difference shot-profile image. All of our Kirchhoff migration
images employ the kinematic imaging condition defined by
equation (6). Each migration uses the same Kirchhoff code
and differs only in the method of creating the Green’s function
tables, which are precomputed and accessed on-the-fly in the
migration algorithm.

Since we can expect substantial differences in the ampli-
tudes obtained by Kirchhoff migration and finite-difference,
shot profile migration, we chose to limit our comparison only
to kinematic Kirchhoff migration images. More accurate dy-
namic Kirchhoff migrations could be obtained by explicit use
of the Green’s function amplitude values in the Kirchhoff mi-
gration weight factor (Bleistein, 1987; Lumley, 1989; Schleicher
et al., 1993; Lumley, 1993).

First-arrival traveltime migration

Our first example of Kirchhoff migration uses only first-
arrival traveltime information as computed by the method of
Podvin and LeComte (1991) and assumes that the phase delay
term φsr is zero everywhere. The Kirchhoff migration image
created using first-arrival traveltimes is displayed in Figure 6.

The image is inferior to the reference shot-profile image.
A similar result was discussed in Geoltrain and Brac (1993).
The major problem is that in deep sections of the model, the
first-arrival traveltimes correspond to reflection and refraction
events with little or no energy, as we demonstrated by the
Green’s function overlay of Figure 2. Furthermore, the first-
arrival traveltimes are earlier (by definition) than the later
more-energetic arrivals, and therefore give rise to strong over-
migration artifacts in the deep parts of the image. In the shallow
parts of the image where multiple arrival path are not an is-
sue the first-arrival migration seems adequate. However, the
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artifacts caused by nonenergetic summation trajectories along
late energetic reflection events cause serious contamination of
the image in the vicinity of the reservoir target zone. Hence,
we interpret these results to signify that first-arrival traveltime
migration is useful only when the first arrival is the most ener-
getic. This corresponds to the situation in which velocity models
exhibit weak lateral velocity variation.

Maximum-energy traveltime migration

The Green’s function overlays of Figures 2, 3, and 4 sug-
gest that an improved single-arrival Kirchhoff migration can
be obtained by computing the traveltime field associated with
the most energetic arrival. Summation along maximum energy
trajectories should capture more significant energy in the re-
flected wavefield than the first-arrival method.

Figure 7 compares Kirchhoff migrations generated from
maximum-energy traveltimes calculated by the paraxial and
band-limited methods with the images generated using first-
arriving traveltimes. As in the previous image, the phase shift is
assumed to be zero. Both maximum-energy traveltime images
are superior to the first-arrival image, especially in the cen-
tral complex portion of the model, where the first-arrival over-
migration artifacts have been suppressed. The band-limited
image is slightly more coherent than the paraxial image, es-
pecially in the reservoir, and in the overlaying dipping re-
flectors and fault truncations. However, these images are
still not as accurate as the finite-difference migration. The
maximum-energy traveltime images are not as crisp or co-
herent as the shot profile reference image, and there are
undesirable fluctuations in amplitude and waveform charac-
ter along some reflectors, indicating that some reflection en-
ergy has not yet been optimally stacked. In the next sec-
tion, we show that incorporating phase information into the
maximum-energy traveltime migration improves these images
considerably.

FIG. 6. The Kirchhoff-migrated image obtained using first-arrival traveltimes.

MAXIMUM-ENERGY TRAVELTIME/PHASE MIGRATION

Maximum-energy arrivals may require some phase rotation
associated with a traveltime to coherently sum along the same
phase of a waveform. Such phase rotations arise naturally from
two causes: first, the existence of caustics, which give rise to
phase shifts in integer multiples of π/2; and second, super-
position of multiple arrivals that yield an effective most ener-
getic arrival that may have an arbitrary phase rotation. The two
maximum-energy methods discussed in this paper are capable
of estimating the phase rotation associated with both phenom-
ena. Consequently, we incorporate the phase rotations in the
imaging traveltimes to ensure that coherent energy is summed
along a consistent phase of the waveform.

Figure 8 shows a comparison of Kirchhoff migration images
using traveltime estimates only, and those created using trav-
eltime and phase estimates together. The images created us-
ing the additional phase information are more coherent than
their traveltime-only counterparts. The improvement demon-
strates that phase rotations are significant in the complex cen-
tral portion of the model. In particular, the reservoir reflection
and overlaying dipping reflectors and fault truncations are im-
aged more clearly. The band-limited image is clearly superior
to the paraxial image in these same regions, possibly indicating
that a band-limited estimation of the effective arrival phase in
the seismic frequency range is a better approximation of the
full wavefield than a high-frequency ray estimation of caustic
and merged phase.

Finally, Figure 9 compares the two maximum-energy travel-
time and phase images with the full-wavefield finite-difference
migration image. It illustrates that the single-arrival Kirchhoff
prestack depth migration using maximum-energy arrival times
and phase rotations is as accurate as the full wavefield finite-
difference shot profile migration. The band-limited Kirchhoff
image is more coherent than the paraxial image along the deep
reservoir reflections and the overlaying dipping reflections.
We believe this comparison to be one of the first published
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examples of a single-arrival Kirchhoff migration attaining com-
parable quality to that of a finite-difference migration in an
extremely complex velocity structure.

CONCLUSION

We have compared a variety of single-arrival Kirchhoff pre-
stack depth migration images to a reference finite-difference
shot-profile migration image, using seismic data generated
from the highly complex Marmousi velocity model. We found
that first-arrival traveltime Kirchhoff migration produced se-
vere artifacts when reflectors were illuminated by multiple
wavepaths.

We demonstrated that Kirchhoff migrations using max-
imum-energy traveltimes significantly improved the image in
the complex zone of the Marmousi model, when compared to
the first-arrival traveltime image. Nevertheless, those images
were still not as coherent as the finite-difference migration im-
age. However, by adding a phase-rotation term to the imaging
algorithm, we obtained single-arrival Kirchhoff images that
are comparable in quality to the finite-difference migration
image. Furthermore, we demonstrated that using nonasymp-
totic Green’s function values calculated within the seismic
bandwidth produced an image that was superior to the image
obtained using high-frequency paraxial ray Green’s functions.

Finally, we believe our band-limited Kirchhoff migration im-
age may be one of the first published examples of a Kirchhoff

a)

b)

c)

FIG. 7. Comparison of Kirchhoff migration images with maxi-
mum energy traveltimes (a) and (b) and with first-arrival trav-
eltimes (c).

migration attaining comparable quality to a finite-difference
migration in extremely complex velocity structure. This result
is encouraging since, at present, there are no practical prestack
imaging alternatives for 3-D seismic data sets other than the
Kirchhoff migration method.
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APPENDIX A

KIRCHHOFF MIGRATION THEORY

We briefly derive a frequency-domain Kirchhoff prestack
depth migration equation that is suitable for either 2-D or
3-D data acquisition and incorporates the full frequency-
dependent Green’s function solution to the Helmholtz scalar
wave equation.

Source wavefield

Given the Helmholtz variable-velocity v scalar wave equa-
tion (Morse and Feshbach, 1953),

{∇2 + (ω/v)2}P(x, ω) = S(x, ω), (A-1)

the “downgoing wavefield” D generated by a single source at
location xs can be evaluated at any subsurface location x within
a volumeV from the frequency-domain integral representation

D(x, ω; xs) =
∫
V

G(x, ω; x′)S(x′, ω; xs) dx′, (A-2)

where G(x, ω; x′) is the Green’s function solution to equa-
tion (A-1) associated with a generic source location x′, and
S is the source wave function. If we neglect the absolute am-
plitude of the source and consider only relative amplitudes in
the migrated section, and also assume the source has a com-
pact delta function shape in both space and time, δ(t)δ(x′ −xs),
then the downgoing wavefield can be approximated after the
volume integration by the source Green’s function Gs alone as

D(x, ω; xs) ≈ G(x, ω; xs) = Gs(x, ω). (A-3)

Reflected wavefield

The “upgoing wavefield” U reflected from the subsurface x
caused by a source at xs can be reconstructed from the seis-
mic scalar data P recorded at receivers xr using a Kirchhoff
boundary integral representation,

U(x, ω; xs) =
∫
S

n̂ · ∇Gr (x, ω)P(xr , ω; xs) dxr , (A-4)

where Gr =G(x, ω; xr ) is the receiver Green’s function, and n̂ is
the unit vector normal to the recording surface S that bounds
the image volume V of interest. The gradient operator ∇ is

taken with respect to the subsurface coordinate x along the
recording surface at x = xr .

Reflectivity imaging condition

Given that the reflected wavefield U(x, ω) in the vicinity of
x can be modeled as a local time-domain convolution of the
subsurface reflectivity R(x) with the source wavefield D(x, ω),

U(x, ω) ≈ R(x)D(x, ω), (A-5)

a local least-squares estimate of the frequency-independent re-
flectivity R(x) can be obtained as the weighted zero-lag corre-
lation of the source and reflected wavefields (Claerbout, 1971)

R(x) ≈
∑
ω

WU D∗ ≈
∑
ω

U(x, ω)D∗(x, ω)
D(x, ω)D∗(x, ω)

, (A-6)

where D∗ is the complex conjugate of D, and the correlation
U D∗ is normalized by the local energy of the source wavefield
DD∗. Substituting the source wavefield approximation (A-3),
the migration weight W reduces to

W−1 = DD∗ ≈ Gs(x;ω)G∗s(x, ω) = |Gs|2, (A-7)

as previously shown in Lumley (1989).

Migration equation

If the weighted zero-lag correlation of equation (A-6) is av-
eraged over all single shot-profile migrations to provide a com-
plete image of the subsurface, the frequency-domain Kirchhoff
migration equation becomes

R(x) ≈
∫
ω

∫
xs

∫
xr

W[n̂ · ∇Gr (x, ω)]G∗s(x, ω)

×P(xr , ω; xs) dxr dxs dω, (A-8)

where the migration weight W is given by equation (A-7). Dif-
ferent migration weights can be derived for alternate process-
ing geometries such as common-receiver or common-offset mi-
grations (Bleistein, 1987; Schleicher et al., 1993; Lumley, 1993).


