
Chapter 5

Application to 3D Gulf of Mexico

field data

In order to demonstrate the theory and algorithms introduced in previous chapters on

a convincing example, I apply level set inversion to a 3D Gulf of Mexico ocean bottom

node (OBN) data set provided by Shell. I begin this chapter by describing the dataset

and its context, and explore the RTM imagery provided to me for clues related to the

actual earth model. Next, I demonstrate how I identify a subset of nodes to use for my

inversion (based on my own RTM images) to improve computation turnaround. After,

I discuss the necessity of matching amplitudes with the observed data, and discuss

how I modify the objective function by weighting the residuals and incorporate a

kinematic virtual source operator into the gradient calculation. Following, I discuss

the inversion workflow used and the resulting inverted model. To conclude, I show

the improvements in the migrated image that was created using the new (inverted)

velocity model.

DATA SET OVERVIEW

The 3D dataset that I use was acquired in the Gulf of Mexico and provided by

Shell Exploration Inc. using Fairfield Z3000 ocean-bottom nodes (Figure 5.1). The

data was collected in 2010 to improve imaging around the salt by leveraging wide-

azimuth acquisition with ocean bottom node technology. I was provided with the

pressure, horizontal, and vertical components of the data. The field sits in the Garden
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72 CHAPTER 5. APPLICATION TO 3D GULF OF MEXICO FIELD DATA

Banks region about 362km south-west of New Orleans, Louisiana (Figure 5.2) in

approximately 830 m of water, with an airgun shooting footprint covering an area of

about 48x48km. The reservoir itself sits beneath thick layers of salt more than 6 km

below the sea floor, and production began on the field in 2014. In the region near the

salt diapir, the node footprint coverage is just enough to cover the salt (see Figure

5.5). The area of production is centered around a salt protrusion that nearly reaches

the water bottom (Figure 5.3).

Figure 5.1: Fairfield Z3000 ocean
bottom node used to record data.
[NR] chapter5/. Z3000-node

Figure 5.2: Map showing approximate project location in the Garden Banks region
of the Gulf of Mexico. [NR] chapter5/. overview-map

Along with the data, Shell provided a Reverse Time Migration (RTM) image

cube produced from the downgoing pressure data. The approach they used is called

mirror imaging, since all downgoing data recorded on the OBN units (besides the

direct arrival) is a result of the mirror-like reflection of subsurface events o↵ the

ocean surface (Grion et al., 2007). When looking at this mirror-image, one can see

an inclusion in the salt at about 1,700m deep, with an inline position of 214,800m
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Figure 5.3: Oblique view of the salt body that is most prominent in the dataset I
investigate. [NR] chapter5/. cardamom-salt-diagram

and crossline position of 49,600m (see Figures 5.6, 5.7, 5.8). When comparing against

the velocity model provided (Figures 5.9(a), 5.9(b)), one can see that the inclusion

observed was not included in the velocity model. I intend to show that my level set

FWI inversion workflow can help recover a velocity model that takes this inclusion

into account, and correspondingly produces a more accurate RTM image.

OPTIMIZING INCLUSION ILLUMINATION

Because of limited computational resources, I am interested in minimizing the num-

ber of wavefield propagations needed to perform inversion. By taking advantage of

reciprocity between the nodes and sources for the hydrophone component, one can

change the modeling to use node positions for the sources, and shot positions at the

ocean surface as recording locations (Knopo↵ and Gangi, 1959). While this does

assume the signature of shots in the field experiment are consistent with each other,

I find that this assumption is valid, and exploit the advantages of reciprocity in this
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Figure 5.4: Map showing the boundary of the extent of the airgun shooting (green

line) and the OBN positions (black points). [NR] chapter5/. full-acquisition-map
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Figure 5.5: Map showing acquisition geometry in the greater region surrounding the
zone where inversion and imaging were performed (depth slice at 1,800m). Red is the
salt body with approximate inclusion location, black dots are node positions, and grey
dots are shot positions. One easily can see where the boats divert around a production
platform at 211,700m inline position. [NR] chapter5/. salt-acquisition-mapT
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Figure 5.6: Original mirror image RTM provided by Shell; front view. [NR]

chapter5/. original-shell-rtm-FRONT

Figure 5.7: Original mirror image RTM provided by Shell; side view. [NR]

chapter5/. original-shell-rtm-SIDE
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Figure 5.8: Original mirror image RTM provided by Shell; top view. [NR]

chapter5/. original-shell-rtm-TOP

(a) (b)

Figure 5.9: Velocity model used for migration with 10m grid spac-
ing. Figure (b) at 1,700m deep; Figure (a) at inline position 214,800m.

chapter5/. migvel-top,migvel-side
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dataset.

While I limit the propagation domain to a ⇠7.5x7.5km region centered around

the inclusion, I ignore nodes that do not readily contribute to illumination in the

inclusion area of interest (AOI) (Figures 5.10 and 5.11). I do this by performing

RTM with all the nodes and shots in my model domain, and use the downgoing

component of the hydrophone data. Next, I select with a masking function the AOI

(in our case, immediately around the salt inclusion). After, I cross-correlate the RTM

image produced by each node-gather with the area of interest from the full-stack RTM

image. This gives me information about which nodes correlate most strongly with

the full-stack image. I then sort the RTM node-gather images by this correlation

statistic, and select those that have the highest correlation while ignoring those that

do not.

Figure 5.10: Area of interest (cyan) used in cross-correlation overlaid on full-stack

mirror RTM image. Slice at depth 1,770m. chapter5/. ideal-aoi-top

By comparing the RTM images using higher numbers of nodes (Figures 5.12,
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Figure 5.11: Area of interest (cyan) used in cross-correlation overlaid on full-stack

mirror RTM image. Slice at inline position 214,800m. chapter5/. ideal-aoi-side
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5.13, 5.16, 5.17) with those using fewer nodes (Figures 5.14, 5.18, 5.15, 5.19), it

is easy to see how image quality decreases as nodes are removed. The goal is to

choose the lowest number of nodes that still correspond to a reasonably good RTM

image. I ultimately chose to use the node subset that comprises the top 35 percent of

(positively correlated) illumination contribution to the region around the inclusion,

which amounts to 78 of the 288 original nodes being used.

Figure 5.12: RTM image from stacking top 50 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-50

PHASE ONLY OBJECTIVE FUNCTION AND ITS

IMPLICATIONS

Convergence using the level set objective function as I have formulated it will be

partly determined by the ability of the modeling operator to match the phase and

amplitudes in the observed data. The Green’s function of the earth produces an elastic

response, but the modeling operator I use assumes an acoustic response. I chose to

model acoustically to avoid the added computational expense of modeling elastic

waves. This means that my operator will have di�culty matching the amplitudes
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Figure 5.13: RTM image from stacking top 35 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-35

Figure 5.14: RTM image from stacking top 25 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-25
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Figure 5.15: RTM image from stacking top 15 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-15

Figure 5.16: RTM image from stacking top 50 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-50
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Figure 5.17: RTM image from stacking top 35 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-35

Figure 5.18: RTM image from stacking top 25 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-25
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Figure 5.19: RTM image from stacking top 15 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-15

found in the observed data, even if I have the exact earth model.

For this reason, I modify the objective function to make it agnostic to amplitude

information and become primarily based on minimizing kinematic errors. I follow

the work done in Shen (2010) and adopt an objective function ( ) that includes

trace-by-trace normalization of the data:
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where rd is the normalized residual, m is the velocity model, dobs is the field data,

F (m, s, g) is the acoustic modeling operator, and s and r are the shot and receiver

indices respectively. I take the derivative of this new objective function to find a new

gradient calculation:
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I represent this as a series of operators:

JT
f (m) = BT P T rd(s, g), (5.5)

where B is the born operator, and P is a new operator to account for the modifi-

cations made to the objective function. For this reason, the Gauss-Newton Hessian

computation is also altered to account for P :

HGN = PBBT P T . (5.6)

INVERSION IMPLEMENTATION

Using the nodes selected as described in the previous section, I ran an inversion

using a starting velocity model very similar to the smooth one used in migration

(Figures 5.20(a), 5.20(b)). This model extends into negative depth (above the water

surface) since mirror wave propagation was used in the inversion. The algorithm

used alternates between updating the salt boundary (level set) and the background

velocity for each non-linear (outer-loop) iteration. Within each outer-loop iteration is

an iterative inversion to find the search direction in either the level set or background

velocity space using the Gauss-Newton Hessian. After this, a line search finds the

optimal scaling parameter to apply to the search direction and then update the model.

The full workflow used is described in Algorithm 2. For the data itself, I performed

designature of the hydrophone and vertical components, PZ-summation to create

the downgoing separated data, and a shaping filter to remove the bubble. These

pre-processing steps are described in detail in Appendix A and B.

Since the RTM images I created (Figures 5.10, 5.11) and those from Shell (Figures
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(a)

(b)

Figure 5.20: Inversion starting velocity model side view (a) and top view (b).

chapter5/. initvel-side,initvel-top
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5.6, 5.7,5.8) agree on the presence of some kind of inclusion in the salt, I begin the

inversion by preferentially initializing the implicit surface in the region where I believe

it to be (Figures 5.21, 5.23). For the first non-linear iteration, I also use guidance to

extend the gradient footprint as described in chapter 4 (see Figure 5.24(a)). Because

of this guidance, the first inversion iteration is capable of pushing the implicit surface

value below zero to create a level set marking the inclusion. However, for following

iterations, I do not use interpreter guidance to extend the gradient. In the case where

an inclusion takes shape because of the first update, then the standard level set

gradient is active around the inclusion edge and is su�cient to adjust it. In following

iterations, the gradient can close or open the inclusion further without the need for

an extended gradient (see Figure 5.24(b)). It is only the first iteration where that

extension is necessary. In the case where the first update does not begin an inclusion,

I assume that the data does not support the existence of one after all.

Because the nodes chosen for inversion are focused on illuminating the inclusion

area, I limit the extent of the level set updating to the inclusion area of interest

(see Figure 5.22). By doing this, I reduce spurious updating of the salt boundary

in regions that receive poor illumination by the chosen acquisition geometry, which

would likely be driven by artifacts in the gradient.

After running this alternating inversion algorithm for 35 iterations, I find that an

inclusion was created in the model, and that the background velocity model (which

includes the inclusion velocity) has been updated in a manner that is more geologically

consistent (Figures 5.25, 5.26). Taking the di↵erence between the beginning and

final models gives a better view of the updates made, highlighting a shift in the

ocean bottom interface, and adding some higher velocity zones near the top of salt

(Figures 5.27, 5.28). By looking at the di↵erence between the starting and final

background velocity model, we can see that the inclusion velocity has decreased about

130[m/s] (from a starting guess velocity of 4250[m/s]) (Figures 5.29, 5.30). The

objective function value shows a steady decrease over non-linear iterations, with the

predominant decreases occurring from updates in the background velocity, which have

a more significant impact on events in the data space (compare Figure 5.31 and 5.32).

In order to validate an actual improvement in the velocity model, I perform RTM

on both the initial model (unsmoothed) and the final model after inversion and com-

pare the two images. The area where one would expect to see the inclusion make the
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Figure 5.21: Initial implicit surface (214,800m inline position).

chapter5/. phi-side-it-0

Figure 5.22: Implicit surface after 35 iterations of inversion (214,800m inline position).

chapter5/. phi-side-it-35
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Figure 5.23: Initial implicit surface (1,700m depth position). chapter5/. phi-top-it-0



90 CHAPTER 5. APPLICATION TO 3D GULF OF MEXICO FIELD DATA

(a)

(b)

Figure 5.24: Masking used for first level set iteration (a) and for second level set
iteration (b). Masking in (a) is based o↵ of �(�), while masking in (b) is based o↵ of

�(�, G). chapter5/. saltmask-side-it-0,saltmask-side-it-2
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Algorithm 2 Alternating Gauss-Newton Hessian updating algorithm
1: procedure LevelSetInversion-order2( dobs,�0,b0 )
2: for i in (1,N) do
3: dsyn(i) = F(�i, bi�1)
4: 4di = dobs � dsyn(i)
5: gi = DT BT4di

6: if EvenNumberedIteration then
7: 4�i = CGGNHessianInvSalt(gi)
8: 4�i = D(4�i)
9: 4bi = 0

10: ↵ = linesearch(4�i)
11: � = 0
12: else
13: 4�i = 0
14: 4bi = CGGNHessianInvBack(gi)
15: ↵ = 0
16: � = linesearch(4bi)
17: end if
18: �i = �i�1 � ↵ ·4�i

19: bi = bi�1 � � ·4bi

20: end for
21: Return m(�N, bN)
22: end procedure
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Figure 5.25: Velocity model after 35 iterations (214,800m inline position).

chapter5/. velmodel-side-it-35
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Figure 5.26: Velocity model after 35 iterations (1,700m depth position).

chapter5/. velmodel-top-it-35
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Figure 5.27: Full velocity model di↵erence between model at 35 iterations and starting
model (214,800m inline position). chapter5/. velmodel-di↵-side-35
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Figure 5.28: Full velocity model di↵erence between model at 35 iterations and starting
model (1,700m depth position). chapter5/. velmodel-di↵-top-35
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Figure 5.29: Background velocity model di↵erence between model at 35 iterations
and starting model (1,700m depth position). chapter5/. velback-di↵-top-35
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Figure 5.30: Background velocity model di↵erence between model at 35 iterations
and starting model (214,800m inline position). chapter5/. velback-di↵-side-35
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Figure 5.31: Objective function over non-linear (outer-loop) iterations.

chapter5/. inv-full-objfunc

Figure 5.32: Contribution of level set updating to the objective function decrease over
non-linear (outer-loop) iterations. chapter5/. inv-salt-objfunc
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most di↵erence would be the area directly below it. I find that coherency of some of

the sediment layers is improved in the region where they meet the salt flank (compare

Figures 5.34(a) and 5.34(b)). In order to determine how much influence the inclusion

alone has on the image, I performed RTM with a model using the salt and inclusion

updates, but with the original background velocity for areas outside the salt (Figure

5.35). I find that the image coherency is still improved on a number of reflectors

below the inclusion. None of this level of detail is present in the original Shell RTM

image (Figure 5.36). Similar improvements in the RTM image can be found below the

inclusion at inline position 214,950m (compare Figures 5.38(a), 5.38(b), and 5.39).

Figure 5.33: Di↵erence between final velocity model and starting velocity model
(214,800m inline position). chapter5/. inc-zone-vel-di↵-214800
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(a)

(b)

Figure 5.34: Migrated RTM image in inclusion zone at 214,800m inline position
using starting velocity model (a) and with velocity model after 35 iterations (b).

chapter5/. inc-zone-before-214800,inc-zone-after-214800
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Figure 5.35: Migrated RTM image in inclusion zone using final salt model after
35 iterations (214,800m inline position), but using the original background velocity.

chapter5/. inc-zone-after2-214800
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Figure 5.36: Migrated RTM image in inclusion zone provided by Shell (214,800m

inline position). chapter5/. inc-zone-shell-214800
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Figure 5.37: Di↵erence between final velocity model and starting velocity model
(214,950m inline position). chapter5/. inc-zone-vel-di↵-214950

The area above the salt diapir is mostly improved by the background velocity

model updating, but also seems to show a fault feature (see Figure 5.42(b)) that is

not evident in the Shell RTM (Figure 5.41) or in the initial RTM image that I created

(Figure 5.42(a)). A fault at this position could be produced from the upward stresses

created by the salt diapir below.

CONCLUSIONS

In order to evaluate the e↵ectiveness of shape optimization with level sets on a in-

dustry level data, I applied my method on a Gulf of Mexico OBN dataset from Shell.

The data suggests an inclusion in the salt model, which makes it an ideal example

for demonstrating the e↵ectiveness of interpreter guidance as well. By intelligently

selecting nodes that most e↵ectively illuminate the inclusion area, I can temper the

computational expense of the inversion. I explain how the phase-only objective func-

tion can alleviate the problems arising from amplitude di↵erences between the field

data and acoustically modeled data. I then invert for the level set shape and back-

ground velocity model using a Gauss-Newton Hessian inversion algorithm, and find
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(a)

(b)

Figure 5.38: Migrated RTM image in inclusion zone at 214,950m inline position
using starting velocity model (a) and with velocity model after 35 iterations (b).

chapter5/. inc-zone-before-214950,inc-zone-after-214950
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Figure 5.39: Migrated RTM image in inclusion zone using final salt model after
35 iterations (214,950m inline position), but using the original background velocity.

chapter5/. inc-zone-after2-214950
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Figure 5.40: Di↵erence between final velocity model and starting velocity model
(214,820m inline position). chapter5/. top-zone-vel-di↵-214820

Figure 5.41: Migrated RTM image in top of salt zone provided by Shell (214,820m

inline position). chapter5/. top-zone-shell-214820
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(a)

(b)

Figure 5.42: Migrated RTM image in top of salt zone at 214,820m inline position
using starting velocity model (a) and using velocity model after 35 iterations (b). (A)
is the position of an artifact visible in Figure 5.42(a). (B) is the position of a potential

fault, visible in (b). chapter5/. top-zone-before-214820,top-zone-after-214820
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that it recovers an inclusion shape consistent with the RTM images. When I repeat

the RTM images using the new velocity model, I find that I gain more coherency in

the sediment layers directly below the inclusion that terminate against the salt flank,

as well as other improvements near the top of salt and elsewhere. This demonstrates

the e�cacy of the method for application to field datasets.


