
Chapter 3

Radial basis functions for model

sparsity

In the previous chapter, I reviewed the advantages of using the inverse Hessian to

improve the search direction used in the FWI problem. In this chapter, I first dis-

cuss how re-parameterizing the implicit surface to a sparse domain with Radial Basis

Functions (RBFs) may improve the theoretical convergence rate of the Hessian inver-

sion. Next, I demonstrate how RBFs can give a satisfactory representation of a dense

implicit surface when suitable parameters are chosen. Last, I give a comparison of

level set inversions showcasing the improved convergence rate that is gained by using

RBFs.

MOTIVATION

Any uniform increase in the 3D model size increases the number of model parameters

by O(nxnynz). When using a Newton method as described in equation 2.18, we

make use of a Hessian that (in matrix form) has (nxnynz)2 elements. As the model

expands to 3D, this quickly becomes intractable to store in memory or even on disk.

In practice, we overwhelmingly prefer to solve the inverse Hessian system (equation

2.18) using the conjugate gradient method, which only requires forward applications

of the Hessian operator (in our case, the Gauss-Newton Hessian). Regardless, the

upper limit of the number of iterations needed to converge fully using the conjugate-

gradient method is inversely proportional to the number of model parameters (Aster

41

42 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

et al., 2013). As such, our desire to improve the rate of convergence when solving

the Newton system motivates us to reduce the number of model parameters in some

manner.

For 3D seismic wave propagation, the coarseness of spatial sampling is based

on constraints imposed by the numerical dispersion and numerical stability inherent

in our finite di↵erencing scheme. For the purpose of wave modeling, our spatial

resolution will generally be higher than the features we can robustly resolve from the

data. We can typically use uniform down-sampling methods on the update gradient

to create a smaller model space without significantly a↵ecting our end results (Cox

and Verschuur, 2001). One of the disadvantages of using down-sampling to reduce

the model space is that it uniformly reduces resolution. This runs counter to our

interest in having high resolution in specific areas of interest, like the salt boundaries.

For this reason, any application of down-sampling usually gives less than satisfactory

results for inversion resolution.

In the level set problem, we are most interested in areas around and within the

salt boundaries. The implicit surface tracking our salt boundary doesn’t need to be

represented by a fine grid across the whole domain like the one used for wave propa-

gation. However, aggressive down-sampling schemes will quickly start to deteriorate

the information that we wish to keep. What is needed is a method that allows the

flexibility of spatially varying resolution.

RADIAL BASIS FUNCTION IMPLEMENTATION

One way to achieve model space reduction is with a basis function that lets us use

fewer model parameters to describe a larger spatial area. Radial basis functions

are a simple and e↵ective kernel to use. We can separately scale and then sum an

aggregation of RBFs to approximate a dense implicit surface, with the approximation

accuracy related to the shape of the RBF kernel and the number of RBF kernels

used. Kadu et al. (2017a) propose an implementation like this which replaces a dense

Cartesian grid parametrization of the implicit surface � with a surface described as

an aggregate of evenly spaced RBFs:

43

�(�; ✏) =
N�X

i

�i exp�(✏r)2 . (3.1)

In this formulation, � is the new (sparse) model parameter vector, N� is the length

of �, r is radial distance from the ith RBF center, and ✏ controls the sharpness of the

RBF taper (constant for all i). In their approach, Kadu et al. (2017a) chose a uniform

distance between each RBF center location beforehand based on the resolution they

desired.

However, there are only a few areas where one really wants high resolution (namely,

the salt edge where we expect boundary movement). The resolution achieved with

the sparse parametrization is primarily based on how many RBFs are used to describe

a particular area (RBF density). Because the salt evolves from an initial boundary,

the further from this initial boundary a model region is, the less likely that it will

be updated, which means low RBF density can be justified. On the other hand,

regions close to the current salt boundary are more likely to update, justifying higher

RBF density. Therefore, I introduce the idea of spatially varying the density of the

RBF centers to represent the implicit surface in a sparse fashion (as shown in Figure

3.1). This allows clustering the center locations of the RBFs in areas I expect to see

updating occur, while using a lower density in regions where I don’t expect updating

(see Figure 3.2). This is a more e�cient way to distribute RBF positions, resulting

in fewer RBF parameters needed to attain high resolution around the salt boundary

than if I used the regular RBF spacing described in Kadu et al. (2017a).

For the new representation of � described in equation 3.1, the operator D must

be modified to account for the additional linear transformation:

D =
h

@m(�o,bo)
@�

@�
@�

@m(�o,bo)
@b

i

=
h
e�(�o)(cs � b) exp�(✏r)2 I� eH(�o)

i
. (3.2)

In this formulation, eH is the Heaviside approximation (equation 2.12), I is the identity

matrix, e� is the derivative of eH, r is radial distance from an RBF center, b is the

background velocity (b0 is fixed), � is the implicit surface (�0 is fixed), and cs is the

constant salt velocity. Further, the model space has also changed:

44 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

Figure 3.1: The probability distribution used to randomly position the radial basis
function centers in Figure 3.2. [ER] chapter3/. centers-dist

Figure 3.2: Center positions for radial basis functions used to construct the implicit
surface. [ER] chapter3/. centers

45

4p =

"
4�

4b

#
.

When I apply the operator D or DT, I consider the locations of the RBF centers to

be fixed throughout the inversion (for example, as shown in Figure 3.2).

Computational considerations

The forward application of the D operator derived earlier now includes a exp�(✏r)2

term. This means that for each element �i in the model vector, I scale and sum

a Gaussian function to the aggregated surface, �. If I compute exp�(✏r)2 over the

full model, then the D operator becomes expensive to apply on a large 3D spatial

domain, since the algorithm would loop over the full model space for each RBF. One

observation that I leverage is that the value of the radial basis function decreases

significantly at high values of r. Furthermore, I scale and sum the same Gaussian

each time (✏ is fixed). Based on this, I pre-compute the radial basis function exp�(✏r)2

just once over a region where its value is actually significant. Naturally, the size of

this region is based on the taper of the RBF, which is governed by ✏. By choosing

✏ well, and then pre-computing the corresponding Gaussian function over a limited

region, the RBF summation computation is greatly simplified, and increases the speed

of applying D or DT significantly.

EXAMPLES OF RBF FITTING

In order to show how RBFs can accurately represent a salt body with far fewer

parameters than a dense representation, I demonstrate their use on a Gulf of Mexico

velocity model provided by Shell. I choose a section of the velocity model that has a

notable salt protrusion in it as an example (Figure 3.3). Beginning with this model,

I build a probability density map that favors placing RBF centers near the original

picked boundary (Figure 3.1), with less likelihood further from that boundary. From

this, I generate random RBF positions (Figure 3.2). Using these RBF centers, I then

perform a non-linear conjugate gradient inversion to find the proper weighting of the

46 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

RBF kernels in order to best fit the starting model salt shape (Figure 3.4(b)), which

is built from an initial implicit surface (Figure 3.4(a)). The inversion finds sparse

parameters that create a new implicit surface (Figure 3.5(a)), which looks di↵erent

from the one used to build the fitting model (Figure 3.4(a)). However, when I apply

the Heaviside function to either of these to create the salt, we can see that the sparse

parameters create a model with a good fit (compare Figures 3.4(b) and 3.5(b)). The

inversion converges relatively quickly (Figure 3.6), but naturally has some unresolved

residual since the RBF parametrization is sparse and cannot match the dense salt

model guess perfectly (see Figure 3.7(a)).

Figure 3.3: Salt model used by Shell (white) overlaid on the corresponding RTM

image. [ER] chapter3/. both

Figure 3.7(a) shows that the matching model and the resulting inverted model

after Heaviside function application are quite similar. However, if we choose ✏ and

the corresponding RBF footprint poorly, we wont be able to represent the original

salt model as well as we could. When ✏ is too high, the RBF decays quickly, resulting

in a model that is less smooth. Alternatively, when ✏ is too low, the RBF decays

slowly and creates a model that is too smooth. Figure 3.7(b) shows a case where

these parameters were chosen poorly, while Figure 3.7(a) does a much better job in

47

(a)

(b)

Figure 3.4: a) Implicit surface �o that creates the salt body shape (b) that my
inversion tries to match. b) is the result of applying the Heaviside function to �o.

chapter3/. matching-phi,matching-phi-Heavi

48 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

(a)

(b)

Figure 3.5: a) Implicit surface �final created from final inverted RBF parame-
ters (�final = D�final); b) the result of applying the Heaviside function to �final.

chapter3/. resulting-phi,resulting-phi-Heavi

49

both the salt center region as well as the boundary.

Figure 3.6: Log of normalized objective function from the non-linear inversion
used to find the RBF parameters used in Figures 3.5(a), 3.5(b) and 3.7(a). [ER]

chapter3/. objfunc

COMPARISON OF SPARSE (RBF) AND DENSE MODEL

INVERSIONS

In order to illustrate the improved rate of convergence gained by using a sparse

RBF model, I demonstrate on a 2D synthetic inversion example. The goal here is

to show how RBFs a↵ect the greater shape optimization problem by comparing the

inversion convergence rates between a sparse RBF parametrization and a dense non-

RBF parametrization.

I choose a ‘true’ model similar to Figure 3.3 that I wish to invert for (Figure

3.8) that has an inclusion close to the edge. This model is chosen to show how the

RBF inversion can invert for a more unusual model geometry. I begin with a model

containing a much smaller inclusion (Figure 3.9). Just as in chapter two (Algorithm

1), the inversion workflow has an outer loop where I do non-linear modeling to find the

50 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

(a)

(b)

Figure 3.7: Di↵erences between original salt model and the resulting model produced
by the RBF representation. (a) shows di↵erence of fitted salt model using ✏ = 0.25
value, while (b) shows di↵erence of fitted salt model using ✏ = 2.25 value. Both cases
used 98% fewer model parameters than the original full-grid scheme, and both used
the same RBF positions. Background velocity is 2.5 km/s and salt velocity is 4.5

km/s. [ER] chapter3/. rbfinv-di↵-full,rbfinv-di↵-sparse

51

Figure 3.8: True velocity model that was used to synthetically generate the ‘observed’
data. [ER] chapter3/. true-model-rbf-inversion

Figure 3.9: Starting velocity model. Note the inclusion is much smaller than in the
true model (Figure 3.8). [ER] chapter3/. start-model-rbf-inversion

52 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

residual and use the adjoint Born operator to find the gradient. However, following

this I now have an inner loop using iterative methods to invert the Hessian and find

the search direction from the gradient (solving equation 2.18), before performing the

linesearch. In these examples, the inner loop uses a Gauss-Newton Hessian, and I

compare using a dense model (no RBF parametrization) to using a sparse model (with

RBF parametrization). The RBF model has only 7% of the model points that the

dense model has. I perform the same number of iterations (20) for each inner-loop

linear inversion of the Gauss-Newton Hessian using a conjugate gradient solver. For

the first Hessian inversion, the sparse RBF parameterization (Figure 3.10) converges

faster than the dense model example (Figure 3.11). Note that the objective function

curves become negative since I use a conjugate gradient (CG) solver based on equation

3.3:

min (4m) =
1

2
4mTH4m� gT4m, (3.3)

instead of a conjugate gradient least-squares (CGLS) solver (based on equation 3.4):

min (4m) =
1

2
||H4m� g||22. (3.4)

Because the Hessian is a symmetric operator, I can take advantage of using the CG

solver instead of the more expensive CGLS solver. However, the residual is not

squared as in CGLS, so the objective function can take negative values.

I find that after 14 outer loop (non-linear) iterations the sparse (RBF) inversion

converges, while the dense (non-RBF) inversion objective function is still descending

after 40 iterations (Figure 3.12). The normalized model norm for the sparse inver-

sion also reaches a lower value (Figure 3.13), while the non-RBF inversion actually

increases instead. By representing the dense model sparsely with RBFs, I reduce the

number of parameters as well as create a smoother equivalent update in the dense

model space (with smoothness based on the ✏ used). In this sense, the RBFs act some-

what like a regularization. Both these factors contribute to the improved convergence

rate that I find when using RBFs in the inversion. When comparing the inverted

model results of each parametrization, one can clearly see that the RBF approach

(Figure 3.14) provides a superior result to the dense model space parametrization

(Figure 3.15).

53

Figure 3.10: Objective function from the first inner-loop Gauss Newton inversion of
the sparse (RBF) model system. [CR] chapter3/. GNinversion-rbf-objfunc-0

Figure 3.11: Objective function from the first inner-loop Gauss Newton inversion of
the dense (non-RBF) model system. [CR] chapter3/. GNinversion-norbf-objfunc-0

54 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

Figure 3.12: Objective function (data norm) comparison of the outer-loop in-
version for RBF and non-RBF parameterized model approaches. [CR]

chapter3/. RBF-vs-noRBF-dataNorm

Figure 3.13: Model norm comparison of the outer-loop inversion
for RBF and non-RBF parameterized model approaches. [CR]

chapter3/. RBF-vs-noRBF-modelNorm

55

Figure 3.14: Velocity model after 30 outer loop (non-linear) iterations using RBF

parametrization. chapter3/. model-30-RBF-inversion

Figure 3.15: Velocity model after 30 outer loop (non-linear) iterations without RBF

parametrization. chapter3/. model-30-noRBF-inversion

56 CHAPTER 3. RADIAL BASIS FUNCTIONS FOR MODEL SPARSITY

CONCLUSIONS

The speed at which one can invert the Hessian system and find the search direction

is sensitive to the number of parameters in the model, and using 3D spatial models

requires a large number of model parameters for wave propagation. However, I can

sparsely represent this dense model using radial basis functions to achieve significant

parameter reduction. I show that this representation allows me to accurately depict

the dense model, and that steps can be taken to make this transform computationally

e�cient. Finally, when I compare inversions using a sparse representation (RBFs)

versus a dense representation, I find that the sparse model inversion provides a better

outcome and a faster convergence rate.

