
ATOMIC IMAGES - A METHOD FOR MESHING DIGITAL IMAGES

Dave Hale

Landmark Graphics, Englewood, CO, USA dhale@lgc.com

ABSTRACT

By combining a digital image with a lattice of points called atoms, in which atom coordinates are computed to
minimize a potential energy function of the combination, we obtain a mesh suitable for further computations, such
as flow simulation.

Each atom in the lattice contributes a potential function to an atomic potential field. The image represents another
potential field. Total potential energy of the lattice is a weighted sum of the atomic and image potential fields,
evaluated at atom coordinates. We exploit the uniform sampling of images to obtain a simple and efficient algorithm
for computing the total potential energy.

Beginning with a pseudo-regular lattice, a generic optimization algorithm moves atoms to minimize this total poten-
tial energy. After lattice optimization (not before), we connect the atoms to form a mesh that tends to be aligned
with image features.

Keywords: mesh generation, image processing

1 INTRODUCTION

Digital images are often analyzed to obtain meshes
that facilitate further computation. For example,
medical images of the human brain are analyzed to
obtain meshes used to simulate blood flow in arter-
ies [1]. Similarly, seismic images are analyzed to ob-
tain geologic meshes used to simulate fluids flowing in
subsurface reservoirs [2].

Computations such as flow simulations are typically
performed on meshes that are not the uniform grids
on which digital images are sampled and processed.
For example, to reduce computation costs, a reservoir
simulation mesh is typically sampled more coarsely, es-
pecially along horizontal dimensions, and its sampling
may not be uniform. To better conform to subsurface
geology, the reservoir simulation mesh may be unstruc-
tured — connections among mesh elements may be
explicit, and not simply implied by array indices. A
frequent goal of image analysis is to obtain such an
irregularly sampled, unstructured mesh.

1.1 Images and meshing today

Today, image analyses often consist of the following
sequence of steps [1][2]:

(1) Process an image to enhance features of interest.

(2) Find curves or surfaces in the image that bound
regions of interest.

(3) Fill the space defined by those regions with a
computational mesh.

(4) Simulate some process on the space-filling mesh.

For various reasons, each step in this sequence is to-
day often taken independently, with little regard for
the requirements of subsequent steps. For example, it
is common in step (2) to produce a bounding curve
or surface with more detail than can be represented
in the space-filling mesh used in step (4). Seismic re-
flections representing geologic interfaces are routinely
mapped with higher lateral resolution than can practi-
cally be used in meshes for fluid reservoir simulation.

This leads to the “scale up” or “upscaling” problem
cited in [2].

This discrepancy in resolution is often accompanied
by a discrepancy in data structure. For example, a
two-dimensional (2-D) curve represented by a simple
linked list of line segments in step (2) may become a
relatively complex mesh of triangles in step (3). Such
discrepancies today disrupt the analysis sequence, and
may yield inconsistencies between the image processed
in step (1) and the mesh used in step (4) that are
difficult to quantify.

The disruptions are costly. In the example of seismic
image analysis and reservoir simulation, one iteration
of this sequence today may require a month or more of
work. This high cost makes it difficult to perform mul-
tiple iterations in attempts to estimate uncertainties
in simulation results.

1.2 Meshing with lattices and forces

The accuracy of most computations performed on
meshes depends on the regularity of mesh elements.
Simulations performed on highly regular triangular
meshes, those with nearly equilateral triangles, are
more accurate than those performed on irregular
meshes with long thin triangles.

This is one reason that the Delaunay triangulation
(e.g., [3]) is popular. Given a set of points representing
the locations of nodes for a 2-D mesh, the 2-D Delau-
nay triangulation of those points, when compared with
all other possible triangulations, yields triangles most
nearly equilateral. However, Delaunay triangulation
alone does not guarantee a regular mesh. For that,
one must choose carefully the locations of the mesh
nodes.

Outside the domain of image analysis, the problem of
choosing optimal mesh node locations has been well
studied. One solution to this problem is based on
the observation [4][5] that the triangulation of a set
of points defined by a simple crystal lattice of atoms
yields a highly regular mesh. However, a uniform lat-
tice of points can seldom be aligned exactly with the
boundaries of objects to be meshed.

Therefore, some solutions (e.g., [4]) begin with an ap-
proximately uniform lattice, and then use numerical
models of physical forces between atoms to automat-
ically move mesh nodes (atoms) to more optimal lo-
cations. This method has been used to mesh geomet-
ric models that define precisely internal and external
boundaries of objects. Here, we extend this method
to the problem of computing meshes aligned with less
well-defined features in digital images.

Models of physical forces are widely used to compute
optimal locations for points that define curves and
surfaces. For example, Witkin and Heckbert [6] use
repulsive forces to sample and interactively manipu-
late free-form surfaces described by implicit functions.
Closer to our context of image processing, Terzopoulis
and others (e.g., [7][8]) find bounding curves and sur-

faces using active contours (also known as “snakes”),
where initially simple curves or surfaces are deformed
by artificial forces induced by image features. Here,
we use models of physical forces to directly construct
space-filling lattices (and meshes) aligned with image
features, without first computing bounding curves or
surfaces.

2 MESHING IMAGES

The method we propose replaces the image analysis
sequence described above with the following sequence:

(1) Process an image to enhance features of interest.

(2) Fill space with a computational mesh aligned with
image features.

(3) Simulate some process on the space-filling mesh.

Instead of finding boundaries of regions within images
and then meshing those regions, one simply constructs
a mesh that is aligned with the boundaries.

Figure 1 illustrates a seismic image of faults, disconti-
nuities in subsurface geology. This 256 × 256-sample
(6.4 × 6.4-km) 2-D image is a horizontal slice taken
from a 3-D seismic image that was processed to en-
hance such discontinuities. The dark linear features in
this image represent traces of faults that intersect this
horizontal slice. The faults are approximately vertical,
almost perpendicular to this horizontal slice.

Figure 2 shows a space-filling mesh that has been
aligned with those faults. This mesh is highly regu-
lar, and its variable density smoothly conforms to the
variable density of features in the image. Such a mesh
could well be used for further computation, such as
reservoir simulation.

The space-filling mesh shown in Figure 2 was com-
puted in three steps:

(1) Fill the space spanned by the image with a
pseudo-regular lattice of atoms. By “pseudo-
regular”, we mean that the nominal distance be-
tween an atom and its nearest neighbors varies
smoothly, consistent with the density of features
in the image.

(2) Move the atoms to minimize a total potential en-
ergy, defined to be a weighted sum of an atomic
potential energy and an image potential energy.

(3) Connect the atoms using Delaunay (or some
other) triangulation to form a mesh.

Note that this process constructs a mesh for the first
time in step (3), only after lattice optimization in step
(2). In the examples shown in this paper, we con-
struct meshes using, or at least beginning with, a De-
launay triangulation of atom locations. Because De-
launay triangulation connects atoms with their near-
est neighbors, and because, after step (2), atoms lo-
cated on image features tend to be closer together than

2

Figure 1: A seismic image of geologic faults.

Figure 2: A space-filling variable-density mesh that
has been automatically aligned with features in the
seismic image.

atoms located elsewhere, Delaunay triangulation tends
to create edges (in 2-D) and faces (in 3-D) aligned
with image features, as illustrated in Figure 2. How-
ever, nothing in this process guarantees this alignment,
and non-Delaunay triangulations, perhaps obtained by
swapping edges or faces, may improve alignment of the
mesh with image features.

Step (2) of this process is the most costly, as it requires
repeated computations of the total potential energy
and its partial derivatives with respect to the spatial
coordinates of each atom. In the next section, we de-
scribe a simple and efficient algorithm for performing
these computations.

2.1 Computing the potential energy

An atom in a two-dimensional (2-D) space has x and
y coordinates, and an atom in a three-dimensional (3-
D) space has x, y, and z coordinates. The vector x
denotes the x and y (or x, y and z) spatial coordinates
of a point in 2-D (or 3-D) space. Given two atoms with
locations xi and xj , |xi − xj | denotes the Euclidean
distance between them.

2.1.1 Pair-wise potential functions

For computational efficiency, we model the interaction
among atoms with a simple pair-wise force function, so
that the total force exerted on an atom by its neighbors
is simply the sum of the forces exerted by each one of
them. Even with this simplification, there exist many
reasonable choices for the pair-wise force function.

To avoid having two or more atoms with the same, or
nearly the same, coordinates, the force between them
should be repulsive (positive) if they are too close to
each other. Likewise, to prevent large empty spaces
with no atoms, the force between two atoms should
be attractive (negative) if they are too far away from
each other. To facilitate numerical computations, the
force should be bounded. To prevent every atom in
the lattice from exerting a force on every other atom,
the force should be zero beyond a cutoff distance. Fur-
thermore, the force function should be continuous as a
function of the inter-atomic distance. We use the force
function proposed by Shimada [4], which has these
properties.

Let d denote the nominal distance between two atoms,
the distance at which the force goes from being repul-
sive to being attractive. Then, the force f between
two atoms located at xi and xj may be given by the
cubic polynomial:

f(u) ≡
{

9
8
− 19

8
u2 + 5

4
u3, 0 ≤ u < 3

2
,

0, 3
2
≤ u,

where u is the normalized distance between the two
atoms defined by

u ≡ |xi − xj |
d

.

3

The coefficients of this polynomial function ensure
that the force is bounded and continuous, that it
equals zero for u = 1 and u ≥ 3

2
, and that it is positive

for 0 ≤ u < 1 and negative for 1 < u < 3
2
. Figure 3a

illustrates this force function.

0 0.5 1 1.5 2
u �normalized distance�

0

0.5

1

f
�
u
�

0 0.5 1 1.5 2
u �normalized distance�

0

0.5

Φ
�
u
�

(a) (b)

Figure 3: Pair-wise (a) force and (b) potential
functions of normalized distance between any two
atoms.

Generally, the force on an atom is a vector. Here, the
direction of this vector is implied by the sign of f(u),
and by the locations xi and xj of the two atoms.

It is often more convenient to work with a scalar po-
tential than with the multiple components of a vector
force. Therefore, following a well-known convention,
we define the force to be the negative of the gradient
of a scalar potential:

φ(u) ≡
{

153
256

− 9
8
u + 19

24
u3 − 5

16
u4, 0 ≤ u < 3

2
,

0, 3
2
≤ u.

The constant of integration 153
256

has been chosen so

that φ(u) is continuous at u = 3
2
. Figure 3b illus-

trates this potential function. As expected, the po-
tential function φ(u) has a minimum at normalized
distance u = 1, where the force function f(u) is zero.

2.1.2 Potential energies and fields

Given a potential function φ(u) of normalized distance
u, we define the atomic potential energy to be the fol-
lowing sum of pair-wise potentials:

A = A(x1,x2, . . . ,xn) ≡ 1

2

n∑
i=1

n∑
j=1

φ

[
|xi − xj |

d(xj)

]
,

(1)
where x1,x2, . . . ,xn are the coordinates of n atoms in
a lattice, and d(x) is the nominal inter-atomic distance
function of position x. The nominal distance function
d(x) need not be constant; but, to ensure a smoothly
graded lattice, we require that it be smooth. Specifi-
cally, we require that |∇d| � 1, so that d(xi) ≈ d(xj)
for |xi − xj |/d less than the cutoff distance 3

2
of the

potential function φ(u). Then, the factor 1/2 com-
pensates for the appearance of φ[|xi − xj |/d(xj)] ≈
φ[|xj − xi|/d(xi)] twice in the definition of the total
potential energy A.

We may also define the atomic potential energy A in
terms of an atomic potential field :

a(x) ≡
n∑

j=1

φ

[
|x − xj |
d(xj)

]
, (2)

so that

A = A(x1,x2, . . . ,xn) ≡ 1

2

n∑
i=1

a(xi).

In other words, the atomic potential energy is defined
to be half the sum of values obtained by evaluating
the atomic potential field at the atom coordinates.

Likewise, we define an image potential energy

B = B(x1,x2, . . . ,xn) ≡
n∑

i=1

b(xi), (3)

where b(x) is an image potential field.

In other contexts, an image potential field is simply an
image (or a smoothed version of an image), typically
represented by a 2-D (or 3-D) array of numbers stored
in a computer memory. Here, we use the term “po-
tential field” to emphasize (and later exploit) the sim-
ilarity between the atomic and image potential fields.

To align atoms with features of interest in the im-
age (as in Figure 2), we first process the image so
that the image potential field attains a minimum value
b(x) ≈ −1 within features of interest, and a maximum
value b(x) ≈ 0 in uninteresting regions. Then, mini-
mizing the image potential energy B is equivalent to
moving atoms into minima corresponding to features
in the image. Finally, connecting the atoms with De-
launay triangulation yields a mesh of triangles (or, in
3-D, tetrahedra) with edges (or faces) that tend to be
aligned with image features.

We move atoms to minimize the following weighted
sum of the atomic and image potential energies:

P = P (x1,x2, . . . ,xn) ≡ (1 − β)A + βB, (4)

which we call the total potential energy. The scale
factor β determines the relative contributions of A
and B to the total potential energy P . When β = 0,
atoms tend toward a perfectly regular lattice that is
not aligned with the image. When β = 1, atoms are
sensitive to only image sample values; they will con-
gregate in the minima and vacate the maxima in the
image, yielding a highly irregular lattice. Typically,
we choose β ≈ 1

2
, and obtain an approximately regu-

lar lattice that respects image features.

In terms of the potential fields a(x) and b(x), the total
potential energy is

P =

n∑
i=1

1

2
(1 − β)a(xi) + βb(xi).

In terms of the total potential field, defined as

p(x) ≡ (1 − β)a(x) + βb(x), (5)

the total potential energy is

P =
1

2

n∑
i=1

p(xi) + βb(xi). (6)

4

Like the nominal distance function d(x), the scale fac-
tor β in equations (5) and (6) may be a smoothly vary-
ing function of position x. (As for d(x), smoothness
implies that derivatives of β(x) are negligible.) This
generalization enables the balance between lattice reg-
ularity and sensitivity to (attraction to or repulsion
from) image features to vary spatially. Sensitivity of
the lattice to image features may be more important
in one part of the image than in some other part. For
simplicity, here, we let β denote a constant scale fac-
tor.

The total potential energy P is a non-quadratic func-
tion of the atom coordinates x1,x2, . . . ,xn, with many
local minima. (For example, note that interchanging
the coordinates of any two atoms does not change P .)
Therefore, any search for a minimum, usually one close
to the initial lattice coordinates, must be iterative. In
an efficient iterative search, we must evaluate repeat-
edly partial derivatives of P with respect to the atom
coordinates. Consider, for example, the change in P
with respect to the x-coordinate of the i’th atom:

∂P

∂xi
= (1 − β)

∂A

∂xi
+ β

∂B

∂xi
. (7)

In evaluating the partial derivative ∂A/∂xi of the
atomic potential energy, we recall that the term φ[|xi−
xj |/d(xj)] ≈ φ[|xj − xi|/d(xi)] appears twice in the
double sum of equation (1). Therefore,

∂A

∂xi
=

n∑
j=1

φ′
[
|xi − xj |

d(xj)

]
1

d(xj)

xi − xj

|xi − xj | (8)

=
∂a

∂x
(xi)

∂B

∂xi
=

∂b

∂x
(xi) (9)

∂P

∂xi
=

∂p

∂x
(xi). (10)

Similar results may be obtained easily for partial
derivatives with respect to the y (and, in 3-D, the z)
coordinate of each atom.

2.1.3 A simple algorithm

Computation of the total potential energy P requires
the computation of its components A and B. To com-
pute the image potential energy B according to equa-
tion (3), we must evaluate the image potential field
b(x) for each atom location x = xi. Images are typ-
ically sampled uniformly, and the simplest and most
efficient approximation to b(xi) is the value of the im-
age potential field b(x) at the image sample nearest to
the point xi. More accurate approximations (interpo-
lations) are possible, but we used this simple and fast
nearest-neighbor interpolation in all of the examples
shown here. Equation (3) implies that the cost (the
computational complexity) of computing B is O(n),
where n is the number of atoms.

In contrast, the double sum in equation (1) implies
that the cost of the most straightforward method for

computing A is O(n2). In practical applications, n
is large enough that an O(n2) cost for computing A
would be much greater than the O(n) cost of evaluat-
ing B. To reduce the cost of computing A, we may ex-
ploit our design of the potential function φ(u), which is
zero for normalized distances u greater than the cutoff
distance 3

2
. Only the atoms nearest to an atom located

at position x = xi contribute to the atomic potential
field a(xi) at that position.

This observation leads to the problem of determining
which atom neighbors are within a distance 3

2
d(xi) of

an atom located at x = xi. Solution of this problem
is non-trivial, because atoms move repeatedly during
optimization of the lattice.

For example, if we construct lists of neighboring
atoms, one list for each atom, we must update these
lists (or at least check to see whether they require up-
dating) whenever atoms move. For lattices with near
constant density, the cost of constructing and updat-
ing such lists using simple data structures is O(n).
For variable-density lattices, more complex data struc-
tures are required and the cost becomes O(n log n)
(e.g., [9]).

Our expression of the atomic potential energy A in
terms of the atomic potential field a(x) suggests a sim-
pler solution. We interpret equation (2) as a recipe for
computing an atomic potential field a(x) that is sam-
pled like the image potential field b(x). Specifically,
we represent a(x) with a 2-D (or 3-D) array having
the same dimensions as the array used to represent
the image b(x). We first initialize a(x) to zero for all
x sampled. Then, for each atom located at position
x = xj , we accumulate a sampled potential function
φ[|x − xj |/d(xj)]. This accumulation is limited spa-
tially to samples inside the circle (or sphere) of radius
3
2
d(xj) centered at position xj , where the contribution

of the sampled potential function is non-zero.

Figures 4a and 4b illustrate two such potential func-
tions, for nominal distances d = 4 and d = 8, respec-
tively. Gray levels between black and white correspond
to sampled function values between -0.05 and 0.05, re-
spectively. The atomic potential field a(x) is simply
the accumulation of many such functions.

(a) (b)

Figure 4: The contributions, for nominal distances
(a) 4 and (b) 8, of one atom to a sampled atomic
potential field.

For computational efficiency, we pre-compute and tab-

5

ulate sampled potential functions for different nominal
distances d. Then, given d(x) for any location x, we
determine the appropriate sampled potential function
by table lookup.

Our sampling of an atomic potential field and accu-
mulation of sampled potential functions are similar to
techniques used by others in different contexts. For ex-
ample, Turk and Banks [10] accumulate sampled func-
tions (low-pass-filtered curves) to compute an energy
in their algorithm for optimally placing streamlines in
visual displays of vector fields.

One advantage of using sampled potential functions
is that we need not determine the nearest neighbors
of atoms when computing the total potential energy
and its partial derivatives. In our simplest algorithm,
we use pre-computed tables of potential functions and
equations (2) and (5) to compute the total potential
field p(x). We then use equation (6) to compute the
total potential energy, and equation (10) to compute
its partial derivatives. The following pseudo-code list-
ing describes this algorithm in detail:

Algorithm 1: compute P , ∂P
∂xi

, ∂P
∂yi

, and ∂P
∂zi

initialize total potential field p(x) = βb(x)

for all atom locations xj = x1,x2, . . . ,xn {
for all x such that |x − xj | < 3

2
d(xj) {

accumulate p(x) = p(x) + (1 − β)φ[|x − xj |/d(xj)]

}
}
initialize total potential energy P = 0

for all atom locations xi = x1,x2, . . . ,xn {
accumulate P = P + 1

2
[p(xi) + βb(xi)]

compute ∂P
∂xi

= 1
2
[p(xi + 1, yi, zi) − p(xi − 1, yi, zi)]

compute ∂P
∂yi

= 1
2
[p(xi, yi + 1, zi) − p(xi, yi − 1, zi)]

compute ∂P
∂zi

= 1
2
[p(xi, yi, zi + 1) − p(xi, yi, zi − 1)]

}

The first loop over atom locations accumulates the
contribution of the atomic potential field a(x) to the
total potential field p(x), sampled like the image po-
tential field b(x). From the latter two fields p(x) and
b(x), the second loop over atom locations computes
the total potential energy P and its partial derivatives
∂P
∂xi

, ∂P
∂yi

, and ∂P
∂zi

. In this second loop, we compute

the values of the total potential field and the image
potential field at atom location xi as described above,
by selecting the corresponding field values at the near-
est image sample position. Also in the second loop,
we compute the partial derivatives from the total po-
tential field using simple centered-finite-difference ap-
proximations. For definiteness, this pseudo-code as-
sumes a 3-D coordinate space. For a 2-D space, one
simply ignores the z coordinates and partial deriva-
tives ∂P

∂zi
.

Assuming that atom locations are consistent with the
nominal distance function d(x), the computational
cost of Algorithm 1 is O(N), where N is the num-
ber of samples in the image. Recall that we sample
the total potential field like the image, and that each
atom contributes a spatially limited potential function
(like those in Figures 4) to those samples in the total
potential field that lie nearest to the atom. There-
fore, the cost of accumulating the contributions from
all atoms is proportional to the number of samples N
in the field.

The cost of this algorithm is comparable to that of con-
ventional image processing, and it requires data struc-
tures no more complex than the simple array that rep-
resents the image.

One can easily show that, for constant nominal dis-
tance d, the number of floating point operations (ad-
ditions) required to compute the total potential field is
approximately 8N for 2-D and 20N for 3-D. Further-
more, this cost is roughly the same for non-constant
nominal distance functions d(x).

2.2 Lattice initialization

As noted above, the total potential energy P is a non-
quadratic function of the atom coordinates, with many
local minima. During lattice optimization, we move
atoms iteratively in search of a minimum. In practice,
we neither seek nor find the global minimum. Rather,
we find an optimized lattice of atoms that is close to
an initial lattice. Therefore, we seek an initial lattice
that

• minimizes (locally) the atomic potential energy,

• is highly regular, and

• is consistent with the nominal distance function
d(x).

For constant nominal distance d, we can easily con-
struct an initial lattice with these properties. For ex-
ample, in 3-D, the face-centered-cubic (FCC) lattice
satisfies the criteria listed above for a desirable initial
lattice. For a non-constant nominal distance function
d(x), the initial arrangement of atoms is more difficult.

The first complication is that the function d(x) must
be computed, if not otherwise specified. In some ap-
plications, the nominal distance function d(x) may be
specified explicitly or constructed interactively using
a computer program for painting images. The ac-
tual manner in which the function d(x) is computed is
likely to depend on the application. As stated above,
we require only that this function be smooth; i.e., that
|∇d| � 1.

The second complication is that of arranging atoms in
a lattice consistent with the nominal distance function
d(x). We use the following algorithm for initializing
such a pseudo-regular lattice:

6

Algorithm 2: initialize a lattice

initialize an array of boolean flags w(x) = false

construct an empty list of atoms

construct an empty queue of atom sites

append location xi of the image center to the queue

while the queue is not empty {
get and remove the first site xi from the queue

if xi lies within the coordinate bounds of the image {
set sphere = spherical region

with center xi and diameter γd(xi)

if, for all samples inside the sphere, w(x) = false {
for all samples inside the sphere, set w(x) = true

append an atom with coordinates xi to list

append ideal sites for neighbors to end of queue

}
}

}

The array w(x) is a temporary work array, with di-
mensions equal to those of the image. Its sole purpose
is to mark locations of atoms in the lattice as they are
generated by the algorithm, to ensure that locations
so marked will not be marked again. This array can be
the same as that used to store the total potential field
p(x) in Algorithm 1, so that no additional memory is
required.

To mark the location of an atom, the algorithm sets
the flags w(x) = true within a spherical region, cen-
tered at the atom’s location, with diameter propor-
tional to the value of the nominal distance function
d(x) at that location. The constant of proportional-
ity is the factor γ. By choosing this factor to be less
than one, we permit some atoms in the initial lattice
to be closer together than the nominal distance func-
tion d(x) implies, knowing that other atoms will be
further away. We determined experimentally that the
factor γ = 0.8 yields pseudo-regular lattices consistent
with smooth nominal distance functions d(x).

The ideal sites in Algorithm 2 are the locations of
atom neighbors in a regular (e.g., FCC) lattice. The
ideal distance to any neighbor of an atom located at
x = xi is simply d(xi). Therefore, for constant d, Al-
gorithm 2 yields a regular lattice. For non-constant
d(x), it yields a pseudo-regular lattice.

In any case, the processing of ideal sites placed in the
queue causes the lattice to grow outward from the first
site placed in the queue. Therefore, the first site acts
as a seed from which the lattice is grown. Algorithm 2
chooses that first site to be the center of the image.
Alternative seed locations may be used. For example,
if a mesh for simulation of fluid flow is desired, then
the locations of one or more fluid sources or sinks may
be used to seed the growth of a lattice.

Figure 5 illustrates a nominal distance function d(x)
and the corresponding initial pseudo-regular lattice
computed with Algorithm 2. In this example, the

function d(x) is simply a smoothed, scaled, and biased
version of the image shown in Figure 1. The darkest re-
gions in this figure correspond to a minimum distance
of d = 6 samples, and the lightest regions correspond
to a maximum distance of d = 18 samples. We speci-
fied these minimum and maximum distances explicitly,
based on the level of detail we observed in the image.
Distances d(x) are smallest in the middle-left portion
of the image, and largest in the lower-right portion.
The average distance is approximately 9.7 samples.

Figure 5: A pseudo-regular lattice and nominal dis-
tance function d(x), for the image of Figure 1.

2.3 Lattice optimization

Lattice optimization moves atoms in an initial lattice
to obtain a lattice that minimizes the total potential
energy P . Given the value of the function P , which
depends on the atom coordinates, and the values of
its partial derivatives with respect to each of those
coordinates, any generic function minimizer may be
used to find a minimum. We use the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) mini-
mizer. (See [11]. Note, particularly, the simple two-
loop recursion on page 17.) Like other minimizers, the
L-BFGS method iteratively evaluates a function and
its partial derivatives, in its search for a minimum.

The L-BFGS minimizer requires more computer mem-
ory but fewer function evaluations than the well-
known method of conjugate gradients. However, the
additional memory required is insignificant when com-
pared with the memory required to represent an im-
age. Furthermore, the cost of each function evalua-
tion (computing the lattice total potential energy) is
significantly more costly than the other computations
performed by the minimizer. Therefore, the L-BFGS
minimizer is well-suited to our algorithm for lattice
optimization:

7

Algorithm 3: optimize the lattice

get the initial lattice atom coordinates x1,x2, . . . ,xn

construct a potential energy computer

construct a minimizer

compute the initial lattice total potential energy P

do {
set Po = P

randomly perturb x1,x2, . . . ,xn

do {
set Pi = P

let minimizer decrease P by adjusting x1,x2, . . . ,xn

} while Pi − P > ε|Pi|
} while Po − P > ε|Po|

This algorithm begins with an initial lattice of atoms,
such as the pseudo-regular lattice produced by Algo-
rithm 2. It then constructs a potential energy com-
puter (e.g., Algorithm 1) responsible for computing
the total potential energy P and its partial derivatives.
It then constructs a minimizer, which will use the po-
tential energy computer to minimize P . (Construction
of the potential energy computer and the minimizer
includes allocation of memory and initialization of a
number of variables and tables.) It then computes the
total potential energy P of the initial lattice.

The remainder of the algorithm consists of two nested
loops. The inner loop lets the minimizer adjust the
atom coordinates x1,x2, . . . ,xn to decrease the total
potential energy P . This loop continues until the de-
crease in P becomes insignificant, as determined by
the small threshold ε. A typical threshold is ε = 0.001.

Recall that the total potential energy is a function with
many local minima. The inner loop begins with the
current atom coordinates, and tends toward the mini-
mum nearest to those coordinates. We have observed
that this local minimum may have a total potential
energy larger than that of another minimum nearby.

The outer loop enables the algorithm to move from
one local minimum to another one, until the decrease
in total potential energy P is insignificant. The ran-
dom perturbations of atom coordinates in Algorithm 3
are small, typically no more than 10% of the nomi-
nal distance d(xi), for each atom location xi. We use
a commonplace pseudo-random number generator to
compute these perturbations. Subsequent iterations
of the inner minimization loop typically yield a signif-
icant decrease in total potential energy P .

The inner and outer loops in Algorithm 3 use the same
test for convergence. Both loops terminate when the
decrease in total potential energy P becomes insignif-
icant. Alternative convergence criteria are common-
place in numerical optimization, and our choices here
serve only as examples. For example, one might termi-
nate these loops when the maximum change in atom
coordinates is less than some threshold.

Figures 6 and 7 show the total potential fields p(x) and

atom locations xi for initial and optimized lattices,
respectively. (These lattices correspond to Figures 1
and 5). They demonstrate the movement of atoms into
potential valleys created by adding the image potential
field b(x) to the atomic potential field a(x). Recall
equation (5), which states that the total potential field
p(x) is a weighted sum of atomic and image potential
fields. In this example, we used an image weight β =
0.3.

Figure 6: Total potential field p(x) for an initial
lattice.

Figure 7: Total potential field p(x) for an optimized
lattice.

For images with small or narrow features, it may be
useful to perform the first few iterations of Algorithm 3
using a slightly smoothed version of the image. These

8

first iterations enable atoms to move towards features
that might otherwise be missed, because they are too
far away from initial lattice locations. Atoms are at-
tracted initially to the smoothed features, and then,
in subsequent iterations, to high-resolution features in
the original unsmoothed image.

The mesh shown in Figure 2 is simply the result of
connecting the atoms in the lattice via Delaunay tri-
angulation. After removal of sliver triangles near the
convex hull of the lattice, the mesh is both highly reg-
ular and well-aligned with image features.

3 APPLICATIONS

Recall that a primary goal of this work is to reduce the
effort required to construct meshes suitable for further
computations, such as flow simulation.

3.1 Flow simulation

Figure 8 illustrates this application of image meshing.
Using the algorithms described above, we first aligned
a lattice of atoms with the seismic image. (In this ex-
ample, we used a constant nominal distance d(x) = 8.)
Delaunay triangulation of the atom locations yielded
the mesh shown here.

Then, we automatically selected those edges coinci-
dent with image samples having values below a spec-
ified threshold (here, −0.2). These edges represent
faults and are highlighted in Figure 8.

Finally, assuming the faults to be no-flow boundaries,
and assuming constant isotropic permeability else-
where, we computed a steady-state flow solution for a
source in the upper-left-hand corner and a sink in the
lower-right-hand corner of the image. (To easily han-
dle discontinuities in pressure across faults, we used
a variant of the discontinuous Galerkin method [12].)
The black lines in Figure 8 represent flow vectors; they
are perpendicular to contours of constant pressure,
and have length proportional to the pressure gradient.

Although this example is simple in many ways, it
demonstrates the complexity of fluid flow in a model
with complex boundaries. It also demonstrates the
ease with which faults may be modeled in a space-
filling mesh derived from a seismic image.

Our method for selecting edges is particularly crude,
but the fact that we select them from a space-filling
mesh is significant. For one thing, it ensures that their
intersections are well defined. Edges either intersect
or they do not. Instead of creating topologically con-
sistent boundaries from a collection of independent
curves (in 2-D, or surfaces, in 3-D), and then con-
structing a mesh that conforms to those boundaries,
we simply select the boundaries from the mesh.

Most importantly, this example demonstrates that a
space-filling mesh aligned with image features is a
framework that may enhance subsequent image analy-
ses. The unstructured mesh augments the structured

Figure 8: Flow vectors for a faulted reservoir model
derived from a seismic image.

grid on which the image is sampled. The mesh is both
coarser and more aligned with features of interest than
the image sampling grid, and these properties may be
exploited in future applications.

3.2 3-D image meshing

Although the examples discussed above illustrate 2-
D image meshing, the atomic images method may be
used to mesh 3-D images, such as those commonly
acquired in seismic and medical imaging.

Figure 9 illustrates the application of the method to a
3-D seismic image. The image displayed here is a non-
linear combination of a conventional seismic image and
that same image after processing to enhance faults.
During lattice optimization, atoms are attracted to
both the faults and the more horizontal seismic hori-
zons.

The intersection of three orthogonal slice planes with a
tetrahedral mesh yields a web of triangles and quadri-
laterals, many of which are long and thin. However,
the corresponding tetrahedra are highly regular. (3-
D Delaunay triangulation often yields sliver tetrahe-
dra [13]. Here, we used Joe’s local transformations [14]
to remove those slivers. One might also use such trans-
formations to improve alignment of triangular faces
with image features, although we have not done so
here.) In 3-D, mesh nodes (atoms) have x, y, and z
coordinates, and they rarely lie precisely in any of the
image sampling planes. Here, we show nodes that lie
within one sample distance to those planes.

Each white line in a slice plane represents one trian-
gular face of a tetrahedron intersected by that plane.
Figure 9 suggests that many of these triangles are
aligned with image features. Subsets of contiguous

9

X-Y slice

X-Z sliceY-Z slice

Figure 9: Orthogonal slices from a 3-D tetrahedral mesh that has been aligned with features in a 3-D seismic
image. The nearly vertical features in the 3-D image represent faults. The nearly horizontal features represent
seismic horizons, reflections caused by changes in rock properties. The tetrahedral mesh has been aligned
with both types of features.

10

triangles so aligned represent surfaces, analogous to
the curves represented by subsets of contiguous line
segments in Figure 8. Figure 10 illustrates two such
surfaces, selected from the space-filling mesh using the
simple thresholding test described above. One surface
was selected using the fault-enhanced 3-D seismic im-
age. The other was selected using the conventional
3-D seismic image shown here.

fault

horizon

Figure 10: Two geologic surfaces extracted from
the space-filling tetrahedral mesh of Figure 9.

3.3 Medical image meshing

The atomic images method may also be applied to
medical images, such as that shown in Figure 11. (This
image is freely available from the U.S. National Li-
brary of Medicine’s Visible Human Project.) Before
meshing this image, we used a simple and well-known
Prewitt edge enhancement algorithm to compute the
image potential field (not shown). The resulting mesh,
shown in Figure 12, is well-aligned with edges appar-
ent in the image.

4 CONCLUSION

The task of meshing images differs from that of mesh-
ing geometric (e.g., CAD) models. Boundaries in the
latter are defined precisely, and the goal in meshing is
to preserve those boundaries while filling the space be-
tween them. In contrast, images are noisy, imprecise
representations of something. In an image, features of
interest, or boundaries between them, are often poorly
defined. Indeed, as the examples above illustrate, im-
age meshing itself may be used to define those features
or boundaries.

As we prepared this paper, we learned of recent
work [15] in materials science, in which images of a
material’s microstructure are meshed to create mod-
els for finite-element analysis. While our algorithms

Figure 11: A magnetic resonance image (MRI) of
a human torso.

Figure 12: A mesh of the MRI in Figure 11.

for image meshing differ (as they were developed in-
dependently), our motives are strikingly similar:

Remember that the image is an approximate
representation of the physical system, the
material image is an approximation of the
image, and the generated mesh is an ap-
proximation to the material image. Forcing
the boundary to be well defined and then
approximating the boundary by the bound-
aries of the finite elements just introduces
another level of approximation into the ex-
isting hierarchy. [15]

11

We agree, and add that efficiency, as well as accuracy,
may be gained by meshing images directly.

Our method for meshing images is based on ideas
developed in other contexts. In particular, like Shi-
mada [4], we do not connect mesh nodes (atoms) until
after we have optimized their locations, thereby avoid-
ing the relatively high cost of repeatedly constructing
and destroying those connections. In extending such
ideas to the problem of meshing images, we exploit
the fact that images are uniformly sampled to obtain
a simple and efficient algorithm for optimizing a space-
filling lattice of mesh nodes.

Recently, Shimada and others have extended their
methods to the problems of anisotropic [16] and
quadrilateral [17] meshing. We expect the atomic im-
ages method may be extended likewise.

ACKNOWLEDGMENTS

The author is grateful for the comments of two anony-
mous reviewers, particularly one who highlighted a va-
riety of work related to this. Thanks go also to numer-
ous colleagues at Landmark Graphics for their sug-
gestions, especially Bob Howard for his advice on au-
tomatic surface extraction algorithms, and John Kil-
lough and Bill Watts for insights on flow simulation.

REFERENCES

[1] J. R. Cebral and R. Löhner, “From Medical Im-
ages to CFD Meshes”, Proceedings of the 8th
International Meshing Roundtable, pp. 321–331
(1999).

[2] S. Garrett, S. Griesbach, D. Johnson, D. Jones,
M. Lo, W. Orr, and C. Sword, “Earth Model
Synthesis”, First Break, vol. 15, no. 1, pp. 13–20
(1997).

[3] M. Bern, and D. Eppstein, “Mesh Generation
and Optimal Triangulation”, in Computing in
Euclidean Geometry, D.-Z. Du and F.K. Hwang,
eds., World Scientific (1995).

[4] K. Shimada, “Physically-Based Mesh Generation:
Automated Triangulation of Surfaces and Vol-
umes via Bubble Packing”, Ph.D. thesis, Mas-
sachusetts Institute of Technology (1993).

[5] U. T. Mello, and P. R. Cavalcanti, “A Point Cre-
ation Strategy for Mesh Generation Using Crys-
tal Lattices as Templates”, Proceedings of the 9th
International Meshing Roundtable, pp. 253–261
(2000).

[6] A. P. Witkin, and P. S. Heckbert, “Using particles
to sample and control implicit surfaces”, Com-
puter Graphics Proceedings, Annual Conference
Series, (SIGGRAPH ’94), pp. 269–278 (1994).

[7] M. Kass, A. Witkin, and D. Terzopoulos,
“Snakes: Active Contour Models” International

Journal of Computer Vision, vol. 1, pp. 321–331
(1987).

[8] T. McInerney, and D. Terzopoulos, “Topology
Adaptive Deformable Surfaces for Medical Im-
age Volume Segmentation”, IEEE Transactions
on Medical Imaging, vol. 18, no. 10, pp. 840–850
(1999).

[9] J. L. Bentley, and J. H. Friedman, “Data Struc-
tures for Range Searching”, Computing Surveys,
vol. 11, no. 4, pp. 397–409 (1979).

[10] G. Turk, and D. Banks, “Image-Guided Stream-
line Placement”, Computer Graphics Proceedings,
Annual Conference Series, (SIGGRAPH ’96), pp.
453–460 (1996).

[11] R. H. Byrd, J. Nocedal, and R. B. Schnabel,
“Representations of Quasi-Newton Matrices and
Their Use in Limited Memory Methods”, Tech-
nical Report NAM-03, Northwestern University,
Department of Electrical Engineering and Com-
puter Science, (1996).

[12] J. T. Oden, I. Babuska, and C. E. Baumann,
“A Discontinuous hp Finite Element Method for
Diffusion Problems”, Journal of Computational
Physics, vol. 146, pp. 491–519 (1998).

[13] J. C. Cavendish, D. A. Field, and W. H. Frey,
“An Approach to Automatic Three-Dimensional
Finite Element Mesh Generation”, International
Journal for Numerical Methods in Engineering,
vol. 21, pp. 329–347 (1985).

[14] B. Joe, “Construction of Three-Dimensional
Improved-Quality Triangulations Using Local
Transformations”, SIAM Journal of Scientific
Computing, vol. 6, pp. 1292–1307 (1995).

[15] S. A. Langer, E. R. Fuller, Jr., and W. C. Carter,
“OOF: An Image-Based Finite-Element Analy-
sis of Material Microstructures”, Computing in
Science & Engineering, vol. 3, no. 3, pp. 15–23
(2001).

[16] S. Yamakawa and K. Shimada, “High Quality
Anisotropic Tetrahedral Mesh Generation via El-
lipsoidal Bubble Packing”, Proceedings of the 9th
International Meshing Roundtable, pp. 263–273
(2000).

[17] N. Viswanath, K. Shimada, and T. Itoh, “Quadri-
lateral Meshing with Anisotropy and Directional
Control via Close Packing of Rectangular Cells”,
Proceedings of the 9th International Meshing
Roundtable, pp. 227–238 (2000).

12

