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On nonhyperbolic reflection moveout
in anisotropic media

Sergey Fomel1 and Vladimir Grechka2

ABSTRACT

The famous hyperbolic approximation ofP-wave reflection moveout is strictly accurate
only if the reflector is a plane, and the medium is homogeneous and isotropic. Hetero-
geneity, reflector curvature, and anisotropy are the three possible causes of moveout non-
hyperbolicity at large offsets. In this paper, we analyze the situations where anisotropy
is coupled with one of the other two effects. Using the weak anisotropy assumption for
transversely isotropic media, we perform analytical derivations and comparisons. Both
the case of vertical heterogeneity and the case of a curved reflector can be interpreted in
terms of an effective anisotropy, though their anisotropic effects are inherently different
from the effect of a homogeneous transversely isotropic model.

INTRODUCTION

Hyperbolic approximation of common-midpoint traveltime curves (reflection moveouts) plays
an important role in conventional seismic data processing and interpretation. The hyperbolic
formula is exact for homogeneous isotropic media with a plane reflector. Deviations from this
simple model result in deviations of the true reflection moveout from the hyperbolic approxi-
mation. If the nonhyperbolicity is large enough, we may want to take it into account to correct
the errors of conventional processing or to obtain additional information about the medium.
One of the important causes of nonhyperbolicity is the seismic anisotropy found in a variety of
geological environments. The three other important causes are vertical and lateral heterogene-
ity and the reflector curvature. Even if nonhyperbolic moveout is not caused by anisotropy, we
may consider its presence as evidence of an effective anisotropy. However, in order to provide
a correct interpretation, it is important to distinguish among the different kinds of effects. In
this paper, we analyze the situations when the effect of anisotropy couples with one of the
other three effects. We provide a theoretical description of these effects and compare their
influence onP-wave reflection moveouts.

A transversely isotropic medium with a vertical symmetry axis (VTI) is the most com-
monly used anisotropic model. This model is generally attributed to fine layering in sedimen-
tary basins. One of the first nonhyperbolic approximations forP-wave reflection traveltimes
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in VTI was proposed by Muir and Dellinger (1985) and further developed by Dellinger et al.
(1993). In a classic paper, Thomsen (1986) developed a weak anisotropy approximation for
describing the transversely isotropic model. Tsvankin and Thomsen (1994) used the weak
anisotropy assumption to approximate nonhyperbolic reflection moveout in VTI media.

We start this paper with a brief overview of the weak anisotropy approximation and use
this approximation in the following sections for analytical derivations. First, we consider the
case of a vertically heterogeneous anisotropic layer. For this case, the three-parameter approx-
imation suggested by Tsvankin and Thomsen (1994) is compared with the shifted hyperbola
approximation (Malovichko, 1978; Sword, 1987; Castle, 1988; de Bazelaire, 1988). The sec-
ond case is a homogeneous anisotropic medium with a curved reflector. In this case, we
analyze the cumulative effect of anisotropy, reflector dip, and reflector curvature and develop
an appropriate three-parameter approximation of the reflection moveout. Third, we consider
the case of a weak lateral heterogeneity. We show that with an appropriate choice of the lat-
eral velocity variation, it can can mimic the effect of transverse isotropy on nonhyperbolic
moveout. In conclusion, discuss possible practical applications of the theory.

WEAK ANISOTROPY APPROXIMATION

In a transversely isotropic medium, velocities of seismic waves depend on the direction of
propagation measured from the symmetry axis. Thomsen (1986) has introduced a convenient
parametrization of this dependence, replacing the general notation of elastic anisotropy in
terms of stiffness coefficientsCαβ by P- andS-wave velocities along the symmetry axis and
three dimensionless parameters. As shown by Tsvankin (1996), theP-wave seismic signa-
tures in vertically transverse isotropic (VTI) media can be conveniently expressed in terms
of Thomsen’s parametersε, δ, andγ . A deviation of these paramers from zero characterizes
the relative strength of anisotropy. Therefore, theweak anisotropyapproximation (Thomsen,
1986; Tsvankin and Thomsen, 1994) reduces to simple linearization.

In weakly anisotropic VTI media, the squared group velocityV2
g of seismicP-waves can

be expressed as a function of the group angleψ as follows:

V2
g (ψ) = V2

z

(
1+2δ sin2ψ cos2ψ+2ε sin4ψ

)
, (1)

whereVz = Vg(0) is the vertical velocity, andδ andε are Thomsen’s dimensionless anisotropic
parameters, which are assumed to be small quantities:

|ε| � 1, |δ| � 1. (2)

Both parameters are equal to zero in the isotropic case. Their connection with the stiffness
coefficients has the following expressions (Thomsen, 1986):

δ =
(C13+C44)2

− (C33−C44)2

2C33(C33−C44)
, (3)

ε =
C11−C33

2C33
. (4)
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Equation (1) is accurate up to the second-order terms inε andδ. We retain this level of
accuracy throughout this paper without additional clarification. As follows from equation (1),
the horizontal velocityVx corresponding to the horizontal ray propagation is

V2
x = V2

g (90◦) = V2
z (1+2ε) . (5)

Equation (5) coincides with the exact expression, which is valid for any strength of anisotropy.
Another important quantity is the normal moveout (NMO) velocity for homogeneous VTI
media with a horizontal reflector. Its exact expression is (Thomsen, 1986)

V2
n = V2

z (1+2δ) . (6)

One example of a physical anisotropic model is ANNIE, proposed by Shoenberg, Muir,
and Sayers (1996) to describe anisotropy of shales. According to this model, the elasticity
tensor (stiffness matrix) in transversely isotropic shales is represented by the three parameter
approximation

C =



λ+2µH λ λ 0 0 0
λ λ+2µH λ 0 0 0
λ λ λ+2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µH

 , (7)

whereλ,µ, andµH are density-normalized elastic parameters. Formula (3) shows that Thom-
sen’s parameterδ in this case is equal to zero, which corresponds to the known fact that the
normal moveout velocity for shales is approximately equal to the vertical velocity. The pa-
rameterε in this case is defined by the equation

ε =
µH −µ

λ+2µ
. (8)

It is convenient to rewrite equation (1) in the form

V2
g (ψ) = V2

z

(
1+2δ sin2ψ+2η sin4ψ

)
, (9)

where

η = ε− δ . (10)

The paramterη is equivalent under the weak anisotropy assumption to theanellipticparameter
introduced by Alkhalifah and Tsvankin (1995). For the elliptic anisotropy model,ε equalsδ,
andη is equal to zero. To see why the group velocity function becomes elliptic in this case,
note that for smallδ,

V2
g (ψ)

∣∣
η=0

= V2
z

(
1+2δ sin2ψ

)
≈

V2
z

cos2ψ+ (1−2δ) sin2ψ
. (11)
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In practical cases of VTI media,ε is often greater thanδ, so the anelliptic parameterη is
positive.

Another equivalent form of equation (1) follows from a substitution of the three character-
istic velocitiesVz, Vx, andVn, as follows:

V2
g (ψ) = V2

z cos2ψ+
(
V2

n − V2
x

)
sin2ψ cos2ψ+ V2

x sin2ψ . (12)

It is apparent in formula (12) that, in the linear approximation, the anelliptic behavior of
anisotropy is controlled by the difference between the normal moveout and horizontal ve-
locities.

We illustrate different types of anisotropy in Figure 1, which shows the wavefronts for
different values of the anisotropic parameters. The wavefront, circular in the isotropic case
(ε = δ = 0), appears elliptic ifε = δ 6= 0. If ε is greater than zero, andδ is smaller than zero,
the three characteristic velocities satisfy the inequalityVx > Vz> Vn.

ANNIE epsilon=0.2 delta=0 Anelliptic epsilon=0.2 delta=-0.2

Isotropic epsilon=delta=0 Elliptic epsilon=delta=0.2

Figure 1: Wavefronts in weakly anisotropic media. Solid curves denote anisotropic wave-
fronts. Dashed curves denote isotropic wavefronts for the corresponding vertical, horizontal,
and normal moveout velocities. Top left: isotropic case (ε = δ = 0); top right: elliptic case
(ε = δ = 0.2); bottom left: ANNIE model (ε = 0.2,δ = 0); bottom right: strongly anelliptic
case (ε = 0.2,δ = −0.2). aniso-nmofro[CR]

HORIZONTAL REFLECTOR IN A HOMOGENEOUS VTI MEDIUM

To exemplify the use of weak anisotropy, let us consider the simplest case of a homogeneous
anisotropic medium with a horizontal reflector. In the isotropic case, the reflection traveltime
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curve is an exact hyperbola, which follows directly from Pythagoras’s theorem (see Figure 2):

t2(h) =
z2

+h2

V2
z

= t2
0 +

h2

V2
z

, (13)

wherez denotes the depth of the reflector,h is the half-offset,t0 = t(0) is the zero-offset travel-
time, andVz corresponds to half of the actual isotropic velocity. In the case of a homogeneous
VTI medium, the velocityVz in formula (13) is replaced by the angle-dependent group ve-
locity Vg. This replacement leads to the exact traveltimes, if no approximation for the group
velocity is used, since the ray trajectories in homogeneous VTI media remain straight, and the
reflection point does not shift because of the vertical axis symmetry. We can also obtain an
approximate traveltime using the approximate velocityVg defined in equation (1) or (9). From
the simple trigonometric considerations, the ray angleψ in this case is defined by the equation

sin2ψ =
h2

z2 +h2
. (14)

Substituting equation (14) into (9) and linearizing the expression

t2(h) =
z2

+h2

V2
g (ψ)

(15)

with respect to anisotropic parametersδ andη, we arrive at the three-parameter nonhyperbolic
approximation (Tsvankin and Thomsen, 1994)

t2(h) = t2
0 +

h2

V2
n

−
2ηh4

V2
n

(
V2

n t2
0 +h2

) , (16)

where the normal moveout velocityVn is defined by equation (6). At small offsets (h � z),
the influence of the parameterη is negligible, and the traveltime curve is nearly hyperbolic.
At large offsets (h � z), the third term of equation (16) has a clear influence on the behavior
of the traveltime. The Taylor series expansion of formula (16) in the vicinity of the vertical
zero-offset ray has the form

t2(h) = t2
0 +

h2

V2
n

−
2ηh4

V4
n t2

0

+
2ηh6

V6
n t4

0

− . . . . (17)

When the offseth approaches infinity, the traveltime approximately satisfies the intuitively
reasonable relationship

lim
h→∞

t2(h) =
h2

V2
x

, (18)

where the horizontal velocityVx is defined by (5). Approximation (16) is analogous, within the
weak anisotropy assumption, to the “skewed hyperbola” formulas (Byun et al., 1989; Harlan,
1995), which use the three velocitiesVz, Vn, andVx as the parameters of the approximation,
as follows:

t2(h) = t2
0 +

h2

V2
n

−
h4

V2
n t2

0 +h2

(
1

V2
n

−
1

V2
x

)
. (19)
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Figure 2: Reflected rays in a homogeneous layer with a horizontal reflector (a scheme).
aniso-nmoone[NR]

The accuracy of formula (16) for many realistic situation lies within 1% error and can be
further improved at a finite offset by modifying the denominator of the third term (Alkhalifah
and Tsvankin, 1995; Grechka and Tsvankin, 1996).

The anelliptic moveout approximation suggested by Muir and Dellinger (1985) has the
form

t2(h) =

t4
0 + (1+ f ) h2

V2
n

+ f 2 h4

V4
n

t2
0 + f h2

V2
n

= t2
0 +

h2

V2
n

−
f (1− f )h4

V2
n

(
V2

n t2
0 + f h2

) , (20)

where f is a dimensionless parameter of anellipticity. At large offsets, formula (20) ap-
proaches

lim
h→∞

t2(h) = f
h2

V2
n

. (21)

Comparing equations (18) and (21), we can establish the correspondence

f =
V2

n

V2
x

=
1+2δ

1+2ε
≈ 1−2η . (22)

Taking this correspondence into account, we can see that formula (20) is approximately equiv-
alent to formula (16) in the sense that their difference has the order ofη squared.

VERTICAL HETEROGENEITY

Vertical heterogeneity is an important cause of nonhyperbolic moveout. We start this section
with reviewing the well-known results of the isotropic theory. We show that these results
can be interpreted in terms of an effective anisotropy, which has different properties than the
transversally isotropic model. Then we extend the theory to the case of anisotropy coupled
with vertical heterogeneity and perform a comparative analysis of different three-parameter
nonhyperbolic approximations.
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Isotropic Case

Nonhyperbolicity of reflection moveout in vertically heterogeneous isotropic media has been
extensively studied with the help of the Taylor series expansion in the powers of the offset
(Bolshykh, 1956; Taner and Koehler, 1969; Al-Chalabi, 1973). The most important property
of vertically heterogeneous media is that the ray parameterp =

sinψ(z)
Vz(z) doesn’t change with

the depth along each ray (Snell’s law). This fact leads to the explicit parametric relationships

t(p) =

∫ z

0

dz

Vz(z) cosψ(z)
=

∫ tz

0

dtz√
1− p2 V2

z (tz)
, (23)

h(p) =

∫ z

0
dz tanψ(z) =

∫ tz

0

p V2
z (tz)dtz√

1− p2 V2
z (tz)

, (24)

where

tz = t(0) =

∫ z

0

dz

Vz(z)
. (25)

Straightforward differentiation of parametric formulas (23) and (24) yields the first four coef-
ficients of the Taylor series expansion

t2(h) = a0 +a1h2
+a2h4

+a3h6
+ . . . (26)

in the vicinity of the vertical zero-offset ray. Series (26) contains only even powers of the
offset h because of the reciprocity principle: the reflection traveltime is an even function of
the offset. Taylor coefficients for the isotropic case are defined as follows:

a0 = t2
z , (27)

a1 =
1

V2
rms

, (28)

a2 =
1− S2

4t2
z V4

rms
, (29)

a3 =
2S2

2 − S2 − S3

8t4
z V6

rms
, (30)

whereV2
rms = M1,

Mk =
1

tz

∫ tz

0
V2k

z (t)dt (k = 1,2,. . . ) , (31)

Sk =
Mk

V2k
rms

(k = 2,3,. . . ) . (32)

Equation (28) shows that, at small offsets, the reflection moveout has a hyperbolic form with
the normal moveout velocityVn equal to the root-mean-square velocityVrms. At large offsets,
however, the hyperbolic approximation is not accurate. Studying the Taylor series expansion
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(26), Malovichko introduced a remarkable three-parameter approximation for the reflection
traveltime in a vertically heterogeneous isotropic medium (Malovichko, 1978; Sword, 1987).
Malovichko’s formula has the form of a shifted hyperbola (Castle, 1988; de Bazelaire, 1988):

t(h) =

(
1−

1

S

)
t0 +

1

S

√
t2
0 + S

h2

V2
n

. (33)

If we set the zero-offset traveltimet0 equal to the vertical traveltimetz, the velocityVn

equal toVrms, and theparameter of heterogeneity Sequal toS2, formula (33) guarantees the
correct coefficientsa0, a1, anda2 in the Taylor series (26). Note that the parameterS2 is related
to the varianceσ 2 of the squared velocity distribution, as follows:

σ 2
= M4 − V4

rms = V4
rms(S2 −1) . (34)

According to formula (34), this parameter is always greater than 1 (it equals 1 in homogeneous
media). In the most common practical cases, the value ofS2 lies between 1 and 2. We can
roughly estimate the accuracy of approximation (33) at large offsets by comparing the fourth
term of its Taylor series with the fourth term of the exact traveltime expansion (26). According
to this estimate, the error of Malovichko’s approximation is

1t2(h)

t2(0)
=

1

8
(S3 − S2

2)

(
h

t0 Vn

)6

. (35)

As follows from the definition of the parametersSk (32) and the Schwarz (Cauchy-Bunyakovski)
inequality from calculus, expression (35) is greater than zero for any non-uniform velocity
distributionVz(tz). This means that Malovichko’s approximation tends to overestimate travel-
times at large offsets. As the offset approaches infinity, the limit of this approximation is

lim
h→∞

t2(h) =
1

S

h2

V2
n

. (36)

Formula (36) indicates that the effective horizontal velocity for Malovichko’s approxima-
tion (the slope of the shifted hyperbola asimptote) is different from the normal moveout veloc-
ity. We can interpret this difference as an evidence of the effective depth-variant anisotropy.
However, the anisotropic effect implied in formula (33) is different from the effect of a ho-
mogeneous transversely isotropic medium described by Thomsen’s formula (1). To reveal

this difference, let us substitute the effective valuest(h) =

√
z2+h2

Vg(ψ) , t0 =
z

Vz
, h = z tanψ , and

S=
V2

x
V2

n
into (33). After we eliminate the variablesz andh, the resultant expression takes the

form

1

Vg(ψ)
=

1

Vz

{
cosψ

(
1−

V2
n

V2
x

)
+

√
V2

z

V2
x

sin2ψ+
V4

n

V4
x

cos2ψ

}
. (37)

If the anisotropic effect is induced by a vertical heterogeneity,Vx is greater thanVn, while Vn

is greater thanVz. Both of these inequalities follow from the definitions ofVrms, tv, andS2
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and the Schwartz inequality. They reduce to equalities only in the case of a constant velocity.
Linearizing expression (37) with respect to Thomsen’s anisotropic parametersδ andε, we can
transform it to a form analogous to that of equation (9), as follows:

V2
g (ψ) = V2

z

(
1+2δ sin2ψ+2η (1−cosψ)2) , (38)

Figure 3 illustrates the difference between the weak transversally isotropic model and the
effective anisotropy implied by Malovichko’s approximation. The difference is noticeable in
the shapes of both the effective wavefront (left plot) and the traveltime curve (right plot).

epsilon=0.2 delta=0.1

-3 -2 -1 1 2 3
h

0.5

1.5

2.5

v t

Figure 3: Comparing a weak transversally isotropic model and Malovichko’s shifted hyperbola
approximation. The left plot shows effective wavefronts; right: reflection moveouts. Solid
lines correspond to the anisotropic model; dashed lines: Malovichko’s approximation. The
values of the effective vertical, horizontal, and moveout velocities are the same in both cases
and correspond to Thomsen’s parametersε = 0.2,δ = 0.1. aniso-nmofrz[CR]

Deriving formula (38), we have assumed the correspondence

S=
V2

x

V2
n

=
1+2ε

1+2δ
≈ 1+2η . (39)

We could also take the value of the parameter of heterogeneitySso as to match the coefficient
a2 given by formula (29) with the corresponding term in the Taylor series (17). In this case,
the value ofSwould be (Alkhalifah, 1996)

S= 1+8η . (40)

The difference between equations (39) and (40) is an additional indicator of the fundamental
difference between the homogeneous VTI model and the vertically heterogeneous model. The
three-parameter anisotropic approximation (16) can match the reflection moveout curve in the
isotropic model up to and including the fourth-order term in the Taylor series expansion, if the
value ofη is chosen in accordance with formula (40). We can estimate the error of such an
approximation with an equation analogous to (35). It takes the form

1t2(h)

t2(0)
=

1

8
(S3 −2+3S2 −2S2

2)

(
h

t0 Vn

)6

. (41)
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The difference between the error estimates (35) and (41) is

1t2(h)

t2(0)
=

1

8
(2− S2) (S2 −1)

(
h

t0 Vn

)6

. (42)

For the usual values of the parameter of heterogeneityS2, which range from 1 to 2, expres-
sion (42) is greater than zero. This means that anisotropic approximation (16) overestimates
the traveltimes in the isotropic heterogeneous model even more than the shifted hyperbola ap-
proximation (33) (as shown in the right plot of Figure 3). Which of the two approximations
is more suitable if the model includes both vertical heterogeneity and anisotropy? We address
this question in the following subsection.

Vertical Heterogeneity plus Anisotropy

In a model that includes vertical heterogeneity and anisotropy, both factors affect bending
of the rays. However, the weak anisotropy approximation allows us to neglect the effect of
anisotropy on ray trajectories and to consider its effect on traveltimes only. This assumption is
analogous to the linearization concept, conventional for tomographic inversion. Its application
to weak anisotropy has been discussed by Grechka and McMechan (1996). According to the
linearization assumption, we can retain isotropic formula (24) as describing the ray trajectories
and rewrite formula (23) in the form

t(p) =

∫ z

0

dz

Vg(z,ψ(z)) cosψ(z)
, (43)

whereVg is the anisotropic group velocity, which varies both with depth and with the ray
angleψ and has the expression (1). Differentiation of the parametric traveltime formulas (43)
and (24) and linearization with respect to Thomsen’s anisotropic parameters shows that the
general form of equations (27) through (30) remains valid if we change the definition of the
root-mean-square velocityVrms and the parametersS2 andS3, as follows:

V2
rms =

1

tz

∫ tz

0
V2k

z (t) (1+2δ(t)) dt , (44)

Mk =
1

tz

∫ tz

0
V2k

z (t) (1+2δ(t))2k (1+8η(t)) dt (k = 2,3,. . . ) , (45)

Sk =
Mk

V2k
rms

(k = 2,3,. . . ) . (46)

It is easy to verify that in the homogeneous case, expressions (44) through (46) transform
series (26) with coefficients (27) through (30) to the form equivalent to series (17). Two im-
portant conclusions follow from the mathematical form of equations (44) and (45). First, we
see that if the mean value of the anisotropic coefficientδ is less than zero, the presence of
anisotropy can reduce the difference between the effective root-mean-square velocity and the
effective vertical velocityVz = z/tz. In this case, the effects of anisotropy and heterogene-
ity partially cancel each other, and the moveout curve behaves at small offsets so as if the
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medium were homogeneous and isotropic. This behavior has been noticed by Larner and Co-
hen (1993). On the other hand, if the anelliptic parameterη is positive and different from zero,
it can significantly increase the values of the heterogeneity parametersSk. In this case, the
nonhyperbolicity of reflection moveouts at large offsets is stronger than in the isotropic case.

To exemplify the general theory, let us consider a simple analytic model with constant
anisotropy parameters and a vertical velocity linearly increasing with depth according to the
equation

Vz(z) = Vz(0) (1+α z) = Vz(0)eκ(z) , (47)

whereκ is the logarithm of the velocity change. In this case, the analytic expression for the
RMS velocityVrms is found according to formula (44) to be

V2
rms = V2

z (0) (1+2δ)
e2κ

−1

2κ
, (48)

while the mean vertical velocity is

V̂z =
z

tz
= Vz(0)

eκ −1

κ
, (49)

whereκ = κ(z) is evaluated at the reflector depth. Comparing equations (48) and (49), we can
see that the squared RMS velocityV2

rms equals the squared mean velocityV̂2
z if

1+2δ =
2 (eκ −1)

κ (eκ +1)
. (50)

For smallκ, the estimate ofδ from equation (50) is

δ ≈ −
κ2

24
. (51)

For example, if the vertical velocity near the reflector is four times higher than the velocity at
the surface, having the anisotropic parameterδ ≈ −0.067 is sufficient to cancel out the effect
of heterogeneity on the normal moveout velocity. The values of the parametersS2 andS3 are
found from formula (46) to be

S2 = (1+8η)κ
e2κ

+1

e2κ −1
, (52)

S3 =
4

3
(1+8η)κ2 e4κ

+e2κ
+1(

e2κ −1
)2 . (53)

Substituting (52) and (53) into formulas (35) and (41) and linearizing both inη and inκ, we
find that the error of anisotropic traveltime approximation (16) in the linear velocity model is
approximately

1t2(h)

t2(0)
=
κ2 (1−8η)

12

(
h

t0 Vn

)6

, (54)
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while the error of the shifted hyperbola approximation (33) is

1t2(h)

t2(0)
=

(
κ2 (1−8η)

24
−η

) (
h

t0 Vn

)6

. (55)

Comparing formulas (54) and (55), we conclude that if the medium is isotropic (η = 0), the
shifted hyperbola can be twice as accurate as the anisotropic formula (assuming the optimal
choice of parameters). It is, however, less accurate if the coefficientη is positive and satisfies
the approximate inequality

η ≥
κ2

8(1+κ2)
. (56)

Stolt Stretch

Stolt stretch (Stolt, 1978; Levin, 1985; Claerbout, 1985) is a method of extending constant-
velocity frequency-domain migration to the case of a vertically variable velocity. The method
consists of stretching the time axis according to the formula

τ (tz) =

(
2

V2
0

∫ tz

0
t V2

rms(t)dt

)1/2

, (57)

double Fourier transform, and migration according to the dispersion relation

ωm(k,ω0) =

(
1−

1

W

)
ω0 +

sign(ω0)

W

√
ω2

0 − W V2
0 k2

x , (58)

whereV0 is a constant frame velocity,ω0 andωm are the frequencies before and after the
migration, corresponding to the stretched time coordinate,kx is the wavenumber, andW is a
constant parameter (W = 1 in the constant velocity case). Fomel (1995) has shown that the
optimal choice of the Stolt stretch parameterW for a particular traveltime depthtz is given by
the expression

W = 1−
V2

0 τ
2 (tz)

V2
rms(tz) t2

z

(
V2 (tz)

V2
rms(tz)

− S2 (tz)

)
. (59)

This expression remains valid in the case of a vertically heterogeneous VTI medium if the
values ofVrms andS2 are computed according to formulas (44) and (46). The method of cas-
caded migrations (Larner and Beasley, 1987) can improve the performance of Stolt migration
in the case of variable velocity (Beasley et al., 1988). However, this method affects only the
isotropic part of the model and cannot change the contribution of the anisotropic parameters.
Therefore, in the anisotropic case, it is important to incorporate anisotropic parameters into
the Stolt stretch correction.
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CURVILINEAR REFLECTOR

Reflector curvature is yet another possible cause of nonhyperbolic moveout. In the isotropic
case, the normal moveout velocity at small offsets is affected by the local dip of the reflector,
while the curvature affects the nonhyperbolic part of the moveout. In the case of anisotropy,
both effects are combined with the influence of anisotropic parameters.

Isotropic case

If the reflector has the shape of a dipping plane, and the medium is homogeneous and isotropic,
the normal moveout curve is a hyperbola of the form (Levin, 1971)

t2(h) = t2
0 +

h2

V2
n

, (60)

where

t0 =
2L

Vz
, (61)

Vn =
Vz

cosα
, (62)

L is the length of the zero-offset ray, andα is the reflector dip angle. Formula (60) is not ac-
curate if the reflector is both dipping and curved. The Taylor series expansion of the reflection
moveout in this case has the form of equation (26) with the coefficients (Fomel, 1994)

a2 =
cos2α sin2αG

4V2
z L2

, (63)

a3 = −
cos2α sin2αG2

16V2
z L4

(
cos2α+sin2α

G K3

K 2
2 L

)
, (64)

where

G =
K2 L

1+ K2 L
, (65)

α andK2 are the dip angle and curvature of the reflector at the reflection point of the central
(zero-offset) ray, andK3 is the third-order curvature. If the reflector has an explicit represen-
tation of the formz= z(x), then the parameters in formulas (63) and (64) have the expressions

tanα =
dz

dx
, (66)

L =
z

cosα
, (67)

K2 =
d2z

dx2
cos3α , (68)

K3 =
d3z

dx3
cos4α−3K 2

2 tanα . (69)



630 Fomel & Grechka SEP–92

Leaving only three terms in the Taylor series leads to the approximation

t2(h) = t2
0 +

h2

V2
n

+
tan2αG h4

V2
n

(
V2

n t2
0 + G h2

) , (70)

where we have included the denominator in the third term to stabilize the traveltime behavior
at large offsets according to the obvious limit

lim
h→∞

t2(h) =
h2

V2
z

. (71)

As indicated by formula (68), the sign of the curvatureK2 is positive if the reflector surface
is locally convex. The sign is negative if the reflector is concave. Therefore, the coefficientG
expressed by formula (65) and, likewise, the nonhyperbolic term in (70) can take both positive
and negative values. This means that only for concave reflectors in homogeneous media do
nonhyperbolic moveouts resemble those in VTI and vertically heterogeneous media. Convex
surfaces produce nonhyperbolic effects with the opposite sign. For obvious reasons, formula
(70) is not accurate for strong negative curvaturesK2 ≈ 1/L, which cause focusing of the
reflected rays and triplications of the reflection traveltimes.

In order to evaluate the accuracy of approximation (70), we can compare it with the exact
expression for the case of a point diffractor. A point diffractor is formally a convex reflector
with an infinite curvature. The exact expression for normal moveout is written in the present
notation as

t(h) =

√
z2 + (z tanα−h)2 +

√
z2 + (z tanα+h)2

2Vz
, (72)

wherez is the depth of the diffractor, andα is the central ray angle. Figure (??) shows the
relative error of approximation (70) as a function of the ray angle for the half-offseth equal to
the depthz. We can see that the maximum error occurs atα ≈ 50◦ and is about 1%. We can
expect formula (70) to be even more accurate for reflectors with smaller curvatures.

Figure 4: Relative error of the nonhy-
perbolic moveout approximation for
a curved reflector in the case of a
point diffractor. The relative er-
ror corresponds to the half-offseth
equal to the diffractor depthz and is
plotted against the central ray angle.
aniso-nmoerr[CR]
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Curved reflector in a homogeneous VTI medium

In the case of a dipping curved reflector in a homogeneous VTI medium, the ray trajectories of
the incident and reflected waves are straight, but the location of the reflection point is no longer
controlled by the isotropic laws. In order to obtain analytic expressions for this case, we use
the theorem, which connects the derivatives of the common-midpoint traveltime curves with
the derivatives of the forward traveltimes for the imaginary wave originating at the reflection
point of the central ray. This theorem has been introduced for the second-order derivatives by
Chernjak and Gritsenko (1979) and is usually referred to as the normal incidence point (NIP)
theorem (Hubral and Krey, 1980; Hubral, 1983). Though the original proof didn’t address
the case of anisotropy, it is applicable to this case as well, being based on the fundamental
Fermat’s principle. The normal incidence point in the anisotropic case should be replaced
by the point of incidence for the central ray (which is in general not normal to the reflector
surface). In the appendix, we review the NIP theorem as well as its extension for high-order
traveltime derivatives (Fomel, 1994).

Two basis formulas derived in the appendix take the following form:

∂2t

∂h2

∣∣∣∣
h=0

= 2
∂2T

∂y2
, (73)

∂4t

∂h4

∣∣∣∣
h=0

= 2
∂4T

∂y4
−6

(
∂2T

∂x2

)−1 (
∂3T

∂y2∂x

)2

, (74)

whereT(x, y) is the traveltime of the direct wave propagating from the reflector pointx to the
point y at the surfacez = 0. All the derivatives in formulas (73) and (74) are evaluated in the
vicinity of the central (zero-offset) ray. Both formulas are based solely on Fermat’s principle
and therefore remain valid in any type of medium for reflectors of arbitrary shape, assuming
that the traveltimes possess the required order of smoothness. It is especially convenient to
use formulas (73) and (74) in the case of homogeneous media, because the forward traveltime
in this case has an explicit expression.

In order to apply formulas (73) and (74) to the VTI case, we need to start by tracing
the central ray. According to Fermat’s principle, the ray trajectory must correspond to the
extremum value of the traveltime. For the central ray, this simply means that in the vicinity of
the central ray, the traveltime of the direct ray satisfies the equation

∂T

∂x
= 0 , (75)

where

T(x, y) =

√
z2(x)+ (x − y)2

Vg(ψ(x, y))
, (76)

z(x) describes the reflector surface, andψ is the ray angle, which satisfies the evident trigono-
metric relationship (see Figure 5)

cosψ(x, y) =
z(x)√

z2(x)+ (x − y)2
. (77)
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Substituting approximate equation (9) for the group velocityVg into formula (76) and lin-
earizing with respect to the anisotropic parametersδ andη, we can solve equation (75) fory,
obtaining

y = x + z tanα (1+2δ+4η sin2α) (78)

or, in other terms,

tanψ = tanα (1+2δ+4η sin2α) , (79)

whereα is the local dip angle of the reflector at the reflection pointx. Equation (79) clearly
shows that in VTI media the central ray angleψ differs from the dip angleα. As one can
expect, the difference is approximately proportional to Thomsen’s anisotropic parameters.

Figure 5: Zero-offset reflection from
a curved reflector in a VTI medium
(a scheme). Note that the ray angle
is not equal to the local dip angle.
aniso-nmoray[NR]
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Now we can apply formula (73) to evaluate the second term of the Taylor series expansion
(26) for the case of a curved reflector. The linearization in anisotropic parameters in this case
leads to the expression

a1 =
1

V2
n

=
cos2α

V2
z

(
1+2δ (1+sin2α)+6η sin2α (1+cos2α)

) , (80)

which is equivalent to Tsvankin’s result (Tsvankin, 1995). As in the isotropic case, the nor-
mal moveout velocity does not depend on the curvature. Its dip dependence is an important
indicator of anisotropy, especially in areas of conflicting dips (Alkhalifah and Tsvankin, 1995).

Finally, we can apply formula (74) to determine the third coefficient of the Taylor se-
ries. After linearization in anisotropic parameters and lengthy algebra, the resulting expression
takes the form

a2 =
A

V4
n t2

0

, (81)

where

A = G tan2α+2δG sin2α (2+ tan2α− G)−2η (1−4 sin2α)+

+4ηG sin2α
(
6 cos2α+sin2α (tan2α−3G)

)
, (82)
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and the coefficientG is defined by equation (65). In the case of a zero curvature (a plane
reflector),G is also equal to zero, and the only term remaining in formula (82) is

A = −2η (1−4 sin2α) . (83)

In the general case of a curved reflector, we can rewrite the isotropic formula (70) in the form

t2(h) = t2
0 +

h2

V2
n

+
Ah4

V2
n

(
V2

n t2
0 + G h2

) , (84)

where the normal moveout velocityVn is given by (80). Equation (84) approximates nonhy-
perbolic moveouts in a VTI medium with a curved reflector. In the isotropic case, it reduces
to formula (70). In the case of a small curvature, the accuracy of formula (84) at finite offsets
can be increased by modifying the denominator term.

TI MOVEOUT IN TERMS OF LATERAL HETEROGENEITY

In a simple model with one horizontal reflector, the anisotropic effect of the group velocity
changing with the angle of propagation is somewhat similar to the effect of lateral heterogene-
ity. In this section, we address the question of whether nonhyperbolic moveout in isotropic
weakly heterogeneous model can mimic that in a homogeneous weakly anisotropic model.
The analysis follows the results of Grechka (1996).

The angle dependence of the group velocity in formulas (1) and (9) is characterized by
small anisotropic coefficients. Therefore, we can assume that an analogous effect of lateral
heterogeneity might be cause by asmall velocity perturbation. The appropriate model is a
laterally heterogeneous (LH) medium with velocity

V(x) = V0 [1+c(x)] , (85)

where|c(x)| � 1 is a dimensionless function. The velocity function in formula (85) has the
generic perturbation form that allows us to use the tomographic linearization assumption. That
is, we neglect the ray bending caused by the small velocity perturbationc and compute the
perturbation of traveltimes along straight rays in the constant velocityV0. Thus, we can rewrite
equation (13) for this case as

t(h) =

√
z2 +h2

2h

∫ y+h

y−h

dξ

Vz(ξ )
, (86)

wherey is the midpoint location, and the integral limits correspond to the source and receiver
locations. For simplisity, and without loss of generality, we can sety to zero. Linearizing with
respect to the small perturbationc(x), we get

t(h) =

√
z2 +h2

V0

[
1−

1

2h

∫ h

−h
c(ξ )dξ

]
. (87)
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From the form of equation (87) it is clear that lateral heterogeneity can cause many differ-
ent types of nonhyperbolic moveout shapes. In particular, comparing equations (87) and (15),
we conclude that a pseudo-anisotropic behavior of traveltimes is caused by lateral heterogene-
ity of the form

c(h) =
d

dh

[
h3(h2ε+ z2δ)

(h2 + z2)2

]
(88)

or, in the linear approximation,

c(h) =
[
δ t2

0 V2
n h2 (3t2

0 V2
n −h2)+ ε h4 (5t2

0 V2
n +h2)

]
/
(
t2
0 V2

n +h2)3 , (89)

whereδ andε should be considered now as the parameters of theisotropic lateral heteroge-
neous velocity field. Equation (89) indicates that the velocity heterogeneityc(x), reproducing
moveout (16) in a homogeneous TI medium, is the symmetric function of the offseth. It
is not surprising because the velocity function (1), corresponding to transverse isotropy, is
symmetric as well.

For more details on the relation between lateral heterogeneity and transevse isotropy in
interpretingP-wave reflection moveout, see (Grechka, 1996).

CONCLUSIONS

Nonhyperbolic reflection moveout ofP-waves is an important indicator of anisotropy. How-
ever, its correct interpretation is impossible without taking other factors into account. In this
paper, we have considered three other important factors: vertical heterogeneity, curvature of
the reflector, and lateral heterogeneity. Each of these three factors can have an effect on non-
hyperbolic behavior of the reflection moveout comparable with the effect of anisotropy. In
particular, vertical heterogeneity produces a depth-variant anisotropic pattern, different from
the pattern of VTI media. In the isotropic case, this pattern is reasonably well approximated by
the shifted hyperbola formula. In the case of a VTI vertically heterogeneous medium, the pa-
rameters of anisotropy should be replaced with their effective values. For the case of a curved
reflector in a homogeneous VTI medium, we have developed an approximation based on the
Taylor series expansion of the traveltime with both the reflector curvature and the anisotropic
parameters entering the nonhyperbolic term. In the case of a lateral heterogeneity, virtually
any effectively anisotropic effect can be created.

The theoretical results of this paper are directly applicable formodelingnonhyperbolic
moveouts. Particularly attractive in this context are the general formulas connecting the re-
flection traveltime derivatives with the traveltime derivatives of a direct wave. For smooth
velocity models, these formulas may reduce the problem of tracing a family of reflected rays
to the problem of tracing one central ray. Practical estimation andinversionof nonhyperbolic
moveout is a different and more difficult problem. Nevertheless, the theoretical guidelines
provided by the analytical theory are helpful for a correct formulation of the inversion prob-
lem. They show us explicitly what parameters of the medium we may hope to extract from the
kinematics ofP-wave seismic reflection data.
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APPENDIX A

NORMAL MOVEOUT BEYOND THE NIP THEOREM

In this Appendix, we derive formulas that relate traveltime derivatives of the reflected wave,
evaluated at the zero offset point, and traveltime derivatives of the direct wave, evaluated in
the vicinity of the zero-offset (central) ray. Such a relationship for second-order derivatives is
known as the NIP (normal incidence point) theorem (Chernjak and Gritsenko, 1979; Hubral
and Krey, 1980; Hubral, 1983). Its extension to high-order derivatives is described by Fomel
(1994). Reflection traveltime in any type of model can be considered as a function of the
source and receiver locationss andr and the location of the reflection pointx, as follows:

t(y,h) = F (y,h,x(y,h)) , (A-1)

wherey is the midpoint
(
y =

s+r
2

)
, h is the half-offset

(
h =

r −s
2

)
, and the functionF has a

natural decomposition into two parts corresponding to the incident and reflected rays:

F(y,h,x) = T(y−h,x)+ T(y+h,x) , (A-2)

whereT is the traveltime of the direct wave. Clearly, at the zero-offset point,

t(y,0)= 2T(y,x) , (A-3)

wherex = x(y,0) corresponds to the reflection point of the central ray. Differentiating formula
(A-1) with respect to the half-offseth and applying the chain rule, we obtain

∂t

∂h
=
∂F

∂h
+
∂F

∂x

∂x

∂h
. (A-4)

According to Fermat’s principle, one of the fundamental principles of ray theory, the ray tra-
jectory of the reflected wave corresponds to an extremum value of the traveltime. Parameter-
izing the trajectory in terms of the reflection point locationx and assuming thatF is a smooth
function ofx, we can write Fermat’s principle in the form

∂F

∂x
= 0 . (A-5)

Equation (A-5) must be satisfied for any values ofx andh. Substituting this equation into
formula (A-4) leads to the equation

∂t

∂h
=
∂F

∂h
. (A-6)
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Differentiating (A-6) again with respect toh, we arrive at the formula

∂2t

∂h2
=
∂2F

∂h2
+
∂2F

∂h∂x

∂x

∂h
. (A-7)

Interchanging the source and receiver locations doesn’t change the reflection point position
(the principle of reciprocity). Therefore,x is an even function of the offseth, and we can
simplify formula (A-7) at zero offset, as follows:

∂2t

∂h2

∣∣∣∣
h=0

=
∂2F

∂h2

∣∣∣∣
h=0

. (A-8)

Substituting the expression for the functionF (A-2) into (A-8) leads to the equation

∂2t

∂h2

∣∣∣∣
h=0

= 2
∂2T

∂y2
, (A-9)

which is the mathematical formulation of the NIP theorem. It proves that the second-order
derivative of the reflection traveltime with respect to the offset is equal, at zero offset, to
the second derivative of the direct wave traveltime for the wave propagating from the inci-
dence point of the central ray. One immediate conclusion from the NIP theorem is that the
short-spread normal moveout velocity, connected with the derivative in the left-hand-side of
equation (A-9) can depend on the reflector dip but doesn’t depend on the curvature of the re-
flector. Our derivation up to this point has followed the derivation suggested by Chernjak and
Gritsenko (1979). Differentiating formula (A-7) twice with respect toh evaluates, with the
help of the chain rule, the fourth-order derivative, as follows:

∂4t

∂h4
=
∂4F

∂h4
+3

∂4F

∂h3∂x

∂x

∂h
+3

∂4F

∂h2∂x2

(
∂x

∂h

)2

+3
∂4F

∂h∂x3

(
∂x

∂h

)3

+

+3
∂3F

∂h2∂x

∂2x

∂h2
+3

∂3F

∂h∂x2

∂2x

∂h2

∂x

∂h
+
∂2F

∂h∂x

∂3x

∂h3
. (A-10)

Again, we can apply the principle of reciprocity to eliminate the odd-order derivatives ofx in
formula (A-10) at the zero offset. The resultant expression has the form

∂4t

∂h4

∣∣∣∣
h=0

=

(
∂4F

∂h4
+3

∂3F

∂h2∂x

∂2x

∂h2

)∣∣∣∣
h=0

. (A-11)

In order to determine the unknown second derivative of the reflection point location∂2x
∂h2 , we

differentiate Fermat’s equation (A-5) twice, obtaining

∂3F

∂2h∂x
+2

∂3F

∂h∂x

∂x

∂h
+
∂3F

∂3x

(
∂x

∂h

)2

+
∂2F

∂2x

∂2x

∂h2
= 0 . (A-12)

Simplifying this equation at zero offset, we can solve it for the second derivative ofx. The
solution has the form

∂2x

∂h2

∣∣∣∣
h=0

= −

[(
∂2F

∂2x

)−1
∂3F

∂2h∂x

]
h=0

. (A-13)
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Here we neglect the case of∂
2F
∂2x

= 0, which corresponds to a focusing of the reflected rays at
the surface. Finally, substituting expression (A-13) into (A-11) and recalling the definition of
the F function from (A-2), we obtain the equation

∂4t

∂h4

∣∣∣∣
h=0

= 2
∂4T

∂y4
−6

(
∂2T

∂x2

)−1 (
∂3T

∂y2∂x

)2

, (A-14)

which is the same as equation (74) in the main text. Higher-order derivatives can be expressed
in an analogous way with a set of recursive algebraic functions (Fomel, 1994). In the derivation
of formulas (A-9) and (A-14), we have used Fermat’s principle, the principle of reciprocity,
and the rules of calculus. Both these formulas remain valid in anisotropic media as well as in
heterogeneous media, providing that the traveltime function is smooth and that focusing of the
reflected rays doesn’t occur at the surface of observation.
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