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Stable wide-angle Fourier finite-difference downward
extrapolation of 3-D wavefields

Biondo Biondi∗

ABSTRACT
I present an unconditionally stable, implicit finite-

difference operator that corrects the constant-velocity
phase-shift operator for lateral velocity variations. The
method is based on the Fourier finite-difference (FFD)
method. Contrary to previous results, my correction op-
erator is stable even when the medium velocity has
sharp discontinuities, and the reference velocity is higher
than the medium velocity. The stability of the new
correction enables the definition of a new downward-
continuation method based on the interpolation of two
wavefields: the first wavefield is obtained by applying
the FFD correction starting from a reference velocity
lower than the medium velocity; the second wavefield is
obtained by applying the FFD correction starting from
a reference velocity higher than the medium velocity.

The proposed Fourier finite-difference plus interpola-
tion (FFDPI) method combines the advantages of the
FFD technique with the advantages of interpolation.

A simple and economical procedure for defining
frequency-dependent interpolation weight is presented.
When the interpolation step is performed using these
frequency-dependent interpolation weights, it signifi-
cantly reduces the residual phase error after inter-
polation, the frequency dispersion caused by the dis-
cretization of the Laplacian operator, and the azimuthal
anisotropy caused by splitting.

Tests on zero-offset data from the SEG-EAGE salt
data set show that the FFDPI method improves the imag-
ing of a fault reflection with respect to a similar interpola-
tion scheme that uses a split-step correction for adapting
to lateral velocity variations.

INTRODUCTION

As 3-D prestack wave equation imaging becomes practically
possible (Biondi and Palacharla, 1996; Mosher et al., 1997;
Vaillant et al., 2000; Wyatt et al., 2000), we need robust, effi-
cient, and accurate methods to downward continue 3-D wave-
fields. In particular, wide-angle methods are crucial for prestack
imaging because at least one of the paths connecting the image
point in the subsurface to the source–receiver locations at the
surface is likely to propagate at a wide angle.

Fourier methods, such as phase shift (Gazdag, 1978), handle
wide-angle propagation efficiently and accurately but only for
vertically layered media. In contrast, finite-difference methods
can easily handle lateral velocity variations but are not efficient
for wide-angle propagation. A natural strategy thus combines a
Fourier method with a finite-difference method to derive an ex-
trapolation method that enjoys the strengths of both. This is not
a new idea; indeed, the first proposed adaptations of Fourier
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methods, phase shift plus interpolation (PSPI) (Gazdag and
Sguazzero, 1984) and split step (Stoffa et al., 1990), can be in-
terpreted as being zero-order finite-difference corrections to a
phase-shift extrapolator. Ristow and Rühl (1994) first proposed
a genuine finite-difference correction to phase shift, which they
dubbed Fourier finite difference (FFD). It uses implicit finite
differences (Claerbout, 1985) to handle lateral velocity varia-
tions. Pseudoscreen propagators (Jin et al., 1998), wide-angle
screen propagators (Xie and Wu, 1998), generalized screen
propagators (Le Rousseau and de Hoop, 1998), and local Born-
Fourier migration (Huang et al., 1999) are related methods that
have been proposed.

The first part of this paper shows that the FFD correction
is more accurate than other methods that use implicit finite
difference, such as pseudoscreen propagators (Jin et al., 1998)
and wide-angle screen propagators (Xie and Wu, 1998).
Because the computational complexity of the three methods
is comparable, the FFD correction is more attractive than the
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others. Unfortunately, when the original FFD method is
applied in the presence of sharp discontinuities in the velocity
model [e.g., unsmoothed SEG/EAGE salt model (Aminzadeh
et al., 1996)], it can generate numerical instability. Stability is
a necessary condition for a migration method to be practically
useful.

The stable FFD correction presented in this paper over-
comes the instability problems related to the original FFD
method. To derive a stable version of the FFD correction, I
adapted the bulletproofing theory developed by Godfrey et al.
(1979) and Brown (1979) for the 45◦ equation. The bullet-
proofed FFD correction is unconditionally stable for arbitrary
variations in the medium velocity and in the reference velocity.
Further, it is unconditionally stable when the medium velocity
is either higher or lower than the reference velocity. This is a
useful result and differs with a statement by Ristow and Rühl
(1994) that asserts their method is unstable when the medium
velocity is lower than the reference velocity. This observed in-
stability can be explained by applying a single correction when
the medium velocity is both lower and higher than the refer-
ence velocity.

The stability of the new FFD correction, even when the
reference velocity is higher than the medium velocity and has
lateral variations, makes it a suitable building block for con-
structing a new wide-angle, downward-continuation algorithm
that is efficient and accurate in three dimensions. At each
depth step, the wavefield is propagated with Nvr reference
velocities using phase shift, where Nvr is determined according
to both the range of velocities in the current depth slice and
the maximum propagation angle needed for accurate imaging
of the events of interest. Then the Nvr reference wavefields are
combined to create two wavefields: one for which the reference
velocity is equal to or lower than the medium velocity, and
the other one for which the reference velocity is equal to or
higher than the medium velocity. A stable FFD correction is
applied to both wavefields, and the corrected wavefields are
linearly interpolated with frequency-dependent weights.
The frequency-dependent interpolation significantly reduces
the frequency dispersion introduced by the discretization of the
Laplacian operator in the implicit finite-difference step.

In three dimensions, the FFD corrections can be applied ef-
ficiently by splitting or possibly by helix transform methods
(Rickett et al., 1998). However, my proposed algorithm suf-
fers much less from azimuthal anisotropy caused by splitting
than the original FFD method. The phase errors as a function
of azimuth have the opposite behavior when the differences
between the reference velocity and medium velocity have op-
posite signs. Therefore, these phase errors tend to cancel each
other when the two wavefields are interpolated after the FFD
correction. Because FFD methods and interpolation are funda-
mental components of the new method, I refer to it as Fourier
finite difference plus interpolation method (FFDPI).

The computational cost of FFDPI is obviously higher than
the computational cost of simple FFD. However, FFDPI
achieves higher accuracy than simple FFD. In theory, FFDPI
can achieve arbitrary accuracy by using a sufficient number
of reference velocities. The cost of the proposed algorithm is
roughly proportional to the number of reference velocities,
since its most expensive components are the fast Fourier trans-
forms necessary to transform the wavefield between the space
domain and wavenumber domain.

IMPLICIT FINITE-DIFFERENCE CORRECTION TO
PHASE-SHIFT DOWNWARD CONTINUATION

Several methods have been proposed for modifying phase-
shift downward continuation (Gazdag, 1978), with the goal
of accommodating lateral velocity variations. Here, I analyze
three methods for which the correction is applied by using an
implicit finite-difference scheme: the pseudoscreen propagator
(Huang et al., 1999), FFD migration (Ristow and Rühl, 1994),
and the wide-angle screen propagator (Xie and Wu, 1998). All
of these methods apply a correction to the wavefield after it has
been downward continued using phase shift with a constant ve-
locity. This constant velocity is often called reference velocity
(vr ). The methods differ in how they approximate the differ-
ence between the one-way wave equation square root operator
with the reference velocity and the same square root operator
with the true medium velocity (v).

The simplest approximation is by Taylor expansion of the
square root operator around vr truncated at the first order.
This approximation corresponds to the pseudoscreen propa-
gator. It is also the basic approximation of the local Born-
Fourier method (Huang et al., 1999), although in the latter
migration method the correction is not applied by implicit finite
difference.

The wavefield (P) downward continued at depth z+1z is
computed from the wavefield at depth z using the following
approximation:

Pz+1z = Pze
ikvz1z ≈ Pze

ikvrz 1z+i dkz
ds 1s1z

, (1)

where the vertical wavenumber kvz for the medium velocity v
is given, as a function of the temporal frequency ω and the
horizontal wavenumber km, by the well-known single square
root equation

kvz =
ω

v

√
1− v

2k2
m

ω2
. (2)

The first derivative of the square root, with respect to the slow-
ness s= 1/v evaluated at the reference velocity vr , is

dkz

ds
= ω√

1− v
2
r k2

m

ω2

. (3)

If we use a finite difference method to apply the correction
term, we need to approximate the square root in equation (3)
with a rational expression. A reasonable approximation is
achieved by using a Taylor expansion:

dkz

ds
≈ ω

[
1+ v

2
r X2

2
+ 3v4

r X4

8
+ · · ·

]
, (4)

where X= km/ω. When used in conjunction with an implicit
finite-difference scheme, Muir’s continued fraction expansion
(Jacobs and Muir, 1981) is a computationally more efficient ap-
proximation than a Taylor expansion. A second-order contin-
ued fraction expansion is about as accurate as the fourth-order
Taylor expansion, but it includes only second-order terms for
the spatial derivatives (i.e., X2 instead of X2 and X4); that is,
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dkz

ds
≈ ω

1+
v2

r X2

2

1− 3v2
r X2

4

 . (5)

Notice that the first term of the correction in both equations (4)
and (5) corresponds to the split-step correction term (Stoffa
et al., 1990).

Figure 1 demonstrates the accuracy improvement gained by
including the second term in equation (5). It compares the
phase curves obtained after the first term in equation (5) (split
step) is applied and after both terms (pseudoscreen) are ap-
plied. The medium velocity v is equal to 2 km/s, and two refer-
ence velocities are assumed: one 10% lower than the medium
velocity (1.8 km/s), the other 10% higher than the medium
velocity (2.2 km/s).

FFD correction

The FFD correction achieves better accuracy than the pseu-
doscreen correction because it is based on a direct expansion of
the difference between the square root evaluated at v and the
square root evaluated at vr , instead of being based on the ex-
pansion of the square root aroundvr . The downward-continued
wavefield is approximated as

Pz+1z = Pze
ikvz1v ≈ Pze

ikvrz 1z+i 1kz
1s 1s1z

, (6)

where the Taylor series of the correction term is now

1kz

1s
≈ ω

[
1+ vr vX2

2
+ vr v

(
v2

r + v2 + vr v
)
X4

8
+ · · ·

]
(7)

and the continued fraction approximation of the correction
term is

1kz

1s
≈ ω

1+
vr vX2

2

1−
(
v2

r + v2 + vr v
)
X2

4

 . (8)

Both equations (7) and (8) respectively reduce to equations (4)
and (5) if v= vr . Therefore, at the limit when the difference be-

FIG. 1. Phase curves that compare the accuracy of the pseudo-
screen correction with the simple split-step correction.

tween the reference velocity and the medium velocity is small,
the two correction terms are equivalent, but they differ for
larger corrections.

The superiority of the FFD correction is demonstrated in
Figure 2. It compares the phase curves obtained after the pseu-
doscreen correction [equation (5)] and the FFD correction
[equation (8)] were applied. As in Figure 1, the medium ve-
locity v is equal to 2 km/s, and two reference velocities are
assumed: one 10% lower than the medium velocity (1.8 km/s),
and the other 10% higher than the medium velocity (2.2 km/s).

Figures 3 and 4 show the impulse responses associated with
the phase curves in Figure 2. The maximum frequency in
the data is 63 Hz, and the spatial sampling is 10 m horizon-
tally and 5 m vertically. Figure 3 shows the exact impulse re-
sponse for V = 2 km/s. Figure 4a shows the impulse response for
vr = 1.8 km/s and FFD correction. Figure 4b shows the impulse
response for vr = 2.2 km/s and FFD correction.

Notice the frequency dispersion in both the images obtained
with the FFD correction. These artifacts are caused by the
discretization errors of the horizontal Laplacian operator in
X2. To generate these figures, I used the classical second-order
three-point approximation of the Laplacian. The phase curves
shown in Figure 2 neglect this approximation; thus, they repre-
sent the effective phase shift for zero-frequency data. Also no-
tice that the frequency dispersion is in the opposite directions

FIG. 2. Phase curves that compare the accuracy of FFD correc-
tion with the pseudoscreen correction.

FIG. 3. Impulse response for the medium velocity equal to
2 km/s.
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for opposite signs of the velocity correction. The FFDPI
method exploits these opposite directions of the frequency-
dispersion errors, reducing the related artifacts without
additional computational complexity. Frequency-dispersion
artifacts could be further reduced if the accuracy of the discrete
Laplacian operator were improved—for example, by using the
well-known 1/6 trick (Claerbout, 1985). Another way to re-
duce frequency dispersion would be to use more accurate, but
also more computationally expensive, approximations of the
Laplacian, such as a fourth-order five-point approximation.

Wide-angle screen correction

Wide-angle screen migration (Xie and Wu, 1998; Huang
and Fehler, 2000) is similar to the methods discussed above.
The continued-fraction expression for the wide-angle screen
correction is

1̂kz

1s
≈ ω

1+
vr vX2

2

1−
(
v2

r + v2
)
X2

4

 . (9)

It differs from the FFD correction in equation (8) as it misses
one term (vr v) in the sum at the denominator. It is not as ac-
curate as the FFD correction, as demonstrated by Figure 5.
For relatively small velocity perturbations (<15%) the wide-
angle screen correction is actually less accurate than the pseu-
doscreen correction, as is evident by comparing Figures 5 and 2.
As the velocity perturbation increases, the wide-angle screen
correction becomes more accurate than the pseudoscreen cor-
rection, but it is still less accurate than the FFD correction.

The accuracy of all the corrections presented above can be
improved, as discussed by Cockshott and Jakubowicz (1996),
if the coefficients in the continued fraction approximation are

FIG. 4. Impulse responses with FFD correction and reference
velocity equal to (a) 1.8 km/s and (b) 2.2 km/s.

optimized in a way similar to the optimization of the one-way
equation by Lee and Suh (1985). Ristow and Rühl (1994) pro-
pose a local, and computationally intensive, method for op-
timizing the coefficients of the FFD correction. Huang and
Fehler (2000) propose a global, and thus less computationally
demanding, method for optimizing the coefficients of the wide-
angle screen correction. If these optimization schemes were
applied in conjunction with the FFDPI method, the accuracy
of the FFDPI method would improve further. However, this
paper does not discuss the optimization of the coefficients in
any detail and does not use it for the numerical examples.

STABLE FFD CORRECTION

An implicit finite-difference implementation using a Crank–
Nicolson scheme of the FFD correction as expressed in equa-
tion (8) is stable for smooth velocity variations. But numerical
instability may develop when there are sharp discontinuities
in the velocity field. An example of this situation is shown in
Figures 6 and 7. The slowness function (Figure 6) has a sharp
negative step and a random behavior within the low-slowness
region. The impulse response computed by the original FFD
correction is shown in Figure 7, and it clearly illustrates the
problem. Notice that the image was clipped at the 70th per-
centile before it was plotted so the shadow of the familiar
circular impulse response could be visible in the plot.

FIG. 5. Phase curves that compare the accuracy of FFD correc-
tion with the wide-angle screen correction.

FIG. 6. Depth slice through the slowness function that causes
the original FFD correction to become unstable.
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In constant velocity, the correction operator is unitary
(all-pass filter) because its eigenvalues have zero imaginary
parts. Numerical instability originates when variations in the
velocities terms multiplying the second derivative [vr vX2 and
(v2

r + v2+ vr v)X2] cause the imaginary part to become differ-
ent from zero. To ensure that this does not happen, we first
rewrite equation (8) as

1kz

1s
1s ≈ ω


(vr − v)
vr v

+
[

2(vr − v)
v2

r + v2 + vr v

]

×

(
v2

r + v2 + vr v
)
X2

4

1−
(
v2

r + v2 + vr v
)
X2

4

 . (10)

Then we rewrite (v2
r + v2+ vr v)X2 as the product of a matrix

with its adjoint:

6′X26 = − 1
ω21x2

6′D′D6 = − 1
ω21x2

6′T6

= − 1
ω21x2

6′



2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2


6, (11)

where

6 = 1
2

Diag



√
1v2 + 1v2

r + 1v 1vr

...√
i−1v2 + i−1v2

r + i−1v i−1vr√
i v2 + i v2

r + i v i vr√
i+1v2 + i+1v2

r + i+1v i+1vr

...√
nv2 + nv2

r + nvnvr


. (12)

FIG. 7. Impulse response computed with the original FFD cor-
rection and assuming the slowness function shown in Figure 6.
The image was clipped at the 70th percentile before it was
plotted so the shadow of the familiar circular impulse response
could be visible in the plot.

The values i vr and i v are, respectively, the reference velocity
and medium velocity at the i grid horizontal location.

The matrix 6′X26 is now guaranteed to have real eigenval-
ues. Because both I and 6′X26 are normal matrices that can
be diagonalized by the same similarity transformation (Brown,
1979), the matrix (I +6′X26)−16′X26 is also guaranteed to
have real eigenvalues.

In matrix notation, equation (10) can be rewritten as

1kz

1s
1s≈ ω

[
(vr − v)
vr v

+ sign(v − vr )1
6′X26

I +6′X26

]
,

(13)

where

1 = 2 Diag



|1vr − 1v|
1v2 + 1v2

r + 1v 1vr
...

|i−1vr − i−1v|
i−1v2 + i−1v2

r + i−1v i−1vr

|i vr − i v|
i v2 + i v2

r + i v i vr

|i+1vr − i+1v|
i+1v2 + i+1v2

r + i+1vi+1vr
...

|nvr − nv|
nv2 + nv2

r + nv nvr



. (14)

To perform the next, and last, step of the bulletproofing pro-
cess, I pulled the sign of the velocity perturbations outside the
diagonal matrix 1. To demonstrate that multiplication by 1
does not introduce instability, I first recognize that multiplying
the wavefield by the exponential of the second term in equa-
tion (13) is equivalent to solving the differential equation,

d

dz
P = iω sign(v − vr )1

6′X26

I +6′X26
P. (15)

Notice that the equivalence is true only if sign(v− vr ) is con-
stant, that is, if the reference velocity vr is always lower or
always higher than the medium velocity v. Second, I change
variable P=1 1

2 Q, and equation (15) becomes

d

dz
Q = 1 1

2

(
iω sign(v − vr )

6′X26

I +6′X26

)
1

1
2 Q

= 1 1
2 (iωS)1

1
2 Q. (16)

The norm ‖Q‖
1−1 is constant with depth because the eigenval-

ues of Sare real, and it obeys the differential equation
d

dz
‖Q‖2

1−1 = Q∗(iωS− iωS∗)Q = 0. (17)

Equation (17) guarantees the stability of the new FFD correc-
tion, independently from the value of sign (v− vr ), as long the
sign is constant. In theory, (vr − v) should be never equal zero
to avoid singularities in the norm ‖Q‖

1−1 . In practice, I never
had to enforce this condition, although it would be easy to do so.

The reference velocity vr and the medium velocity v can
be interchanged at will in the previous development without
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changing the stability conditions. Therefore, the stable FFD
correction is not only stable in presence of sharp discontinu-
ities in the medium velocity but also in the presence of sharp
discontinuities in the reference velocity. This property is ex-
ploited in the next section for the design of an efficient and
accurate interpolation scheme.

Equation (15) can be solved using a Crank–Nicolson scheme
and the wavefield at depth z+1z, computed as

Pz+1z =
1+ i sign(v − vr )ω

1z

2
1

6′X26

I +6′X26

1− i sign(v − vr )ω
1z

2
1

6′X26

I +6′X26

Pz. (18)

Figure 8 shows the same impulse response as in Figure 7 but
is computed by the stable FFD correction. In this case no
numerical instability is encountered, and the wavefield propa-
gates without problems through the region with random slow-
ness perturbations.

The stable FFD correction could be also applied to down-
ward continue a 3-D wavefield within a Crank–Nicolson solver,
as summarized in equation (18). However, in three dimen-
sions equation (18) would imply the solution of a linear sys-
tem with a banded matrix with a much wider band than that
in two dimensions. The cost of the exact 3-D solution would
thus be considerably higher than the 2-D solution because the
cost of banded-matrix solvers is proportional to the width of
the band. To reduce computational cost, a splitting algorithm
(Jakubowicz and Levin, 1983) can be used. The stability of a
splitting algorithm is derived directly from the analysis above,
since splitting consists of the successive application of the FFD
correction along the two horizontal coordinate axes. In the next
section I discuss how the ability to use both positive and neg-
ative velocity corrections yields a significant improvement in
the accuracy of the splitting algorithm.

Boundary conditions

A necessary component of deriving a stable downward-
continuation scheme is to define stable boundary conditions.
It is also desirable for the boundaries to be absorbing. Follow-
ing Clayton and Engquist (1980) and Rothman and Thorson
(1982), this goal can be easily accomplished if the values at the
edges of the diagonal of T in equation (11) are changed from
2 to (1+ pb), where pb= [pr , i sign(v− vr )|pi |], that is, substi-
tuting T with

FIG. 8. Impulse response computed with the stable FFD cor-
rection and assuming the slowness function shown in Figure 6.

Tb =



(1+ pb) −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . (1+ pb)


. (19)

The sign of the imaginary part of pb determines whether the
boundaries are absorbing or amplifying; therefore, the sign of
(v− vr ) must be constant so that instability cannot develop at
the boundaries. This requirement is consistent with the stability
analysis developed in equations (15)–(17). The actual values
of pr and pi determine the propagation angle of the incident
wavefield that is most strongly attenuated. In practice, to ensure
both strong attenuation and weak reflection from the bound-
aries, I use boundary strips a few samples wide instead of a
single boundary layer.

THE FFDPI ALGORITHM

The stable FFD correction has the characteristics needed
for use as the main building block of an efficient and accurate
wide-angle downward continuation algorithm. To achieve ac-
curacy, we can interpolate between wavefields that have been
phase shifted with several reference velocities and corrected by
the stable FFD method. In theory, arbitrary accuracy can be
achieved by an increase in the number of reference velocities.
The structure of the algorithm is similar to the PSPI method
(Gazdag and Sguazzero, 1984) and the extended split-step
method (Kessinger, 1992), except that a wide-angle correction
(FFD) is used instead of a narrow-angle one (vertical shift).
This improvement reduces the errors over the whole range of
propagation angles.

Two results reached in the previous section are important for
defining a stable and accurate interpolation scheme. First, the
stability of the FFD correction is independent of the sign of the
velocity perturbation to be applied, as long as the sign is con-
stant within the same correction step. This result enables a lin-
ear interpolation between a wavefield corresponding to refer-
ence velocities lower than the medium velocity and a wavefield
corresponding to reference velocities higher than the medium
velocity. Previously, because the reference velocity had to be
lower than the medium velocity, only a nearest-neighborhood
interpolation was possible when multiple velocities were used
in conjunction with wide-angle corrections (Huang et al., 1999).
Second, the reference velocity can vary at will laterally with-
out compromising the stability of the method. Because of these
results, it is sufficient to apply the FFD correction only twice
at each depth step, minimizing computations. The first correc-
tion would be applied to a wavefield constructed from all of
the reference wavefields computed with a reference velocity
lower than the medium velocity. The second would be applied
to a wavefield constructed from all of the reference wavefields
computed with a reference velocity higher than the medium
velocity.

The algorithm outlined above can be described in more detail
as a sequence of steps.

First, determine a set of Nvr reference velocities v j
r as a

function of the velocity range within the depth level. Gazdag
and Sguazzero (1984) discuss the advantages of setting the
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reference velocities to form a geometric progression. The ratio
between two successive velocities depends on the maximum
propagation angle required to image all of the reflectors of
interest.

Second, downward continue the data and compute all the

reference wavefields Pv
j
r

z+1z as

P
v

j
r

z+1z = Pze
ik
v

j
r

z 1z with j = 1, . . . , j, . . . , Nvr . (20)

Third, define two reference velocity functions v−r and v+r that
at every point are respectively equal to the reference velocity
that is just lower and just higher than the medium velocity; that
is,

v−r =
Nvr∑
j=1

δ−v j
r where δ− =

{
1 if v j

r ≤ v < v
j+1
r

0 elsewhere
(21)

v+r =
Nvr∑
j=1

δ+v j
r where δ+ =

{
1 if v j−1

r ≤ v < v
j
r

0 elsewhere
. (22)

(Figure 9 shows an example of how v−r and v+r are defined when
there are given four reference velocities and a medium velocity
function v that is laterally varying and includes a fast salt layer.)

Fourth, extract two wavefields (P−z+1z and P+z+1z), corres-
ponding to v+r and v−r and correct them by the stable FFD
method:

P−z+1z = e
i 1kz
1s

(v−r −v)
v
−
r v

1z Nvr∑
j=1

δ−P
v

j
r

z+1z, (23)

P+z+1z = e
i 1kz
1s

(v+r −v)
v
+
r v

1z Nvr∑
j=1

δ+P
v

j
r

z+1z. (24)

Finally, linearly interpolate the two corrected wavefield as

Pz+1z = W−P−z+1z+W+P+z+1z. (25)

The interpolation weights can be chosen to zero the phase error
for a given propagation angle θ0 as follows:

FIG. 9. Example of how the velocity functions v−r and v+r
are defined when there are four reference velocities and a
medium-velocity function v that is laterally varying and in-
cludes a fast (4.5 km/s) salt layer.
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(26)

W+ = 1−W−.

Notice that W− = 1 where the reference wavefield becomes
evanescent for the higher reference velocity (v+r ), that is, when

=(kv
+
r

z ) 6= 0.
The interpolation weights can be made frequency depen-

dent to decrease the effects of frequency dispersion on the
interpolated wavefield. The effective value for the horizontal
wavenumber k̂m is substituted for the exact wavenumber km

when computing 1kz/1s in equation (27). For example, when
the second derivatives are computed with the second-order
approximation Tb in equation (19), k̂m is given as a function
of km by

k̂m = 2
1x

sin
km1x

2
. (27)

The stability analysis developed earlier applies strictly to the
simple FFD correction, not to its combination with an inter-
polation scheme like FFDPI. In theory, when FFDPI is used,
instability can still develop as it does for PSPI (Etgen, 1994;
Dellinger and Etgen, 1996; Margrave and Ferguson, 1999).
However, the possibility for the FFDPI algorithm to become
unstable is mostly theoretical and does not represent a real
practical limitation.

FFDPI error analysis

The most important advantage of the FFDPI algorithm is
a drastic reduction of the propagation errors achieved when
the wavefields that have been downward continued with mul-
tiple reference velocities are interpolated linearly. The errors
are very small for all propagation angles up to the angle corre-
sponding to the steepest wave that is nonevanescent with the
reference velocity higher than the medium velocity (v+r ).

This section analyzes the errors introduced by FDDPI and
compares them with the errors introduced by the split-step
correction used in conjunction with a wavefield interpolation
scheme similar to the one described above. With a fixed num-
ber of reference velocities, the use of split-step correction in-
stead of FFD would reduce the computational cost. To analyze
the improvement in accuracy gained by the more accurate but
more expensive FFD correction method, we should compare
the phase errors of the two competing methods.

Figure 10 compares the relative phase errors measured
as a function of the propagation angle for split step, FFD,
FFDPI, and split step plus interpolation (SSPI). As in Figure 2,
v= 2 km/s and two reference velocities were assumed: one
10% lower than the medium velocity (1.8 km/s), the other 10%
higher than the medium velocity (2.2 km/s). The interpolation
weights were computed by equation (27), with θ0 set at 64◦.
The temporal frequency of the wavefield was assumed to be
zero. The FFDPI error was contained within the ±1% band
and was considerably lower than both the simple FFD and the
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SSPI errors. As expected, both the FFDPI and the SSPI curves
showed a zero crossing at 64◦.

Because of numerical dispersion, the errors for the FFD
and FFDPI methods increase as the temporal frequency of
the wavefield increases. Figure 11 compares the relative phase
errors measured when the temporal frequency is 100 Hz. The
frequency of 100 Hz corresponds to the Nyquist wavenumber
for the waves propagating at 90◦ with velocity of 2 km/s and

FIG. 10. Relative phase-error curves assuming v= 2 km/s and
starting from two reference velocities (v−r = 1.8 km/s and v+r =
2.2 km/s) for split step, FFD, FFDPI, and SSPI. The tempo-
ral frequency of the wavefield was assumed to be zero. For
both FFDPI and SSPI, θ0 was set at 64◦. The vertical solid
line indicates the maximum propagation angle (65.4◦) when
vr = 2.2 km/s and v= 2 km/s. The horizontal solid lines indi-
cate the 1% phase error level.

FIG. 11. Relative phase-error curves assuming v= 2 km/s and
starting from two reference velocities (v−r = 1.8 km/s and v+r =
2.2 km/s) for split step, FFD, FFDPI with frequency-
dependent weights [FFDPI with W(f)], FFDPI with
frequency-independent weights (FFDPI with Wc), and
SSPI. In contrast with Figure 10, the temporal frequency of
the wavefield was assumed to be 100 Hz. For both FFDPI
and SSPI, θ0 was set at 64◦. The vertical solid line indicates
the maximum propagation angle (65.4◦) when vr = 2.2 km/s
and v= 2 km/s. The horizontal solid lines indicate the ±1%
phase-error level.

spatial sampling of 10 m horizontally and 5 m vertically. There-
fore, the error curves shown in Figure 11 correspond to the
worst possible case for both the FFD and the FFDPI methods.
There are two curves for the FFDPI method: one correspond-
ing to frequency-independent interpolation weights, the other
corresponding to frequency-dependent interpolation weights.
By using frequency-dependent weights, we can greatly reduce
the effects of numerical dispersion and maintain the accuracy
advantages of FFDPI over SSPI. In contrast, numerical disper-
sion severely degrades the accuracy of the simple FFD correc-
tion at high frequency, as is evident in the impulse responses
shown in Figure 4.

Figure 12 shows the impulse responses corresponding to the
phase curves in Figures 10 and 11 (compare them with the im-
pulse responses in Figures 3 and 4). The impulse response in
Figure 12a was computed with frequency-independent inter-
polation weights. While it is much closer to the exact impulse
response (Figure 3) than either of the impulse responses ob-
tained with a simple FFD correction (Figure 4), it shows some
frequency dispersion. The high frequencies are imaged inside
the semicircle. The frequency dispersion is greatly reduced
when the frequency-dependent interpolation weights are used,
as demonstrated in Figure 12b and predicted by the curves in
Figure 11.

Azimuthal anisotropy

A recurring problem that hampers the application of im-
plicit finite-difference methods to 3-D wave extrapolation is the

FIG. 12. Impulse responses after interpolation with
(a) frequency-independent weights and (b) frequency-
dependent weights. The maximum frequency in the data is
63 Hz, and the spatial sampling is 10 m horizontally and 5 m
vertically. Panel (a) corresponds to the phase-error curves
shown in Figure 10 (FFDPI) and Figure 11 (FFDPI with Wc).
Panel (b) corresponds to the phase-error curves shown in
Figure 10 (FFDPI) and Figure 11 [FFDPI with W(f)].
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azimuthal anisotropy associated with splitting (Jakubowicz and
Levin, 1983). Of course, this problem also affects the FFD cor-
rection applied by splitting (Cockshott and Jakubowicz, 1996).
Ristow and Rühl show that multiway splitting can successfully
reduce the azimuthal anisotropy for both 3-D implicit finite-
difference methods (1997a) and FFD methods (1997b). Multi-
way splitting could easily be applied in conjunction with FFDPI
to further reduce azimuthal anisotropy. Another potentially at-
tractive way of solving this problem is to use helical boundary
conditions, as discussed by Rickett et al. (1998). However, in
the presence of sharp discontinuities in the velocity function,
the helical solution may become unstable (Rickett, 2001).

Figure 13 compares relative phase errors as a function of
the azimuth measured for a propagation angle of 61◦. The
frequency-dependent interpolation weights were computed to
zero the phase error along an azimuthal direction oriented at
22.5◦ with respect to the in-line/cross-line axes and at a dip an-
gle of 61◦ (θ0= 61◦). The azimuthal direction of 22.5 was cho-
sen because it is the midpoint between the two extremes of
the error curves. As in the previous figures, v= 2 km/s, and
two reference velocities are assumed: one 10% lower than the
medium velocity (1.8 km/s), the other 10% higher than the
medium velocity (2.2 km/s). The plots show the phase errors at
two frequencies (0 and 100 Hz) for the FFDPI algorithm, the
FFD correction starting from the lower reference velocity, and
the FFD correction starting from the higher reference veloc-
ity. For both of the simple FFD correction cases, the azimuthal
anisotropy decreases as the frequency increases, although the
average phase error increases as well. But the crucial, and use-
ful, feature of the phase error function for the FFD corrections
is that the azimuthal variations are in opposite directions when
the differences between the reference velocity and medium ve-
locity have opposite signs. Consequently, the phase error of the
interpolation method is contained within the ±1% band, and
it is much lower than the error of either of the simple FFD cor-
rections. At higher frequencies (100 Hz) the impulse response
of FFDPI is almost perfectly isotropic.

FIG. 13. Relative phase-error curves for FFD and FFDPI,
as a function of the azimuth. The medium velocity was as-
sumed to be v= 2 km/s, and the two reference velocities were
v−r = 1.8 km/s and v+r = 2.2 km/s. Two temporal frequencies of
the wavefield were assumed: 0 and 100 Hz. The horizontal solid
lines indicate the ±1% phase-error level.

The theoretical analysis is confirmed by the characteristics of
the impulse responses. Figure 14 shows the depth slice of three
impulse responses superimposed onto each other. The outer-
most circular event corresponds to the FFD correction starting
from a reference velocity of 2.2 km/s. The middle event corre-
sponds to the exact impulse response with a medium velocity
of 2 km/s. The innermost event corresponds to the FFD correc-
tions starting from a reference velocity of 1.8 km/s. The depth
of the slices corresponds to a propagation angle of 64.2◦, which
is close to the maximum propagation angle (65.4◦) for the high
reference velocity (2.2 km/s). As predicted by the curves shown
in Figure 13, the azimuthal anisotropy is frequency dependent,
and the frequency dispersion is smaller for azimuths oriented
at 45◦ with respect to the coordinate axes.

The comparison of Figure 15 with Figure 14 demonstrates the
reduction in migration anisotropy achieved by using FFDPI in
conjunction with splitting. Figure 15 is the merger of two im-
pulse responses along the in-line direction, cut at the same
depth as the slices shown in Figure 14. For negative values of
the in-line coordinate, the plot shows the depth slice for the
exact impulse response. For positive values of the in-line coor-
dinate, the plot shows the depth slice for the impulse response
obtained by FFDPI. It is evident that the result of the inter-
polation scheme is much less affected by azimuthal anisotropy
and frequency dispersion than the results of the two simple
FFD correction shown in Figure 14.

ZERO-OFFSET MIGRATION OF THE SEG-EAGE
SALT DATA SET

To test the stability and accuracy of the FFDPI algo-
rithm, I migrated zero-offset data from the SEG/EAGE salt
data set (Aminzadeh et al., 1996). The zero-offset data were

FIG. 14. Depth slices through impulse responses. Innermost
event corresponds to the FFD corrections starting from a ref-
erence velocity of 1.8 km/s. Middle event corresponds to the
exact impulse response with the medium velocity of 2 km/s.
Outermost event corresponds to the FFD corrections starting
from a reference velocity of 2.2 km/s.
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obtained by stacking the near offsets (0–500 m) of the C3 Nar-
row Azimuth data set (Society of Exploration Geophysicists
and European Association of Geoscientists and Engineers,
1997) after the data set is a good test for the stability of the
FFDPI algorithm because the velocity model has sharp dis-
continuities caused by the salt body. Furthermore, because of
a low-velocity region intended to model subsalt overpressure,
several depth slices have a wide range of velocities. Figure 16
shows one of these depth slices. In the plot the salt velocity is
clipped; thus, the scale bar on the side represents the range of
velocities within the sediments. There is almost a factor of two
between the slow-velocity sediments in the overpressure zone
in the middle and the faster sediments at the edges.

To image the reflectors above the salt, the migration algo-
rithm does not need to accurately handle lateral velocity vari-
ations, and the reflectors below the salt cannot be imaged by
simple zero-offset migration. Therefore, the test focuses on a
deep fault located between depths of 2 and 3 km and away from
the salt body, one of the few reflectors well suited to test the
accuracy of a zero-offset migration. Figure 17 shows an in-line
section of the migrated cube that cuts across the fault of in-

FIG. 15. Depth slices through impulse responses. Left half cor-
responds to the exact impulse response with the medium ve-
locity of 2 km/s. Right half corresponds to the FFDPI results.

FIG. 16. Depth slice of the velocity model at depth z= 2 km.
The salt velocity was clipped, so the scale bar on the side shows
the range of velocities in the sediments.

terest. The staircase appearance of the imaged reflectors is the
result of the coarse spatial sampling of the reflectivity function
used for modeling the data. Figure 17 was obtained with the
FFDPI algorithm. Four reference velocities were used at each
depth step. Figure 18 compares the zooms around the fault
of interest. The light gray lines superimposed onto both plots

FIG. 17. In-line section of the migrated cube obtained using
FFDPI.

FIG. 18. Window of the same in-line section shown in Figure 17
and obtained by use of (a) split step and (b) FFDPI. The light
gray lines superimposed onto the plots represent the correct
fault position, as picked from the velocity model. In (a) the
fault is misplaced; in (b), the fault is correctly placed.
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represent the correct fault position as picked from the velocity
model. Figure 18a shows the results obtained when the inter-
polation algorithm is used but in conjunction with the split-
step correction instead of the stable FFD correction. The fault
is undermigrated; thus, it is imaged too shallow and the sed-
iment terminations are not well focused. The fault is better
positioned and the image is better focused when the FFDPI
algorithm is used to migrate the data (Figure 18b).

CONCLUSIONS

The combination of the Fourier method’s accuracy for
wide-angle propagation with the flexibility of implicit finite
difference for modeling lateral velocity variations yields accu-
rate and efficient downward propagation methods. The FFD
correction is the most attractive among several methods that
use implicit finite difference to correct constant-velocity phase
shift for lateral velocity variations. However, the correction
operator originally presented by Ristow and Rühl (1994) can
be unstable in the presence of sharp discontinuities in the
velocity function. I have presented and successfully tested
an unconditionally stable version of the FFD correction. A
simple rearrangement of coefficients is all that is necessary to
make the FFD correction stable. Therefore, the stable version
has computational complexity similar to that of the potentially
unstable one.

Using the stable FFD correction as a building block, I de-
rived an accurate and stable wide-angle migration (FFDPI).
The FFDPI algorithm is based on the interpolation of two
wavefields corrected with the FFD method, with opposite signs
of the velocity perturbations. This interpolation step compen-
sates for both the azimuthal anisotropy and the frequency dis-
persion of the simple FFD corrections. Therefore, the FFDPI
algorithm achieves high accuracy, as demonstrated by the mi-
gration example of the SEG-EAGE salt data set.

The accuracy and cost of the FFDPI algorithm can be con-
trolled easily by setting the number of reference velocities.
Small phase errors can be achieved across the whole range
of propagation angles, from zero to the limit determined by
the evanescent limit for the reference velocity above the true
medium velocity. The method is thus particularly attractive
when high accuracy is needed for the downward-continuation
operators, as in prestack depth migration below salt bodies.
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