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Azimuth moveout:
the operator parameterization and antialiasing

Sergey Fomel and Biondo L. Biondi1

ABSTRACT

A practical implementation of azimuth moveout (AMO) must be both computationally
efficient and accurate. We achieve computational efficiency by parameterizing the AMO
operator with the help of a transformed midpoint coordinate system. To achieve accuracy,
the AMO operator needs to be carefully designed for antialiasing. We propose a modified
version of Hale’s antialiasing algorithm, which switches between interpolation in time and
interpolation in space depending on the operator dips. The method is applicable to a vide
variety of integral operators and compares favorably with the triangle filter technique. A
simple synthetic example tests the applicability of the method to the AMO case.

INTRODUCTION

Azimuth moveout (AMO) was introduced by Biondi and Chemingui (1994a; 1994b) as an op-
erator that transforms common-azimuth common offset seismic data from one vector offset to
another. The time-and-space (Kirchhoff) formulation of AMO (Fomel and Biondi, 1995a,b)
leads to a three-dimensional stacking operator, which includes four major components: the
curvilinear surface of the summation path, the associated amplitude, the time filter, and the
surface aperture (the range of integration). In this paper, we analyze two additional issues that
are required for a successful practical implementation of the method: the operator parameter-
ization and operator antialiasing.

The problem of parameterization arises because of the complicated time-dependent shape
of the AMO aperture described in (Fomel and Biondi, 1995a). In this paper we show that
the expressions for the summation path, the amplitudes, and the integration range have simple
analytical forms when defined in the coordinate system of the input and output offset vectors.

The operator aliasing problem is common for a wide variety of integral (stacking) opera-
tors (Lumley et al., 1994). It is caused by the spatial undersampling of the summation path.
When the integration path is parametrized in the spatial coordinate, as it is commonly done,
the steeper part of the summation path becomes undersampled. The error introduced by the
undersampling of the summation path is usually controlled by limiting the rate of change in the
integrand (the input data) either by low-pass filtering (Gray, 1992), or by triangular filtering
(Claerbout, 1992a). Unfortunately, in the case of AMO this simple methods are suboptimal
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because of the rapid changes in the summation path gradient that are encountered along the
“ridges” of the AMO saddle. We therefore propose a new antialiasing method derived from the
time-slice technique, which was developed by Dave Hale for DMO (Hale, 1991). Synthetic
examples show the superiority of the new method compared with the triangle filtering.

PARAMETERIZATION

Azimuth moveout in the time-and-space domain is a three-dimensional integral operator (Fomel
and Biondi, 1995a). Change (substitution) of the integrable variables as a method of integral
simplification is well known in classic calculus. In the case of AMO, a convenient choice
of the parameters of integration is of particular value because of the complicated shape of the
operator aperture. In order to simplify the form of the AMO operator, thus reducing the cost of
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Figure 1: Schematic geometry of AMO and the transformed coordinate system.
antial-amox12[NR]

its computation, we propose the following substitution of variables. Letα1 be the input offset
azimuth, andα2 be the output offset azimuth with respect to the midpoint coordinate system.
Draw one axis (y1) perpendicular to the direction ofα1, and the other axis (y2) perpendicular
to α2. This defines a non-orthogonal coordinate system on the midpoint plane (Figure 1). The
transformation of variables, written in the matrix form, is[

y1

y2

]
=

[
cosα1 −sinα1

cosα2 −sinα2

] [
x
y

]
, (1)

wherex andy are the Cartesian coordinates of a midpoint in the original coordinate system.
The Jacobian of transformation (1) is simply|sinα1 cosα2 − sinα2 cosα1| = |sinα|, where
α = α2 −α1 is the angle of azimuth rotation. Assuming thatα is greater than zero, transfor-
mation (1) defines a spatially invariant rotational squeezing of the midpoint space. The special
case ofα equal to zero corresponds to the two-dimensional version of AMO, known as offset
continuation (Bolondi et al., 1982; Chemingui and Biondi, 1994; Fomel, 1995), which can be
handled separately. The expression for the traveltime of the AMO impulse response (formula
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Figure 2: Traveltime and amplitude of the AMO impulse response in the transformed coordi-
nate system.antial-amotta[ER]

(4) in (Biondi and Chemingui, 1994a)) transforms to

t2 = t1

∣∣∣∣h2

h1

∣∣∣∣
√

h2
1 sin2α − y2

2

h2
2 sin2α − y2

1

, (2)

where{y1, y2} is the midpoint separation in the transformed coordinate system. In the notation
of Biondi and Chemingui,y1 corresponds toX sin(ϕ−θ1), andy2 corresponds toX sin(ϕ−θ2).
One can see that the axes of the transformed coordinate system are now aligned along the axes
of the AMO "saddle". The amplitude equations (Fomel and Biondi, 1995a; Chemingui and
Biondi, 1995) are also simplified (Figure 2). What is more important, the transformation (1)
affects the shape of the AMO aperture. The aperture limitation (21) from (Fomel and Biondi,
1995a) transforms after some heavy algebra to(

2

v t1

)2

≤
h2

1 sin2α − y2
2

h2
1 sin2α

(
γ 2

1 +γ 2
2 −2γ1γ2 cosα

)
, (3)

where

γ1 =
y1

h2
2 sin2α − y2

1

=
1

t2

∂t2
∂y1

, (4)

and

γ2 =
y2

h2
1 sin2α − y2

2

= −
1

t2

∂t2
∂y2

. (5)

The largest possible aperture corresponds to the zero input time (or zero velocity) and co-
incides with the interior of a rectangle centered at{1y1,1y2} = {0,0} with the sides of the
rectangle equal to 2|h2| sinα and 2|h1| sinα. With the time increase, the aperture gradually
decreases in size, and its shape approaches a quasi-elliptical form (Figure 3). From the compu-
tational point of view, it is convenient to evaluate the right-hand side of inequality (3) outside
of the input time loop and use this inequality to limit the range of times for each point of the
operator.
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Figure 3: AMO aperture in the transformed coordinate system as a function of the input time.
The different plots correspond to different geometries of AMO. From top to bottom: the angle
of azimuth rotationα changes from 10 degrees (top) to 30 degrees (middle) and 60 degrees
(bottom). From left to right: the ratio of offsets|h2/h1| changes from 1/2 (left) to 1 (middle)
and 2 (right). antial-amoapp[ER]
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ANTIALIASING

The operator aliasing problem, as opposed to data aliasing and image aliasing, is discussed in
detail by Lumley et al. (1994). It arises when the slope of the operator traveltime exceeds the
limit, defined by the time and space sampling of the data (the Nyquist frequencies) (Claerbout,
1992a). Even if the input data are not aliased, operator aliasing can cause severe distortions
in the output. Several successful techniques have been proposed in the literature to overcome
the operator aliasing problem. SEP’ s favorite invention is local triangle filtering (Claerbout,
1992a; Bevc and Claerbout, 1992, 1993; Lumley et al., 1994; Bevc and Lumley, 1994), which
has been extensively tested on 2-D and 3-D migration, DMO (Blondel, 1993), and wave-
equation datuming (Bevc, 1992). A different approach to antialiasing is suggested by Hale
(1991) for the integral dip moveout. In this paper, we reformulate the main principle of Hale’s
approach to design an efficient antialiasing technique, alternative to triangle filtering.

Triangle filters

The idea of the triangle filtering (Claerbout, 1992a; Lumley et al., 1994) follows from the
well-known Nyquist sampling criterion, applied on the stacking-type operator:

1x ≤
1t

|∂t/∂x|
, (6)

wheret(x) is the traveltime of the operator imuplse response (or the summation path of the its
adjoint). In the steep parts of the traveltime curve, the sampling criterion (6) is not satisfied,
which causes aliasing artifacts in the output data. To overcome this problem, the method
of triangle filtering suggests convolving the traces of the generated impulse response with a
triangle-shaped filter of the length

δt = 1x |∂t/∂x| . (7)

Cascading operators of causal and anticausal numerical integration is an efficient way to con-
struct the desired filter shape (Bevc and Claerbout, 1993). Triangle filters approximate the
ideal (sinc) low-pass time filters. The idea behind low-pass filtering as a tool of antialiasing
(Gray, 1992) is illustrated in Figure 4. When a steeply dipping event is included in the oper-
ator, its counterpart in the frequency domain wraps around to produce the aliasing artifacts.
Those are removed by a dip-dependent low-pass filtering. The method of triangle filtering is
less evident in the case of a three-dimensional integral operator. We can take the length of
a triangle filter proportional to the absolute value of the time gradient (Lumley, 1993), the
maximum of the gradient components in the two directions of the operator space, or the sum
of these components. The latter follows from considering the 3-D operator as a double inte-
gration in space. Decoupling the 3-D integral into a cascade of two 2-D operators suggests
convolving two triangle filters designed with respect to two coordinates of the operator. In this
case, the length of the resultant filter is approximately equal to

δt = 1x |∂t/∂x|+1y |∂t/∂y| , (8)
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Figure 4: Schematic illustration of low-pass antialiasing (triangle filters). The aliased events
are removed by low-pass filtration on the temporal frequency axis. The width of the low-pass
filter depends on dips of the aliased events.antial-amolow[NR]

Figure 5: Building the smoothed fil-
ter for 3-D antialiasing by successive
integration of a five-point wavelet. C
denotes the operator of causal inte-
gration, C’ denotes its adjoint (the
anticausal integration). The result is
equivalent to the convolution of two
equal triangle filters. antial-amoflt
[ER]
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and its shape is smoother than that of a triangle filter (Figure 5). In the case of azimuth
moveout, the width of the antialising filter is derived from formula (8) and the travel-time
equation (2) as

δt2 = 1y1 |∂t/∂y1|+1y2 |∂t/∂y2| = t2(|γ1|1y1 +|γ2|1y2) . (9)

The triangle filtering method proven an efficient tool in the design of stacking operators of
different types. However, we see the following two disadvantages of applying it to the AMO
case:

1. The saddle shape of the AMO operator introduces rapid changes in the length and di-
rection of the traveltime gradient. It leads to an inexact estimation of the triangle length
at the curved parts of the operator. Consequently, the high-frequency part of the output
can be distorted, causing a loss in the image resolution.

2. For large input times, most of the energy of the AMO operator is concentrated in the
flat part of its traveltime surface (the middle part of the “saddle”). This part does not
contain aliased energy and does not require any sophistication in the time interpolation.

Hale’s method

Considering the case of integral DMO, Hale (1991) points out that the steep parts of the oper-
ator, while aliased in the space (midpoint) coordinate, are not aliased with respect to the time
coordinate. He suggests replacing the conventionalt(x) parameterization of the DMO impulse
response byx(t) parameterization. Conventionally, the integral operators are implemented by
shifting the input traces in space and transforming them in time. According to Hale’s method,
the traces are shifted in time and transformed along thex(t) trajectories in space. Interpolation
in time, required in the conventional approach, is replaced by interpolation in space. The idea
of Hale’s method is related to the idea of the “pixel-precise velocity transform”, introduced by
Claerbout (1990; 1992b). The steep parts of the operator satisfy the criterion

1t ≤
1x

|∂x/∂t |
, (10)

which is the the obvious reverse of inequality (6). Therefore, they are not aliased if defined on
the time grid. In these parts one can perform the operator by constant time shifts equal to the
time sampling interval1t . In the parts where the criterion (10) is not valid (the flat part of the
DMO operator), Hale suggests reducing the length of the time shifts according to equality (7),
whereδt becomes less than1t . He formulates the following principle of operator antialiasing:

To eliminate spatial aliasing, simply never allow successive time shifts applied to
the input trace to differ by more than one time sampling interval. Further restrict
the difference between time shifts so that the spacing between the corresponding
output trajectories never exceeds the CMP sampling interval
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We illustrate the idea of Hale’s method in Figure 6. Increasing the density of spatial sampling
by small successive time shifts implies increasing the Nyquist boundaries of the spatial spec-
trum (wavenumber). Further interpolation is a low-pass spatial filter removing the parts of the
spectrum beyond the Nyquist frequency of the output. If the dip of the operator does not vary
between neighboring traces (the operator is a straight line as in the slant stack case), Hale’s
approach produce essentially the same result as low-pass filtering. Triangle filters in this case
approximately correspond to linear interpolation in space between adjacent traces (Nichols,
1993). The difference between the two approaches occurs if the local dip varies in space (the
case of a curved operator, such as DMO). In this case, Hale’s approach provides a more accu-
rate space interpolation of the operator and preserves the high-frequency part of its spectrum
from distortion. Hale’s method has proven to preserve the amplitude of flat reflectors from
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Figure 6: Schematic illustration of Hale’s antialiasing. The aliased events are removed by
spatial interpolation. In the frequency domain, the interpolation consists of widening and
low-passing on the wavenumber axis. The low-pass spatial filtering does not depend on dip.
antial-amosft[NR]

aliasing distortions, which is the simplest antialiasing test on a DMO operator. We see the
most valuable advantage of this method in the fact that the implied low-pass spatial filtering
(interpolation) does not depend on the operator dip and is controlled by the Nyquist bound-
ary of the spectrum only (compare Figures 4 and 6). This is especially important, when the
local dip of the operator changes rapidly and therefore cannot be estimated precisely by finite-
difference approximation at spatially separated traces. Such a situation is common in DMO
and AMO integral operators, as well as in prestack Kirchhoff migration. A weakness of the
method is the necessity to switch from interpolation in space to two-dimensional interpolation
in both the time and the space variables, when trying to construct the flat part of the operator.
In the case of AMO, the 2-D spatial interpolation arises as a result of building the operator
in the transformed coordinate system. However, we would prefer to avoid the expense of the
additional time interpolation required by Hale’s method of antialiasing.

Proposed technique

We use the reciprocity of the time parameterization and the space parameterization of integral
operators, discovered by Hale, to develop the following antialiasing technique. For simplic-
ity, let us consider the two-dimensional case first. The linearity of a two-dimensional integral
operator allows us to decompose this operator into two terms. The first term corresponds to
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the steep part of the travel-time function, satisfying the time-sampling criterion (10). The sec-
ond term corresponds to the flat part of the traveltime, which satisfies the midpoint-sampling
criterion (6). The first part is not aliased with respect to the time sampling interval, while
the second one is not aliased with respect to the space sampling. We apply a simple linear
interpolation in time to construct the flat part. Reciprocally, linear interpolation in space is ap-
plied to construct the steep part of the operator in the fashion of Hale’s time-shifting method.
Linear interpolation in this case is a cheap substitution for the errorless, but computationally
expensive sinc interpolation. The amplitude difference between the two integrals is simply the
Jacobian term

ampt

ampx
=

∣∣∣∣∂x

∂t

∣∣∣∣ 1t

1x
=

1t

δt
≤ 1 . (11)

According to the proposed modification, Hale’s antialiasing principle is reformulated, as fol-
lows:

In the steep part of an integral operator, never allow successive time shifts applied
to the input trace to differ by more than one time sampling interval. In the flat
part of the operator, never allow successive space shifts to differ by more than
one space sampling interval.

Figure 7, borrowed fromBasic Earth Imaging (Claerbout, 1995), illustrates the basic idea
of the proposed technique. It clearly shows the difference between the flat and steep parts of
migration hyperbolas. To view the reciprocity, rotate the figure by 90 degrees. The reader

Figure 7: Figure borrowed fromBEI
to illustrate the reciprocity antialias-
ing. The flat parts of the hyperbo-
las require interpolation in time. The
steep parts of the hyperbolas require
interpolation in space.antial-amotra
[ER]

familiar with Ratfor can examine the details of the algorithm in the post-stack migration pro-
gram, listed in Appendix. The program is based on the tutorialkirchfast program inBEI .
The nearest neighbor interpolation is replaced by linear interpolation, and the two parts of the
program stand for the steep-dip and low-dip parts of the operator. The program was not opti-
mized for a better performance. To compare the proposed antialiasing with triangle filtering,
we test the antialiased migration program on SEP’s canonical 2-D synthetic tests. Figure 8
shows a simple model and the modeling results from aliased (the nearest neighbor interpo-
lation) modeling, triangle antialiasing and the proposed reciprocity method. The modeling
results were migrated with the corresponding migration operators to obtain the image of the
model in Figure 9. Both the triangle filtering and the proposed method succeeded in removing
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the major aliasing artifacts. However, the reciprocity method demonstrates a higher resolu-
tion and a better preservation of the frequency content. These properties are examined more

Figure 8: Top left is a synthetic model. Top right is modeling without antialiasing. Bottom
left is modeling with reciprocity antialiasing (the proposed method). Bottom right is modeling
with triangle filter antialiasing.antial-amomod[ER]

closely in the next synthetic example. Figure 10 shows a more sophisticated model that con-
tains a fault, an uncomformity and faulting structures (Claerbout, 1995). For better displaying,
we extract the central part of the model and compare it with the migration results of different
methods in Figure 11. Comparing the plots shows that the reciprocity method successfully
removes the aliasing artifacts (round-off errors) of the aliased (nearest neighbor interpolation)
migration. At the same time, it is less harmful to the high-frequency components of the data
than triangle filtering. This conclusion finds an additional support in Figure 12 that displays
the average spectrum of the image traces for different methods. Both of the antialiasing meth-
ods remove the high-frequency artifacts of the nearest neighbor modeling and migration. The
reciprocity method performs it in a gentler way, preserving the high-frequency components of
the model. The algorithm sequence of the antialiased migration is illustrated in Figures 13
and 14. The two plots in Figure 13 show the steep-dip and flat-dip modeling respectively. The
superposition of these two terms is the resultant antialiased data shown in the left plot of Fig-
ure 15. The right plot of Figure 15 shows the migrated image obtained by adding the flat-dip
(left of Figure 14) and steep-dip (right of Figure 14) migrations. We have compared the per-
formance of the antialiased migration with that of the aliased migration and the migration with
triangle filtering. The test data set included 500 by 250 data points with1t = 0.004 sec, and
1x = 25 m. The CPU time of different routines on the HP 9000-735/99 workstation is charted
in Figure 16. The figure shows that the performance of the reciprocity antialiasing increases
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Figure 9: Top left plot is the synthetic model. The other plots are migrations of the corre-
sponding data shown in the previous figure . Top right is a migration without antialiasing.
Bottom left is a migration with reciprocity antialiasing (the proposed method). Bottom right
is a migration with triangle filter antialiasing.antial-amomig[ER]

Figure 10: Synthetic model used to
test the antialiased migration pro-
gram. antial-amosmo[ER]
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Figure 11: Top left plot is a zoomed portion of the synthetic model. The other plots are
migrated images. Top right is a migration without antialiasing. Bottom left is a migration with
reciprocity antialiasing (the proposed method). Bottom right is a migration with triangle filter
antialiasing. antial-amosmi[ER]

Figure 12: Top is the spectrum of the
model. The other plots are the spec-
tra of the migrated images. The sec-
ond plot corresponds to the model-
ing/migration without account for an-
tialiasing. The third plot is model-
ing/migration with the reciprocity an-
tialiasing. The bottom plot is model-
ing/migration with triangle antialias-
ing. antial-amospe[ER]
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Figure 13: Antialiased modeling. Left corresponds to the flat-dip term. Right corresponds to
the steep-dip term.antial-amormo[ER]

Figure 14: Antialiased migration. Left corresponds to the flat-dip term. Right corresponds to
the steep-dip term.antial-amormi [ER]

Figure 15: Antialiased modeling and migration. Left is the superposition of the flat-dip
and steep-dip modeling. Right is superposition of the flat-dip and steep-dip migration.
antial-amormm[ER]



568 Fomel & Biondi SEP–89

with increase of the migration velocity. This surprising behavior is explained by the fact that
high-velocity migration hyperbolas require a smaller number of expensive computations in the
steep (aliased) parts. It allows us to expect a high performance of the method in application to
the curvilinear operators with limited aperture (DMO, offset continuation, AMO). In the test
employed, the overall performance of our migration program appeared higher than that of the
kaafast program (Bevc and Claerbout, 1992). The proposed method of antialiasing is easily

Figure 16: CPU time of migration
programs on HP 9000-735 versus the
constant migration velocity used in
the experiment.antial-amochp[NR]

generalized to the case of a three-dimensional integral operator, such as azimuth moveout. In
this case, one needs to consider three different parameterizations:t(x, y), x(t , y), andy(t ,x)
and switch from one of them to another according to the rule:

• if 1t ≥ 1x |∂t/∂x| and1t ≥ 1y |∂t/∂y|, uset(x, y),

• if 1x ≥ 1t |∂x/∂t | and1x ≥ 1y |∂x/∂y|, usex(t , y),

• if 1y ≥ 1t |∂y/∂t | and1y ≥ 1x |∂y/∂x|, usey(t ,x).

AMO TEST

Our first synthetic test of the AMO operator is a simple diffraction in a constant velocity
medium. We modeled a common-azimuth data set over a diffraction point with an offset of
500 meters and a regular midpoint grid 20 by 20 meters. The AMO operator was designed to
rotate the offset azimuth of the data by 30 degrees. The results are compared with the modeled
data in Figure 17. Azimuth moveout has succeeded in reconstructing the true geometry of the
desired output, though it did not behave perfectly with respect to the amplitudes and boundary
effects. The corresponding AMO impulse response is shown in crossline and inline sections in
Figure 18. For simplicity, this impulse response doesn’t include the derivative filter required
for the complete definition of AMO. Figure 19 illustrates the antialising applied to AMO. The
“top” view in the time direction shows how the antialiased AMO operator is constructed from
the flat-dip and steep-dip parts.

CONCLUSIONS

On the way from the AMO theory to practice, we have solved two important problems, crucial
for the successful implementation of the method.
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Figure 17: Diffraction test on azimuth moveout. Left is the input, right is the desired output,
middle is the output of AMO.antial-amoimp[CR]
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Figure 18: AMO impulse response in crossline (bottom) and inline (top) sections. The AMO
geometry corresponds toh1=500 meters,h2=500 meters,α1=0, andα2=30 degrees. The
derivative filter is not included.antial-amoimr [ER]

Figure 19: “Top” view on the antialiased AMO operator (stacked time slices.) The AMO im-
pulse response is created by superposition of the flat-dip and steep-dip parts.antial-amocon
[ER]
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1. We have shown that a convenient parameterization of the AMO operator enables fast
and accurate computation of the operator components, including the spatial aperture.

2. We have introduced a new method of antialising integral operators, modified from
Hale’s approach to antialised DMO. The method compares favorably with the trian-
gle filtering technique. Its main advantage is in preserving the high-frequency part of
the data spectrum, which leads to a better resolution. It also allows for an easy control
of the amplitudes and possesses a sufficient numerical efficiency.

The parameterization and antialising have been applied to enhance the AMO operator with
respect to both accuracy and computational efficiency. Currently we are in a process of testing
the integral antialised AMO on synthetics and wait for real data tests to arrive.
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APPENDIX A

POST-STACK TIME MIGRATION (FAST, ANTIALIASED)

module kirchnew {
integer :: nt, nx, sw
real :: t0, dt, dx
real, dimension (:), pointer :: vrms

#% _init (vrms, t0,dt,dx, nt,nx, sw)
#% _lop (modl(nt,nx), data(nt,nx))

integer :: ix,iz,it,ib,iy, minx(2),maxx(2), is,i
real :: amp,t,z,b,db,f,g

maxx(1) = nx; minx(2) = 1
do iz= 1,nt-1 { z = t0 + dt * (iz-1) # vertical traveltime
do it= nt,iz+1,-1 { t = t0 + dt * (it-1) # time shift

b = sqrt(t*t - z*z); db = dx*b*2./(vrms(iz)*t)
if(db < dt .or. sw == 1) exit

f = 0.5*vrms(iz)*b/dx; iy = f; f = f-iy; i = iy+1; g = 1.-f
if(i >= nx) cycle

amp = (z / (t+dt)) * sqrt(nt*dt / (t+dt)) * (dt / db)

minx(1) = 1+i; maxx(2) = nx-i
do is= 1,2 { iy = -iy; i = -i # two branches of hyperbola
do ix= minx(is), maxx(is) {

if( adj)
modl(iz,ix) = modl(iz,ix) + data(it,ix+iy)*amp*g +

data(it,ix+i )*amp*f
else {

data(it,ix+iy) = data(it,ix+iy) + modl(iz,ix)*amp*g
data(it,ix+i ) = data(it,ix+i ) + modl(iz,ix)*amp*f

}
}}}

do ib= 0, nx-1 { b = dx*ib*2./vrms(iz); iy = ib # space shift
t = sqrt(z*z + b*b); db = dx*b*2./(vrms(iz)*t)

if(db > dt .or. sw == 2) exit

f = (t-t0)/dt; i = f; it = i+1; f = f-i ; i = it+1; g = 1.-f
if( i > nt) exit

amp = (z / (t+dt)) * sqrt(nt*dt / (t+dt)); if(ib == 0) amp = amp*0.5

minx(1) = 1+iy; maxx(2) = nx-iy
do is= 1,2 { iy = -iy # two branches of hyperbola
do ix= minx(is), maxx(is) {

if( adj)
modl(iz,ix) = modl(iz,ix) + data(it,ix+iy)*amp*g +

data(i ,ix+iy)*amp*f
else {

data(it,ix+iy) = data(it,ix+iy) + modl(iz,ix)*amp*g
data(i ,ix+iy) = data(i ,ix+iy) + modl(iz,ix)*amp*f

}
}}}

}
}
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