
Chapter 1

Introduction

PROBLEM OVERVIEW

Why is salt hard to model?

Oil producing regions like the Gulf of Mexico are known to have geologically complex

salt body formations. These formations can act as seals, trapping hydrocarbons

underneath, which makes them frequent targets of seismic imaging projects. However,

salt bodies have two important properties that make them di�cult to image. First,

the P-wave velocity of salt is high, and contrasts sharply with that of surrounding

sediment layers, making them very reflective to seismic energy. Second, salt bodies

can adopt a variety of complex shapes and geometries. Because of these factors, the

formations themselves act as lenses which focus or disperse seismic energy (Leveille

et al., 2011; Etgen et al., 2016; Barnier and Biondi, 2015). Because salt bodies often

have steep dipping boundaries, useful reflection energy may be directed along ray-

paths that reach the surface far outside of the acquisition geometry extent (see Figure

1.1(b)). With less complex imaging subjects (Figure 1.1(a)) this is not so often the

case. Lack of data capture can subsequently impact the imaging results by creating

‘blind’ spots near the base and flanks of the salt. Figure 1.2(a) demonstrates how

flat portions of the salt boundary have good illumination, while the steeply dipping

flank (Figure 1.2(b)) has poor illumination, making picking the salt boundary more

di�cult.

However, even when reflected energy is su�ciently recorded, strong reflectivity
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Figure 1.1: a) Ray path from flat reflector. b) Ray path from salt reflector. Note that
after passing through salt (black) the raypath in 1.1(b) reaches the surface outside of
the acquisition zone. Receivers (green) and source (yellow) are shown on the surface.
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Figure 1.2: Salt model (pink) overlain on seismic image. Green boxes in a) highlight
areas of good illumination, while boxes in b) highlight areas of poorer illumination.
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and lensing e↵ects can amplify small errors in the salt model and negatively impact

the resulting image. The boundaries of salt are typically improved in an iterative

workflow (interpret salt from image, update salt model, then re-migrate image as in

Figure 1.3). Subsequently, small initial errors may be compounded as velocity model

development proceeds. Furthermore, these methods are time-consuming and tedious

since expert input is necessary for either the actual picking, or the oversight and

correction when picking is semi-automated. Each iteration of this approach can take

days or weeks while coordinating entire teams of people. A robust method for further

automating the salt model building procedure would greatly alleviate this bottleneck.

INTERPRET

MIGRATE

Figure 1.3: Basic velocity model building workflow concept. [NR]

chapter1/. vel-building-workflow

Approaches like full-waveform inversion (FWI) are intended to avoid the repeated

manual interpretation necessary in the approach just described, but can be less than

e↵ective for a variety of reasons. Sometimes high frequencies in the data are of

poor quality, causing di�culty reconstructing sharp velocity models. When high-

frequencies are present with su�cient quality, multi-scale inversion workflows are

typically used, which build a model starting from low and working up to high fre-

quencies Bunks et al. (1995). However, to increase the sharpness of the model requires

higher and higher frequencies, which become increasingly expensive to compute wave

propagations for. To alleviate this expense, multi-scale inversion is sometimes done

using wider frequency band increments, or even using a full band of frequencies from

the beginning.

Unfortunately, using high frequencies too early in the inversion runs a higher
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risk of converging to a local minima. This is because the FWI objective function is

based on the data residual, and the size of the ‘well of convergence’ around the true

model is based on the wavelengths in the data (see Figure 1.4(e), pink). The ‘well of

convergence’ is the model-space region surrounding the true model where the objective

function is convex. When a starting model is within this region, the objective function

gradient will eventually direct convergence to the true model. When a shift in the

modeled data is greater than a half wavelength from the true data, the objective

function gradient will direct updating to a local minima, pushing the data to align

with a wave cycle other than the one representing the true model (i.e. skipping a wave

cycle). With low frequencies the wavelength is longer and the well of convergence is

bigger (Figure 1.4(e)), and thus greater model error can be tolerated Virieux and

Operto (2009). However, even using advanced FWI tools with starting models and

frequencies that thoughtfully consider cycle-skipping, the final results typically lack

sharp resolution around the salt edge (compare Figures 1.5(a), 1.5(b)), which can

impact the clarity of seismic imaging near the salt.

One approach that is used to create sharp boundaries in velocity models is Total-

Variation (TV) regularization, which makes use of the L1 norm to regularize the

model parameters during the inversion (Maharramov and Levin (2015), Esser et al.

(2018)). This creates a regularized version of the FWI objective function that in-

cludes an additional term, �|Am|1, where A is a Laplacian operator that takes the

spatial derivative of the model space. There are several challenges with this approach.

The first is that a parameter � must be chosen which appropriately balances the reg-

ularization term with the data residual term. This is can be di�cult to find, and

may even need to change with iteration for the best inversion result. The second

problem is that taking the derivative of this new term is di�cult. This is because the

L1 norm is not a di↵erentiable function at zero. This means that an optimization

method must be chosen for a non-smooth problem, such as the subgradient method

(Maharramov, 2016), which can be much slower than Newton’s method on a smooth

objective function.

Why are level sets the answer?

A key tool for addressing this problem is the concept of the level set. A level set is a

contour of a higher dimensional surface used to track a discrete boundary. In the salt
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Figure 1.4: Left column shows higher frequency data while right column shows lower
frequency data. True data (b) and shifted traces (a,c), with the objective function
(e) showing the data residual norm measured at all shift positions. When a trace
is shifted far enough from the true trace (d), the gradient of the objective function
directs updating to a local minima, pushing the trace further from the true position
(red arrows), and cycle skipping occurs. Blue arrows indicate convergence towards
the true solution when the modeled trace shift (and thus model error) is within the

well of convergence (pink). [NR] chapter1/. cycle-skipping
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Figure 1.5: a) Legacy velocity model. b) Velocity model after FWI updating Shen

et al. (2017). [NR] chapter1/. xukai-true,xukai-fwi

modeling problem, the salt boundary can be represented using a level set as in Fig-

ures 1.6(a) and 1.6(b). With this representation, one can easily modify the shape and

topology of the level set implicitly by modifying its higher dimensional surface (for

this reason, called an implicit surface). While explicit boundary tracking schemes

break down for sharp edges or topology changes, level sets very elegantly manage

these cases. For any problem where we wish to track the boundary of a homogeneous

(or approximately homogeneous) body, level sets are an ideal tool. They have found

use in fields like aerospace engineering for modeling fluid flow around airfoils (Xia

et al., 2010), as well as image segmentation problems in medicine (Maciejewski et al.

(2012),Tsai et al. (2003)). For the purposes of salt modeling, they give us the ad-

vantage of adjusting and updating a sharp boundary position (high spatial frequency

content), even when the updates from our data contain only low frequency content

(see Figure 1.7). Since cycle skipping is based on the spectra of the data and not

the velocity model, we can gain the advantage of manipulating high spatial frequency

boundaries while still mitigating the risk of cycle skipping by skewing the spectra of

our data space to low frequencies. Furthermore, computing wave propagations for

low frequencies is cheaper than propagating high frequencies.

What has already been done?

Level sets are an excellent tool for tracking boundaries, and their debut was ushered

in by the work of Osher and Sethian (1988). They are especially useful for the class

of problems called shape optimization that optimize an objective function based on

shape properties. Santosa (1996) provides an early demonstration of solving these
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Figure 1.6: Diagram showing a cross section (orange curve) through a 3D
implicit surface that represents the salt boundary in the 2D model (bot-
tom panel) for both a) circular salt and b) donut-hole models . [NR]

chapter1/. levelset-cross-section,levelset-cross-section-donut
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Figure 1.7: Diagram demonstrating how low spatial frequency updating leads to a
change in a high spatial frequency boundary represented by a level set contour. [NR]

chapter1/. levelset-update

types of problems with an L2 norm objective function, namely for deconvolution and

di↵raction-screen reconstruction problems. Burger (2003) continued to build a more

unified theory of level set methods for inverse problems. Later work by Lewis et al.

(2012) and Guo and de Hoop (2013) applied shape optimization to the FWI objective

function for the purpose of segmenting salt bodies. Guo and de Hoop (2013) utilize

this approach with frequency domain wave propagation to evolve a salt boundary and

velocity model. However, these approaches use the full model domain to represent

the level set, and do not explore the advantages of using second-order updating. More

recently, Kadu et al. (2016) introduced the use of radial basis functions to sparsify the

model space and speed computation for second order updating, but did not extend

the work to 3D models or field data examples.

What does this thesis add?

In this work, I claim to demonstrate success using shape optimization with level

sets to build 3D models of salt bodies at depth using field data. The di↵erentiating

aspects of this work include a number of advances. First, the use of radial basis

functions (RBFs) to reduce the number of model parameters has been improved

by distributing them with spatial variance according to a given likelihood of salt

updating. I leverage the sparsified model that this representation yields to to speed

our inversion of the Newton step that our Gauss-Newton Hessian approximates. I
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further leverage interpreter guidance as input by molding the initial shape of our

implicit surface according to the same spatial likelihood function that our RBF centers

are based on. Last, I further extend the practice by applying this method to a 3D

ocean bottom node (OBN) dataset.
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