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Seismic data interpolation with the offset continuation equation

Sergey Fomel1

ABSTRACT

I propose a finite-difference offset continuation filter for interpolating seismic reflection
data. The filter is constructed from the offset continuation differential equation and is
applied on frequency slices in the log-stretch frequency domain. Synthetic data tests pro-
duce encouraging results: nearly perfect interpolation of a constant-velocity dataset with
a complex reflector model and reasonably good interpolation of the Marmousi dataset.

INTRODUCTION

As early as 20 years ago, researchers at SEP considered data interpolation as one of the most
important problems of seismic data processing (Claerbout, 1980, 1981; Thorson, 1981). In
2-D exploration, the interpolation problem arises because of missing near and far offsets, spa-
tial aliasing and occasional bad traces. In 3-D exploration, the importance of this problem
increases dramatically because 3-D acquisition almost never provides a complete regular cov-
erage in both midpoint and offset coordinates (Biondi, 1999). Data regularization in 3-D can
solve the problem of Kirchoff migration artifacts (Gardner and Canning, 1994), prepare the
data for common-azimuth imaging (Biondi and Palacharla, 1996), or provide the spatial cov-
erage required for 3-D multiple elimination (van Dedem and Verschuur, 1998).

Claerbout (1992, 1999) formulates the following general principle of missing data inter-
polation:

A method for restoring missing data is to ensure that the restored data, after spec-
ified filtering, has minimum energy.

How can one specify an appropriate filtering for a given interpolation problem? Smooth
surfaces are conveniently interpolated with Laplacian filtering (Briggs, 1974; Fomel, 2000).
Steering filters help us interpolate data with predefined dip fields (Clapp et al., 1997; Fomel
et al., 1997; Fomel, 1999). Prediction-error filters in time-space or frequency-space domain
successfully interpolate data composed of distinctive plane waves (Spitz, 1991; Claerbout,
1999). Because prestack seismic data is not stationary in the offset direction, non-stationary
prediction-error filters need to be estimated, which leads to an accurate but relatively expensive
method with many adjustable parameters (Crawley, 1999; Clapp et al., 1999).
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A simple model for reflection seismic data is a set of hyperbolic events on a common
midpoint gather. The simplest filter for this model is the first derivative in the offset direction
applied after the normal moveout correction.2 Going one step beyond this simple approxi-
mation requires taking the dip moveout (DMO) effect into account (Deregowski, 1986). The
DMO effect is fully incorporated in the offset continuation differential equation (Fomel, 1994,
1995a).3

Offset continuation is a process of seismic data transformation between different offsets
(Deregowski and Rocca, 1981; Bolondi et al., 1982; Salvador and Savelli, 1982). Different
types of DMO operators (Hale, 1995) can be regarded as continuation to zero offset and de-
rived as solutions of an initial-value problem with the revised offset continuation equation
(Fomel, 1995b). Within a constant-velocity assumption, this equation not only provides cor-
rect traveltimes on the continued sections, but also correctly transforms the corresponding
wave amplitudes (Fomel and Bleistein, 1996). Integral offset continuation operators have
been derived independently by Stovas and Fomel (1996), Bagaini and Spagnolini (1996), and
Chemingui and Biondi (1994). The 3-D analog is known as azimuth moveout (AMO) (Biondi
et al., 1998). In the shot-record domain, integral offset continuation transforms to shot contin-
uation (Schwab, 1993; Bagaini and Spagnolini, 1993; Spagnolini and Opreni, 1996). Integral
continuation operators can be applied directly for missing data interpolation and regulariza-
tion (Bagaini et al., 1994; Mazzucchelli and Rocca, 1999). However, they don’t behave well
for continuation at small distances in the offset space because of limited integration apertures
and, therefore, are not well suited for interpolating neighboring records. Additionally, as all
integral (Kirchoff-type) operators they suffer from irregularities in the input geometry. The lat-
ter problem is addressed by accurate but expensive inversion to common offset (Chemingui,
1999).

In this paper, I propose an application of offset continuation in the form of a finite-
difference filter for Claerbout’s method of missing data interpolation. The filter is designed
in the log-stretch frequency domain, where each frequency slice can be interpolated indepen-
dently. Small filter size and easy parallelization among different frequencies assure a high
efficiency of the proposed approach. Although the offset continuation filter lacks the predic-
tive power of non-stationary prediction-error filters, it is much simpler to handle and serves
as a gooda priori guess of an interpolative filter for seismic reflection data. I test the pro-
posed method by interpolating randomly missing traces in a constant-velocity synthetic and by
restoring near offsets and intermediate shot gathers in the Marmousi synthetic dataset. These
early tests produce encouraging results. In the final section of the paper, I discuss possible
strategies for improving the method.

2A similar filter appears in velocity estimation with the differential semblance method (Symes and Caraz-
zone, 1991; Symes, 1999).

3To the author’s knowledge, the first derivation of the revised offset continuation equation was done by
Joseph Higginbotham of Texaco in 1989. Unfortunately, Higginbotham’s derivation never appeared in open
literature.
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PROBLEM FORMULATION

If D is a regularization operator, andm is the estimated model, then Claerbout’s interpolation
method amounts to minimizing the power ofDm (mTDTDm) under the constraint

Km = mk , (1)

wheremk stands for the known data values, andK is a diagonal matrix with 1s at the known
data locations and zeros elsewhere. It is easy to implement a constraint of the form (1) in
an iterative conjugate-gradient scheme by simply disallowing the iterative process to update
model parameters at the known data locations (Claerbout, 1999).

The operatorD can be considered as a differential equation that we assume the model to
satisfy. If D is able to remove all correlated components from the model and produce white
Gaussian noise in the output, thenDTD is essentially equivalent to the inverse covariance
matrix of the model, which appears in the statistical formulation of least-squares estimation
(Tarantola, 1987).

In this paper, I propose to use the offset continuation equation (Fomel, 1995a) for the
operatorD. Under certain assumptions, this equation is indeed the one that prestack seismic
reflection data can be presumed to satisfy. The equation has the following form:
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whereP(tn,h,x) is the prestack seismic data after the normal moveout correction (NMO),tn
stands for the time coordinate after NMO,h is the half-offset, andy is the midpoint. Offset
continuation has the following properties:

• Equation (2) describes an artificial process of prestack data transformation in the offset
direction. It belongs to the class of linear hyperbolic equations. Therefore, the de-
scribed process is a wave-type process. Half-offseth serves as a continuation variable
(analogous to time in the wave equation).

• Under a constant-velocity assumption, equation (2) provides correct reflection travel-
times and amplitudes at the continued sections. The amplitudes are correct in the sense
that the geometrical spreading effects are properly transformed independently from the
shape of the reflector. This fact has been confirmed both by the ray method approach
(Fomel, 1995a) and by the Kirchhoff modeling approach (Fomel and Bleistein, 1996;
Fomel et al., 1996).

• Dip moveout (DMO) (Hale, 1995) can be regarded as a particular case of offset con-
tinuation to zero offset (Deregowski and Rocca, 1981). As shown in my earlier paper
(Fomel, 1995b), different known forms of DMO operators can be obtained as solutions
of a special initial-value problem on equation (2).

• To describe offset continuation for 3-D data, we need a pair of equations such as (2),
acting in two orthogonal projections. This fact follows from the analysis of the azimuth
moveout operator (Fomel and Biondi, 1995; Biondi et al., 1998).
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• A particularly efficient implementation of offset continuation results from a log-stretch
transform of the time coordinate (Bolondi et al., 1982), followed by a Fourier transform
of the stretched time axis. After these transforms, equation (2) takes the form
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where� is the corresponding frequency, andP̃(�,h,x) is the transformed data (Fomel,
1995b). As in otherF-X methods, equation (3) can be applied independently and in
parallel on different frequency slices.

I propose to adopt a finite-difference form of the differential operator (3) for the regulariza-
tion operatorD. A simple analysis of equation (3) shows that at small frequencies, the operator
is dominated by the first term. The form∂

2P
∂y2 −

∂2P
∂h2 is equivalent to the second mixed deriva-

tive in the source and receiver coordinates. Therefore, at low frequencies, the offset waves
propagate in the source and receiver directions. At high frequencies, the second term in (3)
becomes dominating, and the entire method becomes equivalent to the trivial linear interpola-
tion in offset. The interpolation pattern is more complicated at intermediate frequencies.

TESTS

I started numerical testing of the proposed technique first on the constant velocity synthetic,
where all the assumptions behind the offset continuation equation are valid. Encouraged by
the results, I proceeded to tests on the Marmousi synthetic dataset, which is associated with a
highly inhomogeneous velocity model.

Constant-velocity synthetic

Figure 1: Reflector model for the
constant-velocity testoffcon3-cup
[ER]

A sinusoidal reflector shown in Figure 1 creates complicated reflection data, shown in
Figure 2 before and after the normal-moveout correction. The syncline parts of the reflector
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lead to traveltime triplications at sufficiently large offset. A mixture of different dips from the
triplications would make it extremely difficult to interpolate the data in individual common-
offset gathers, such as those shown in Figure 2. The plots of time slices after NMO (Figure 3)
clearly show that the data are also non-stationary in the offset direction. Therefore, a simple
offset interpolation scheme would also fail.

To set up an interpolation experiment, I randomly removed half of the traces in the original
data and attempted to reconstruct them. Figure 4 shows the reconstruction process on individ-
ual frequency slices. Despite the complex and non-stationary character of the reflection events
in the frequency domain, the offset continuation equation is able to reconstruct them quite
accurately from the decimated data.

Figure 5 shows the input and the result of interpolation after transforming it back to the
time domain. A comparison of the interpolation result with the ideal output (Figure 2) shows
that the reflection data are nearly perfectly interpolated even in the complex triplication zones.

The constant-velocity test results allow us to conclude that, when all the assumptions of
the offset continuation theory are met, we can easily accomplish an accurate interpolation. In
the next subsection, I deal with the more complicated case of Marmousi.

Marmousi synthetic

The famous Marmousi synthetic was modeled over a very complicated velocity and reflector
structure (Versteeg, 1994). The dataset has been used in numerous studies of various seismic
processing and imaging techniques. Figure 6 shows the near and far common-offset gathers
from the Marmousi dataset. The structure of the reflection events is extremely complex and
contains multiple triplications and diffractions.

To test the proposed interpolation method, I set the goal of interpolating the missing near
offsets in the Marmousi dataset. Additionally, I attempted to interpolate intermediate shot
gathers so that all common-midpoint gathers receive the same offset fold. In the original
dataset, both receiver and shot spacing are equal to 25 meters, which creates a checkerboard
pattern in the offset-midpoint plane. This acquisition pattern is typical for 2-D seismic surveys.

Interpolation of near offsets can reduce imaging artifacts in different migration methods.
Ji (1995) used near-offset interpolation for accurate wavefront-synthesis migration of the Mar-
mousi dataset. He developed an interpolation technique based on the hyperbolic Radon trans-
form inversion. Ji’s method produces fairly good results, but is significantly more expensive
that the offset continuation approach explored in this paper.

Figure 7 shows the input and interpolated Marmousi data in the log-stretch frequency
domain. We can see that the data in the frequency slices also have a very complicated structure.
Nevertheless, the offset continuation method is able to reconstruct the missing portions of the
data in a visually pleasing way. The data are not extrapolated off the sides of the common-
offset gathers. This behavior is physically reasonable, because such an extrapolation would
involve assumptions about unilluminated portions of the subsurface.
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Figure 2: Prestack common-offset gathers for the constant-velocity test. Left: before NMO.
Right: after NMO. Top, center, and bottom plots correspond to different offsets.offcon3-data
[ER,M]
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Figure 3: Time slices of the prestack data at different times (after NMO).offcon3-tslice [ER]

Figure 8 shows one of the shot gathers obtained after transforming the data back into
time domain and resorting them into shot gathers. The positive offset part of the shot gather
was reconstructed from a common receiver gather by using reciprocity. Comparing the top
and bottom plots, we can see that many different events in the original shot gather are nicely
extended into near offsets by the interpolation procedure.

In addition to interpolating near offsets, I have reconstructed the intermediate shot gathers
in order to equalize the CMP fold. Figure 9 shows an example of an artificial shot gather cre-
ated by such a reconstruction. An sample CMP gather before and after interpolation is shown
in Figure 10. Examining the bottom part of the section, we can see that that the interpolation
process tends to put more continuity in the near offsets than could be expected from the data.
In other places, the interpolation succeeds in producing a visually pleasant result.

DISCUSSION

Early tests with synthetic models demonstrate that the offset continuation equation is a useful
and efficient regularization operator for interpolating seismic reflection data. I plan to perform
more tests in order to evaluate the performance of this method on real data. An extension
to 3-D data is simple in theory, but it will require several modifications in the computational
framework.

In the range of possible interpolation methods (Mazzucchelli et al., 1998), the offset con-
tinuation approach clearly stands on the more efficient side. The efficiency is achieved both
by the small size of the finite-difference filter and by the method’s ability to decompose and
parallelize the method across different frequencies. Part of the efficiency gain could probably
be sacrificed for achieving more accurate results. Here are some interesting ideas one could
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Figure 4: Interpolation in frequency slices. Left: input data 50% of the traces are randomly
removed). Right: interpolation output. Top, bottom, and middle plots correspond to different
frequencies. Real parts of the complex-valued data are shown.offcon3-fslice [ER,M]
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Figure 5: Interpolation in common-offset gathers. Left: input data (50% of the traces are
randomly removed). Right: interpolation output. Top, center, and bottom plots correspond to
different common-offset gathers.offcon3-all [ER,M]
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Figure 6: Common-offset gathers of the Marmousi dataset. Left: near offset. Right: far offset.
offcon3-marm[ER]

try:

• Instead of fixing the offset continuation filter in a data-independent way, one could esti-
mate some of its coefficients from the data. In particular, the second term in equation (3)
can be varied to better account for the effects of variable velocity and amplitude vari-
ation with offset. Theoretical extensions of offset continuation to the variable velocity
case were studied by Hong et al. (1997) and Luo et al. (1999).

• Formulating the problem in the pre-NMO domain would allow us to consider several
velocities by convolving several continuation filters. This could be an appropriate ap-
proach for interpolating both primary and multiple reflections.

• Missing data interpolation problems can be greatly accelerated by preconditioning (Fomel,
1997; Fomel et al., 1997). Finding an appropriate preconditioning for the offset contin-
uation method is an open problem. The non-stationary nature of the continuation filter
make this problem particularly challenging.

I plan to devote my remaining time at the Stanford Exploration Project to investigating these
fascinating ideas.
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