
Chapter 2

Level sets and shape optimization

In the previous chapter I reviewed the problems with modeling salt and how level sets

are an ideal tool for addressing some of those challenges. In this chapter I explain the

basics of level sets and how they apply to the shape optimization problem of finding

a salt boundary that minimizes the FWI objective function. I derive the gradient and

demonstrate updating on a simple 2D model. Last, I derive the Hessian equations

and demonstrate updating on 2D models with a comparison between the full Hessian

and the Gauss-Newton Hessian approaches.

LEVEL SETS AS A TOOL

Basic definitions

A level set is a contour of a higher dimensional surface, �. One can use the level set as

an elegant tool for keeping track of boundaries as they change form. If one considers

a 2D level set being the contour of a 3D implicit surface, then the spatial domain of

the 2D level set can be defined as ⇥ ⇢ R2 with elements � 2 ⇥. A salt body ⌦ is

simply a subset of the 2D domain (⌦ ⇢ ⇥) such that:

⌦ = {� | �(�, ⌧) > 0},

where ⌧ indicates the ‘time’ axis along which the evolution steps progress (⌧ = 0 is

the initial iteration). As such, for a single updating step (along ⌧), our current salt

body ⌦ evolves to ⌦
0
. I further define the boundary of the salt body as � (see Figure

11

12 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

2.1), such that:

� = {� | �(�, ⌧) = 0}.

I define a point along the boundary curve to be:

�� 2 �.

With this definition of the boundary points, the level set of � that represents the salt

body boundary can be described as:

�(��, ⌧) = 0.

While this derivation uses a 2D salt model for simplicity, a 3D salt body would instead

have a four-dimensional implicit surface.

Figure 2.1: Diagram explaining the salt body domain (⌦), the � values inside and

outside of the salt, and the salt boundary (�). [NR] chapter2/. levelset-domain

Shape optimization derivation

With a clear understanding of level sets being established, the first step of the shape

optimization derivation is to define the objective function we wish to minimize. I

choose a variation of the FWI objective function

 (p) =
1

2
||F(m(p))� dobs||22, (2.1)

13

Here F is the forward acoustic wave propagator which includes a source function, wave

propagation, and sampling based on a receiver geometry. Our seismic velocity model

is m, and dobs is the observed pressure data. I deviate from the traditional FWI

objective function by parameterizing m in terms of p. Here I define p = [� b]T ,

with � as the implicit surface function and b as the background velocity function,

both varying across the full spatial domain ⇥. In this section, I intend to take the

derivative of equation 2.1 with respect to the underlying parameters b and �. Since

the chain rule applies, I first take the derivative with respect to m and then p. I start

by expanding our definition of the objective function:

 (p) =
1

2
||F(m(p))� dobs||22 (2.2)

=
1

2
(F(m(p))� dobs)

T (F(m(p))� dobs) (2.3)

=
1

2
(F(m(p))TF(m(p))� 2F(m(p))Tdobs + dobs

Tdobs), (2.4)

I then take the first derivative:

d

dp
=

dm(p)

dp

T dF(m(p))T

dm
F(m(p))� dm(p)

dp

T dF(m(p))T

dm
dobs (2.5)

=
dm(p)

dp

T dF(m(p))T

dm
(F(m(p))� dobs) (2.6)

=
dm(p)

dp

T

BT (F(m(p))� dobs). (2.7)

Here one recognizes dF(m(p))T

dm as the familiar adjoint Born operator (BT) used in

standard FWI (Virieux and Operto (2009)). However, we must continue to expand

our gradient to be defined in terms of our underlying parameters b and � (contained

in vector p). This requires us to state our model space clearly:

m(p) = m(�,b) = H(�)(csalt � b) + b, (2.8)

where H(�) is the Heaviside function. Because I assume a homogeneous salt body,

csalt is a constant salt-velocity vector, typically about 4500m/s. Figure 2.2 explains

this equation as the sum of a salt overlay created from � with the background velocity

model b. Note that the background velocity (shown in Figure 2.2c) is defined even

14 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

in the region under the salt footprint. That way if the salt shrinks to a smaller size

or otherwise retracts inward, the background velocity is already defined and does not

need to be interpolated.

(c)(b)(a)

Figure 2.2: a) Full velocity model. b) Salt overlay. c) Background velocity. [NR]

chapter2/. model-components

I expand the definition in equation 2.8 with a Taylor series as:

m1 = m0 +
@m

@�

���
m0

4� +
@m

@b

���
m0

4b + (2.9)

This approximation is only valid when the Taylor series converges with the addition

of increasingly higher order terms. For the Heaviside function, this is not the case,

since the function is not di↵erentiable in its original form. For this reason, I use a

smoothed approximation of the Heaviside function, such as:

eH(�) =
1

2


1 +

2

⇡
arctan(

⇡�

✏
)

�
. (2.10)

An advantage of using equation 2.10 as a Heaviside approximation is that the deriva-

tive is non-zero everywhere. One downside is that the support of the function is

infinite, and it will only approach +1 or 0 at + inf or � inf. Further, the derivative of

this function is very high near the zero crossing point. Kadu et al. (2017b) introduces

an alternate approximation that has compact support in the region surrounding the

zero-crossing:

15

eH✏(�) =

8
>>><

>>>:

0 if � < �✏,
1
2

⇥
1 + �

✏ + 1
⇡ sin

�
⇡�
✏

�⇤
if � ✏  �  ✏,

1 if � > ✏.

(2.11)

Besides being able to capture +1 and 0 values exactly, the derivative of this approx-

imation varies much less (see curves in Figure 2.3) and better balances weighting to

the full boundary region when applying level set updates. By substituting this for-

mulation of the Heaviside function in equation 2.8, I can now truncate the series in

equation 2.9 and ignore higher order terms. This creates a linear approximation for

the perturbation of the velocity model m with respect to � and b:

4m ⇡ @m(�o,bo)

@�
4� +

@m(�o, bo)

@b
4b. (2.12)

Figure 2.3: Curves of Heaviside approximations based on equation 2.11 for
varying values of ✏, and true Heaviside function (red). Note that within
{�✏, ✏}, the slope of each curve (its derivative) is relatively constant. [ER]

chapter2/. heaviside-approx-chart

16 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

This can be written as a matrix operation:

4m ⇡
h

@m(�o,bo)
@�

@m(�o,bo)
@b

i "
4�

4b

#

4m ⇡
h

@m(�o,bo)
@�

@m(�o,bo)
@b

i
4p,

where I define operator D as:

D =
h

@m(�o,bo)
@�

@m(�o,bo)
@b

i

=
h
e�(�o)(csalt � bo) I� eH✏(�o)

i
. (2.13)

Here, fH✏ is the Heaviside approximation (equation 2.11), I is the identity matrix, e�
is the derivative of fH✏, b is the background velocity (b0 is fixed), � is the implicit

surface (�0 is fixed), and csalt is the constant salt velocity. Its functional form, e�(·)
approximates an impulse function at � = 0, and its application acts as a selector for

the salt boundary. Because of this, the operator D ultimately scales and masks the

parameter fields 4� and 4b.

This new approximation of the perturbation can be combined in our velocity

model with equation 2.7 to get:

d

dp
=

dm(p)

dp

T

BT (F(m(p))� dobs) (2.14)

⇡ DTBT (F(m(p))� dobs) (2.15)

⇡ DTBT 4d. (2.16)

SIMPLE 2D SYNTHETIC MODEL DEMONSTRATION

In order to demonstrate first order (gradient) updating on � (assuming b is constant

for simplicity), I apply the inversion workflow shown in Algorithm 1 on a 2D circular

salt model example (Figure 2.8(a)), with an outward normal perturbation (the initial

salt is larger than the true model). This creates an error in the modeled data (Figure

2.4(a)) and thus a data space residual (Figure 2.4(b)). Note that these figures show

17

the top and bottom salt events between about 1.7-2.5 seconds.

Algorithm 1 Steepest descent updating algorithm
1: procedure LevelSetInversion-order1(dobs,�0)
2: for i in (1,N) do
3: dsyn(i) = F(�i�1)
4: residual(i) = dobs � dsyn(i)
5: gradient(i) = DT BT residual(i)
6: ↵ = linesearch(gradient(i))
7: �i = �i�1 � ↵ · gradient(i)
8: end for
9: Return m(�N)

10: end procedure

(a) (b)

Figure 2.4: a) Observed data. b) Data residuals. Observed data and residuals are a
single shot gather created from the small initial salt example (Figure 2.12(a)). [ER]

chapter2/. obsdata-sample-small,residuals-sample-small

I calculate the search direction for � (Figure 2.6) by back-propagating the data

residual and cross-correlating it with the source wavefield as per the Born approx-

imation imaging condition (Figure 2.5), followed by applying the D operator from

equation 2.13. In this case, the search direction is negative near the perturbation,

since it wants to decrease what is ultimately a positive velocity error. This search

direction pushes a decrease in the value of the implicit surface (compare Figures

2.7(a) and 2.7(b)). This decrease draws the zero-level set deeper so that it is in closer

alignment with the true salt boundary. Applying the approximate Heaviside function

(equation 2.11) to this updated implicit surface (Figure 2.7(b)) gives us a new model

that is closer in form to the true model (Figure 2.8(b)). This process can be con-

tinued, making iterative updates to the implicit surface and as a result, the velocity

18 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

model itself.

Figure 2.5: Search direction from adjoint Born image of back-propagated residuals
used in conventional FWI. True salt extent (green dashed line), initial salt extent

(black dashed line). [CR] chapter2/. rtmGrad0-big

For an initial model where the salt circle is too small (Figure 2.12(a)), the adjoint

Born component of the search direction (Figure 2.9) is positive, since it is trying to

increase the model velocity to that of the salt. The full search direction for � gives

a positive perturbation of the implicit surface (Figure 2.10). This update raises the

implicit surface (compare Figures 2.11(a) and 2.11(b)), moving the salt boundary

upwards to correct for the deep boundary discrepancy (Figure 2.12(b)).

INTRODUCING THE HESSIAN OPERATOR

We can use the Newton method (equation 2.17) to perform the inversion, which helps

remove the e↵ect of our operator from the gradient, improves the search direction,

and subsequently speeds up convergence. This is done by inverting the Hessian (H)

of the objective function we are minimizing and applying it to the negative of our

gradient (g) to find the search direction 4m:

19

Figure 2.6: Implicit surface search direction (4�). True salt extent (green dashed

line), initial salt extent (black dashed line). [CR] chapter2/. phiGrad0-big

4m = �H�1g. (2.17)

For our case, we can represent the Hessian as the second derivative (equation 2.18)

of the FWI objective function (equation 2.1):

�

�m
=

dF(m)

dmT
(F(m)� dobs)

�

�m

�

�m
=

�

�m

dF(m)

dm

T

(F(m)� dobs)

�2

�m2
=

d2F(m)

dm2

T

(F(m)� dobs) +
dF(m)

dm

T dF(m)

dm
.

(2.18)

However, this second derivative contains a term based on the data residuals. This

term can be expensive to compute and is often neglected, so the Gauss-Newton ap-

proximation is used instead:

20 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

(a)

(b)

Figure 2.7: Implicit surface (�) model a) before, and b) after updating with search
direction (Figure 2.6). True salt extent shown as green dashed line. [CR]

chapter2/. initphi-big,nextphi-big

21

(a)

(b)

Figure 2.8: Velocity model (m) a) before, and b) after updating. True salt extent

shown as green dashed line. [CR] chapter2/. initmodel-big,nextmodel-big

22 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

Figure 2.9: Search direction from adjoint Born image of back-propagated residuals
used in conventional FWI. True salt extent (green dashed line), initial salt extent

(black dashed line). [CR] chapter2/. rtmGrad0-small

Figure 2.10: Implicit surface search direction (4�). True salt extent (green dashed

line), initial salt extent (black dashed line). [CR] chapter2/. phiGrad0-small

23

(a)

(b)

Figure 2.11: Implicit surface (�) model a) before, and b) after updating with search
direction (Figure 2.10). True salt extent shown as green dashed line. [CR]

chapter2/. initphi-small,nextphi-small

24 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

(a)

(b)

Figure 2.12: Velocity model (m) a) before, and b) after updating. True salt extent

shown as green dashed line. [CR] chapter2/. initmodel-small,nextmodel-small

25

�2

�m2
=

dF(m)

dm

T dF(m)

dm
+

d2F(m)

dm2

T

(F(m)� dobs)

HGN =
dF(m)

dm

T dF(m)

dm

(2.19)

While using this approximation is cheaper to compute, it is not as accurate. Ficht-

ner (2010) and Biondi et al. (2015) show that the residual term of the FWI objec-

tive function Hessian can be found by computing WEMVA-like operations on the

data-space residuals. By comparison, the Gauss-Newton approximation of the FWI

objective function is simply the forward Born operator followed by the adjoint Born

operator. An inherent limitation of the Born operator is that it only models first-order

reflections, and so double-scattered energy such as waves that bounce inside canyons

or salt bodies (Figure 2.13) can be spatially misplaced in the search direction when

using the Gauss-Newton Hessian. One would expect to gain a better search direction

for canyon and salt-type models by using the full Hessian instead. For this reason, I

investigate using the full Hessian on 2D synthetic models.

Figure 2.13: Second order reflection ray paths in a canyon and inside a
salt body (blue). First order reflection o↵ water bottom (red). [NR]

chapter2/. reflection-order-diagram

26 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

HESSIAN INVERSION COMPARISONS

As discussed in the last section, the full Hessian is potentially better than the Gauss-

Newton Hessian at finding a search direction for models that contain salt canyons. I

test this hypothesis by creating a synthetic salt canyon true model, and then perturb it

to create a starting model so that a true search direction is known. Then I run separate

inversions with the full and Gauss Newton Hessians to compare search direction

results. Furthermore, I first test by perturbing only one side of the canyon, and then

test by perturbing both sides. This allows us to see how the starting velocity model

a↵ects the e�cacy of the Gauss-Newton and full Hessians relative to one another.

Single canyon perturbation example

For the first example, I select an upper canyon portion of the synthetic Sigsbee model

(Figure 2.14). I perturb the left hand side of the canyon (Figure 2.15) to create

secondary scattering against the opposite canyon wall (shown in Figure 2.16). I use

an evenly spaced acquisition geometry of 38 shots and 230 receivers, and perform

modeling using absorbing boundary conditions and a Ricker wavelet with a central

frequency of 15 Hz. For both the single and double perturbation cases, I assume

that 4b = 0, and so invert for a model defined as 4p = 4� (inverting only for the

implicit surface update, not the background velocity update).

Double canyon perturbation example

For the second example, I use the same true model as before (Figure 2.14). However,

this time I perturb both the left and right hand sides of the canyon (Figure 2.17).

This o↵ers further complexity to the secondary scattering of the model (shown in

Figure 2.18). The same acquisition geometry and wavelet were used.

Benefits of the full Hessian

When comparing the results of the Gauss-Newton (Figure 2.19) and the full Hessian

results (Figure 2.20) from the double canyon perturbation model, one can see a slight

improvement in the focusing of the energy in the full Hessian example. This improved

27

Figure 2.14: The canyon portion of the Sigsbee model that was used. [ER]

chapter2/. single-guess

Figure 2.15: The single canyon perturbation (4mactual) of the Sigsbee model. [ER]

chapter2/. single-pert

28 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

Figure 2.16: Data generated on the true model (dobs) from the center shot
(left). The data residual (4d) for the same center shot (right) generated by dif-
ferencing dobs with data generated from the single perturbation model. [CR]

chapter2/. centershot-analysis-single

29

Figure 2.17: The double canyon perturbation (4mactual) of the Sigsbee model. [ER]

chapter2/. double-pert

search direction should lead to better convergence in the greater non-linear inversion

scheme. When comparing against the steepest descent search direction for the double

perturbation case (Figure 2.21), one can see that the search directions by either type

of Hessian inversion create significant improvements. The improvement of the full

Hessian versus the Gauss-Newton Hessian that is seen in the double perturbation

case is minimal compared to the improvement that the Gauss-Newton Hessian has

over the steepest descent direction (Figure 2.21). Similarly in the single perturbation

case, the search direction from inverting the Gauss-Newton Hessian (Figure 2.22) is

significantly better than the steepest descent search direction (Figure 2.23).

Limitations

However, the single perturbation case demonstrates that the advantages of the full

Hessian are not realized for all models, since the Hessian is model dependent. The sin-

gle perturbation example results are much di↵erent with regards to the full Hessian

30 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

Figure 2.18: Data generated on the true model (dobs) from the center (left).
The data residual (4d) for the same center shot (right) generated by di↵er-
encing dobs with data generated from the double perturbation model. [CR]

chapter2/. centershot-analysis-double

31

Figure 2.19: The Newton search direction (4�) using the inverted Gauss-
Newton approximation of the Hessian on the double perturbation model. [CR]

chapter2/. double-final-gn

32 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

Figure 2.20: The Newton search direction (4�) using the inverted full Hessian on

the double perturbation model. [CR] chapter2/. double-final-full

Figure 2.21: The steepest descent search direction (4�) (negative of the FWI gradi-

ent) for the double perturbation model. [CR] chapter2/. double-negative-gradient

33

Figure 2.22: The Newton search direction (4�) using the inverted Gauss-
Newton approximation of the Hessian on the single perturbation model. [CR]

chapter2/. single-final-gn

34 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

Figure 2.23: The steepest descent search direction (4�) (negative of the FWI gradi-

ent) for the single perturbation model. [CR] chapter2/. single-negative-gradient

search direction. While the Gauss-Newton Hessian system inversion rapidly con-

verges (Figures 2.22 and 2.25(a)), the full Hessian inversion becomes unstable part

way through (Figures 2.24 and 2.25(b)). Because the full Hessian operator is not in-

herently positive semi-definite like the Gauss-Newton Hessian, it may have negative

eigenvalues, which can lead to instability during inversion. This was very likely the

case in the single canyon perturbation example. On the other hand, with the dou-

ble perturbation example we get stable convergence using either method (compare

Figures 2.26(a) and 2.26(b)).

One of the few feasible methods for enforcing our operator to be positive semi-

definite is to use the Levenberg-Marquardt (1963) method of regularizing the operator

with a scaled identity matrix:

Ĥfull = Hfull + ↵I (2.20)

However, in order to use this method properly, the correct scaling of the identity

35

Figure 2.24: The Newton search direction using the inverted full Hessian on the single
perturbation model. [CR] chapter2/. single-final-full

matrix must be found. If too large of a scaling is selected, the operator becomes

more like a scaled identity matrix, negating the potential benefit of inverting the full

Hessian system to begin with. If the scaling is too small, the system will still be ill-

conditioned, and prone to instability as observed earlier. The ideal scaling is slightly

more than the value of the most negative eigenvalue of the operator. This makes

the operator positive definite. Since our model (and as a result, our Hessian) is very

large, it is impractical to store or factorize the Hessian matrix to determine the most

negative eigenvalue through traditional non-iterative linear algebra methods.

Power Iteration Method

The most practical way to find the best scaling is by using the power iteration method

outlined in Larson (2009) to find the maximum absolute-valued eigenvalue (positive in

the case shown for Figure 2.27). After this has been found, one shifts the diagonal of

the operator by the negative of this value, and then repeat the power iterations to find

a new maximum absolute-valued eigenvalue. The di↵erence between this value and

36 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

(a)

(b)

Figure 2.25: The objective functions from the Hessian inversions using the single
canyon perturbation model. Note, the values are negative because a conjugate gra-
dient (CG) solver was used instead of a CG least-squares solver. a) Gauss-Newton

Hessian. b) Full Hessian. [CR] chapter2/. objfunc-single-gn,objfunc-single-full

37

(a)

(b)

Figure 2.26: The nearly identical objective functions from the Hessian inver-
sions using the double canyon perturbation model. Note, the values are neg-
ative because a conjugate gradient (CG) solver was used instead of a CG
least-squares solver. a) Gauss-Newton Hessian. b) Full Hessian. [CR]

chapter2/. objfunc-double-gn,objfunc-double-full

38 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

Figure 2.27: The power iteration curve showing the progressing approximation of the
maximum absolute value eigenvalue of the full Hessian operator used on the single
canyon perturbation model. [CR] chapter2/. powerit1

39

the first one derived is the magnitude of the most negative eigenvalue. I experimented

with this method, but found the benefits of this e↵ort to be minimal, and at notable

computational cost. Figure 2.27 shows that in practice at least 25 iterations (and

so ⇠ 25 forward full Hessian operator applications) were necessary for each of the

two power iteration searches. Once these searches were complete and a proper shift

was found, I found that the results of using this Levenberg-Marquardt shift were

almost imperceptible from the Gauss-Newton results. Furthermore, since the Hessian

operator is model-dependent (and so changes with each outer loop iteration of FWI),

these power iteration steps would need to be performed each time the Newton system

was inverted.

CONCLUSIONS

Level set concepts can be combined with the FWI objective function to create a shape

optimization scheme that allows an elegant way to address the problem of finding an

optimal salt body boundary. My demonstrations on simple 2D examples illustrate the

relationship between the FWI and implicit surface search directions, and the e↵ect

that updating this new model space ultimately has on the velocity model. When I

investigate the use of the inverse Hessian to refine the search direction, I find that the

Gauss-Newton Hessian approximation is su�cient to improve convergence. However,

the theoretically more accurate full Hessian gives mixed results which depend on the

model. Robust inversion can only be assured by performing more computation (power

iterations) to find an optimal correction for the diagonal elements of the operator.

For this reason, I find that the impracticalities of maintaining stability in the full

Hessian inversion outweigh the potential benefits from using it. While the Gauss-

Newton Hessian is less accurate than the full Hessian, its inversion is stable, and at

far less cost.

40 CHAPTER 2. LEVEL SETS AND SHAPE OPTIMIZATION

