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Solution steering with space-variant filters

Robert G. Clapp, Sergey Fomel, and Jon Claerbout1

ABSTRACT

Most geophysical problem require some type of regularization. Unfortunately most reg-
ularization schemes produce “smeared” results that are often undesirable when applying
other criteria (such as geologic feasibility). By forming regularization operators in terms
of recursive steering filters, built from a priori information sources, we can efficiently
guide the solution towards a more appealing form. The steering methodology proves
effective in interpolating low frequency functions, such as velocity, but performs poorly
when encountering multiple dips and high frequency data. Preliminary results using steer-
ing filters for regularization in tomography problems are encouraging.

INTRODUCTION

When attempting to do inversion we are constantly confronted with the problem of slow con-
vergence. Claerbout and Nichols(1994) suggested using a preconditioner to speed up con-
vergence. Unfortunately it is often difficult to find an appropriate preconditioner and/or the
preconditioner is so computationally expensive that it negates the savings gained by reducing
the number of iterations (Claerbout, 1994). Claerbout (1997) proposed designing helicon-style
operators to provide a method to find stable inverses, and potentially, appropriate precondition-
ers (Fomel et al., 1997; Fomel, 1997a).

In addition, geophysical problems are often under-determined, requiring some type of reg-
ularization. Unfortunately the simplest, and most common, regularization techniques tend to
create isotropic features when we would often prefer solutions that follow trends. This prob-
lem is especially prevalent in velocity estimation. The result obtained through many inversion
schemes produce a velocity structure that geologists (whose insights are hard to encode into
the regression equations) find unreasonable (Etgen, 1997). Fortunately, there are often other
sources of information that can be encoded into the regularization operator that allow the in-
version to be guided towards a more appealing result. For example, in the case of velocity
estimation, reflector dips might be appropriate. We create small, space-variant, steering filters
from dip or other a priori information. We use the inverse of these filters to form a precondi-
tioner which acts as our regularization operator. We show this methodology applied to three
different types of problems. In the first set of examples we interpolate well-log information
using reflector dip as the basis for our steering filters. For the second set of examples we do
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a more traditional seismic data interpolation problem. Starting from a shot gather with a por-
tion of the data missing. We use a velocity function to create hyperbolic paths, which in turn
are used to construct steering filters. In the final example we show some preliminary results
of using steering filters in conjunction with a tomographic operator to create velocity models
which both satisfy the data and are geologically reasonable.

THEORY/MOTIVATION

Regularization

In general, geophysical problems are ill-posed. To obtain pleasing results we impose some
type of regularization criteria such as diagonal scaling, limiting solutions to large singular
values (Clapp and Biondi, 1995), or minimizing different solution norms (Nichols, 1994). The
typical SEP approach is to minimize the power out of a regularization operator (A) applied to
the model (m), described by the fitting goal

0 ≈ Am. (1)

WhereA’s spectrum will be the inverse ofm, so to produce a smoothm, we need a rough
A(Claerbout, 1994)). The regularization operator can take many forms, in order of increasing
complexity:

Laplacian operator (∇2) The symmetric nature of the Laplacian leads to isotropic smooth-
ing of the image.

Steering filters Simple plane wave annihilation filters which tend to orient the data in some
preferential direction, chosen a priori. These filters can be simple two point filters,
Figure 1, to larger filters that sacrifice compactness for more precise dip annihilation.

Figure 1: An example of steering fil-
ter. In this case preference is given to
slopes at 45 degrees.steer-steering
[NR]
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Prediction Error Filters (PEF) Like steering filters apply a preferential smoothing direc-
tion, but are not limited to a single dip and determine their smoothing directions from
the known data (Schwab, 1997).

Preconditioning

Another important consideration is the speed of convergence of the problem. The size of
most geophysical problems make direct matrix inversion methods impractical. An appealing
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alternative for linear problems is the family of conjugate gradient methods. Unfortunately, the
operators used in seismic reflection problems are often computationally expensive. As a result
it is important to minimize the number of steps it takes to get to a reasonable solution. One
way that can reduce the number of iterations is by reformulating the problem in terms of some
new variable (x) with a preconditioning operator (B). Changing a tradition inversion problem
where the operator (C) maps the model (m) to the data (d),

d ≈ Cm (2)

we can rewrite

d ≈ CBx (3)

where

m = Bx. (4)

Helix transform

The next question is how to chooseB? We have three general requirements:

• it produces relatively smooth (by some criteria) results;

• it spreads information quickly;

• and it is computationally inexpensive.

By defining our operators via the helix method (Claerbout, 1997) we can meet all of these
requirements. The helix concept is to transformN-Dimensional operators into 1-D operators
to take advantage of the well developed 1-D theory. In this case we utilize our ability to
construct stable inverses from simple, causal filters. We can setB, from equation (4) to

B = A−1, (5)

whereA is the roughening operator from fitting goal (1), andB is simulated using polynomial
division. If A is a small roughening operator,B is a large smoothing operator without the
heavy costs usually associated with larger operators.

Steering Filters

At this point a discussion of steering filters is appropriate. Plane waves with a given slope on
a discrete grid can be predicted (destroyed) with compact filters (Schwab, 1997). Inverting
such a filter by the helix method, we can create a signal with a given arbitrary slope extremely
quickly. If this slope is expected in the model, the described procedure gives us a very efficient
method of preconditioning the model estimation problem, fitting goal (2).
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How can a plane prediction (steering) filter be created? On the helix surface, the plane
wave P(t ,x) = f (t − px) translates naturally into a periodic signal with the period ofT =

Nt +σ , whereNt is the number of points on thet trace, andσ =
p4x
4t , whereσ is the plane

slope,2 and4x and4t correspond to the mesh size. If we design a filter that is two columns
long (assuming the columns go in thet direction), then theplane predictionproblem is simply
connected with theinterpolation problem: to destroy a plane wave, shift the signal byT ,
interpolate it, and subtract the result from the original signal. Therefore, we can formally
write

P = I −S(σ ) , (6)

whereP denotes the steering filter,S is the shift-and-interpolation operator, andI is the identity
operator.

Different choices for the operatorS in (6) produce filters with different length and predic-
tion power. A shifting operation corresponds to the filter with theZ-transform6(Z) = ZT ,
while the operatorScorresponds to an approximation of6(Z) with integer powers ofZ. One
possible approach is to expand6(Z)Z−Nt using the Taylor series around the zero frequency
(Z = 1). For example, the first-order approximation is

S1(Z) = ZNt (1+σ (Z −1)) = (1−σ )ZT
+σ ZT+1 , (7)

which corresponds to linear interpolation and leads in the two-dimensional space to the steer-
ing filter P of the form

1
σ −1 −σ

(8)

Filter (8) is equivalent to the explicit first-order upwind finite-difference scheme on the plane
wave equation

∂ P

∂x
+ p

∂ P

∂t
= 0 . (9)

An important property of filter (8) is that it produces an exact answer forσ = 0 andσ = 1.
The values ofσ > 1 lead to unstable inversion. For negativeσ , the filter is reflected:

P1 =
1

σ −σ −1
(10)

The top panel in Figure 2 shows a plane wave, created by applying the helix inverse of filter
(8) on a single spike (unit impulse) for the value ofσ = 0.7. We see a noticeable frequency
dispersion, caused by the low order of the approximation.

The second-order Taylor approximation yields

S2(Z) = ZNt−1
(

1+σ (Z −1)
(σ −1)σ (Z −1)2

2

)
=

σ (σ −1)

2
ZT−1

+
(
1−σ 2) ZT

+
σ (σ +1)

2
ZT+1 , (11)

2In computational physics, the dimensionless numberσ is sometimes referred to as the CFL (Courant,
Friedrichs, and Lewy) number (Sod, 1985).
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Figure 2: Steering filters with Lagrange interpolation. The left and middle plots show the
impulse responses of steering filters: the top panel corresponds to linear interpolation (two-
point Lagrange, upwind finite-difference); the second top plot, the three-point Lagrange filter
(Lax-Wendroff scheme); the two bottom plots, the 8-point and 13-point Lagrange filters. The
right plots in each panel show the corresponding average spectrum. The spectrum flattens and
the prediction get more accurate with an increase of the filter size.steer-steer-lagrange[ER]
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which corresponds to the 2-D filter

P2 =
1

σ (1−σ )
2

(
σ 2

−1
)

−
σ (σ+1)

2

(12)

and is equivalent to the Lax-Wendroff finite-difference scheme of equation (9). The interpo-
lation, implied by filter (10) is a local three-point polynomial (Lagrange) interpolation. The
correspondence of the Taylor series method, described above, and the Lagrange interpolation
can be proved by induction. In general, the filter coefficients for the second row of theN-th
order Lagrangian filter are given by the explicit formula

ak =

∏
i 6=k

(σ −
[

N
2

]
− i )

(k− i )
, (13)

where thek and i range from 0 toN. Such a filter has a stable inverse for−
N
2 ≤ σ ≤

N+1
2

and additionally produces an exact answer for all integerσ ’s in that range. We would have
arrived at the same conclusion if instead of expanding theZ-transform of the filterS around
Z = 1, expanded its Fourier transform around the zero frequency. The latter case corresponds
to the “self-similar” construction of Karrenbach (1995). The impulse responses for the helix
inverses of different-order Lagrangian filters are shown in Figure 2.

If instead of Taylor series inZ, we use a rational (Padè) approximation, the filter will get
more than one coefficient in the first row, which corresponds to an implicit finite-difference
scheme. For example, the [1/1] Padè approximation is

S1
1(Z) =

1+
1+σ

2 (Z −1)

1+
1−σ

2 (Z −1)
=

1−σ + (1+σ )Z

1+σ + (1−σ )Z
(14)

which leads to the filter

P1
1 =

1 1−σ
1+σ

σ−1
1+σ

−1
(15)

and corresponds to the Crank-Nicolson implicit scheme. The impulse response for the inverse
of filter (15) is shown in the top plot of Figure 3. It shows some mild improvements in com-
parison with the explicit Lagrangian filter of the same order. In our experience, filters with
more than one additional coefficient in the first column behave unstably when inverted.

Other types of interpolations could be used for the steering filters (Fomel, 1997b) The two
bottom panels of Figure 3 show the impulse responses for the filters, based on the tapered sinc
interpolation. The filters suffer from high-frequency oscillations, but otherwise also perform
well.

It is interesting to note that a space-variant convolution with inverse plane filters can create
signals with different shape, which remains planar only locally. This situation corresponds to a
variable slownessp in the one-way wave equation (9). Figure 4 shows an example: predicting
hyperbolas with a 7-point Lagrangian filter.
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Figure 3: Steering filters with different types of interpolation. The left and middle plots show
the impulse responses of the steering filters: the top panel corresponds to first-order Padè
interpolation (Crank-Nicolson scheme); the second top plot, the (8/2) Padè approximation;
the two bottom plots, the 8-point and 12-point Lagrange filters. The right plots in each panel
show the corresponding average spectrum.steer-steer-other[ER]
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Figure 4: Creating hyperbolas with a variant plane-wave prediction: the impulse response of
the inverse 7-point time-and-space-variant Lagrangian filter.steer-steer-hyp7[ER]

Space variable filters

Steering filters are effective in spreading information along a given direction, but are limited
to a single dip. If it is inappropriate to apply a single smoothing direction to the entire model
there are two general courses of action:

Patching (Claerbout, 1992b; Schwab and Claerbout, 1995) Redefine our problem into a se-
ries of problems, each on a small subset of the data where the stationarity assumption
is valid, then recombine the data. This approach leads to problems in determining sub-
sets where the stationarity condition is satisfied and how to effectively remove patching
boundaries from the final output.

Space varying filters Filters that vary with location but are spatially smooth. In many ways
this is the a more appealing approach. In the past, space varying filters have not been
used because they impose significant memory issues (a filter at every location) and must
be spatially smooth. By choosing steering filters for our regularization operator and us-
ing helix enabled polynomial division, these weaknesses are significantly diminished.
We can construct and store relatively small filters which are much easier to smooth
(smoothing the preferential dip direction is sufficient). In addition the polynomial divi-
sion produced inverse filters will have an even higher level of smoothness because each
filter spreads information over large, overlapping regions at each iteration.

WELL LOG/DIP INTERPOLATION

To illustrate the effectiveness of this method imagine a simple interpolation problem. Fol-
lowing the methodology of (Fomel et al., 1997) we first bin the data, producing a modelm,
composed of known datamk and unknown datamu. We have an operatorJ which is simply a
diagonal masking operator with zeros at known data locations and ones at unknown locations.
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We can writemk andmu in terms ofm andJ,

mk ≈ (I−J)m (16)

mu ≈ Jm (17)

whereI is the identity matrix. We have the preconditioning operatorB, which applies poly-
nomial division using the helix methodology. In this case we have a single equation in our
estimation problem,

mk ≈ (I −J)Bx. (18)

So the only question that remains is what to use forB, or more specificallyB−1, A.

For this experiment we create a series of well logs by subsampling a 2-D velocity field.
We use as our a priori information source, reflector dips, to build our steering filters, and thus
our operatorA. For this test we pick our dips from our “goal”, left portion of Figure 5. We
define areas in which we believe each of these dips to be approximately correct, and smooth
the overall field (right portion of Figure 5).

Figure 5: Left, a synthetic seismic section with four picked reflectors indicated by ’*’; right;
the dip field constructed from the picked reflectors.steer-qdome-reflectors[ER]

For the first test, we simulate nine well logs along the survey (Figure 6). We use equation
(18) as our fitting goal and a conjugate gradient solver to estimatex. Within 12 iterations we
have a satisfactory solution(Figure 6). If you look closely, especially near the bottom of the
section you can still see the well locations, but in general the solution converges quickly to
something fairly close to the correct velocity field (Figure 5).
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Figure 6: Left, correct velocity field; middle, well subset selected as input; right, velocity field
resulting from interpolation.steer-qdome-combo1[ER]

For a more difficult test, we decreased the number of wells, and give them varying lengths.
In Figure 7 you see that in a few iterations we achieve a result quite similar to our goal. In
addition, in areas far away from known data the method still followed the general dip direction
simply at a lower frequency level.

SHOT-GATHER BASED INTERPOLATION

Another possible application for using recursive steering filters is to interpolate seismic data.
As an initial test we chose to interpolate a shot gather. We used av(z) velocity function to
construct hyperbolic trajectories, which in turn were used to construct our dip field (similar to
the seismic dips used in the previous section).

For a first test we created a synthetic shot gather using av(z) = a+bz model as input to
a finite difference code. We then cut a hole in this shot gather and attempted to recover the
removed values. As Figure 8 shows we did a good job recovering the amplitude within a few
iterations.

To see how the method reacted when it was given data that did not fit its model (in this
case hyperbolic moveout) we used a dataset with significant noise problems (ground roll, bad
traces, etc.). Using the same technique as in Figure 8 we ended up with a result which did
a fairly decent job fitting portions of the data where noise content was low, but a poor job
elsewhere (Figure 9). Even where the method did the best job of reconstructing the data, it
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Figure 7: Left model (our goal), middle well logs, and right estimated model after 12 iterations.
steer-qdome-combo4[ER]

Figure 8: Left, synthetic shot gather; center, holes cut out of shot gather; right, inversion result
after 15 iterations.steer-shot-s-combo[ER]
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still left a visible footprint. A more esthetically pleasing result can be achieved by using the
above method followed a more traditional interpolation problem using the operatorA and the
fitting goal

Am ≈ 0, (19)

wherem is initialized with the result of our previous inversion problem and not allowed to
change at locations where we have data. The bottom right panel in Figure 9 shows the result
of applying a few iterations of fitting goal (19) to the bottom left result in Figure 9. By using
both methodologies the interpolated data does a much better job blending into its surroundings
but still is a poor interpolation result.

REGULARIZATION

The steering filter methodology has the most potential as a regularization operator in large
inversion problems. For our final example we use inverse steering-filters in conjunction with
another operator, in this case a tomography operator, to improve the inversion result. For
our tomography operator we chose Toldi’s interval to stacking velocity operator(Toldi, 1985).
Generally, Toldi(1985) related perturbations in interval slowness to perturbations in stacking
slowness in simple slowness models.

We constructed a synthetic interval slowness perturbation model (Figure 10, left panel)
where the perturbations from zero follow a sinusoidal path, and the anomalies go from positive
to negative as you go from left to right. We used Toldi’s forward operator to compute stacking
velocities at various depth levels (Figure 11, left panel), in this case we simulating collecting
stacking velocity at 10 evenly spaced depths (compared to 160 depth locations in our interval
slowness model), assuming a cable length of 2km.

We applied a fairly traditional inversion methodology to estimate our interval velocity
perturbations:

Tm ≈ d (20)

εAm ≈ 0. (21)

WhereT, is the Toldi operator;A, is a Laplacian smoother;m, is our interval slowness pertur-
bation model; andd, is our data, stacking slowness perturbations.

The center panel of Figure 10 shows the inversion result. We tried a variety ofε values,
selecting one that created a rough model, but did a fairly good job recovering the correct inter-
val velocity perturbations. Next, we attempted to recover the interval slowness perturbations,
starting from the same stacking slowness perturbations, using the steering filter methodology.
We constructed our steering filters to follow the sinusoidal pattern of the model and changed
our fitting goal to:

A−1x = m (22)

TA−1x ≈ d (23)
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Figure 9: Top left, original shot gather; top right, gather with holes (input); bottom left, re-
sult applying equation 18, bottom right, result after applying equation (18) followed by (19).
steer-wz-25-combo[ER]
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Figure 10: Left, slowness perturbation model; center, inversion result using Laplacian
smoother; right, inversion result using steering filters.steer-toldi-steer[ER]

Figure 11: Left, input stacking slowness; right, calculated stacking slowness of steering filter
inversion model.steer-toldi-stack[ER]
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whereA is our steering filter matrix. As the right panel of Figure 10 shows we did a substan-
tially better job following “geology”, with the added benefit of better vertically constraining
the interval slowness perturbations.

FUTURE WORK AND CONCLUSIONS

We show that by using helicon enabled inverse operators built from small steering filters we
can quickly obtain esthetically pleasing models. Tests on smooth models, with a single dip at
each location proved successful. The methodology does not adequately handle models with
multiple dips at each location and presupposes some knowledge of the desired final model. A
different approach would be to estimate the steering filters (S) from the experimental data (m).
Generally, this leads to a system of non-linear equations

P(σ )m = (I −S(σ ))m = 0 , (24)

which need to be solved with respect toσ . One way of solving system (24) is to apply the
general Newton’s method, which leads to the iteration

σk = σk−1 +
P(σk−1)m
S′(σk−1)m

, (25)

where the derivativeS′(σ ) can be computed analytically. It is interesting to note that if we start
with σ = 0 and apply the first-order filter (8), then the first iteration of scheme (25) will be ex-
actly equivalent to the slope-estimation method of Claerbout (1992a), used by Bednar (1997)
for calculating coherency attributes. Finally, the steering filter regularization methodology
needs to be tried in conjunction with a variety of operators and applied to real data problems.
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