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Preface 

Some History 

Reflection seismologists make images of the earth's interior. Through the 
1960s this was done in an ad hoc fashion. Between 1968 and 1972, I con- 
ceived and field tested a new method of image making based directly on the 
wave equation of physics. Previously the wave equation had been used to 
predict observations starting from simplified, hypothesized models. It was not 
used in routine data analysis. My imaging method using finite differences 
soon came into widespread use in the petroleum exploration industry. Many 
other people quickly became involved and made important improvements. 
The earlier ad hoc methods were reinterpreted and they too improved in the 
light of wave theory. 

An industrial affiliates group, known as the Stanford Exploration Project 
(SEP), was founded at  Stanford University t o  pursue the new developments. 
Of the forty-eight sponsoring organizations, many have substantial research 
departments of their own. Thus began the decade of the 1970s, in which 
much progress was made. In the 1980s progress continues t o  be made at  a 
rapid pace. 

The Place for This Book 

This textbook was born of the need to teach the best of the many new 
ideas to  those entering the industry. Because so many people enter geophy- 
sics from outside the field, I have kept specialized geophysical terminology to 
a minimum and defined everything. So this book should be useful, not only 
to  those interested in petroleum exploration, but also to  professionals in all 
disciplines in which waves are analyzed. 

My previous book, Fundamentals of Geophysical Data Processing 
(FGDP), was published in 1976. I t  covered more basic aspects of reflection 
seismic data processing such as 2-transforms, Fourier transforms, discrete 
linear system theory, matrices, statistics, and theory of the stratified earth. 



FGDP also introduced wave-equation imaging, but extensive supplements 
became necessary. The supplements evolved into this book. The two books 
are about ninety percent different, the ten percent overlap being necessary t o  
keep this book fully self-contained. 

This book provides a coherent overview of the whole field of data  pro- 
cessing as i t  is used in petroleum exploration, and it is the basic textbook in 
exploration geophysics a t  Stanford University. I make no claim, however, 
that  the book is encyclopedic in scope. Some important processes such as 
deconvolution and stat ics are lightly sketched, as are the experimental appli- 
cations of tomography, while other techniques such as ray  tracing and many 
kinds of modeling are omitted altogether. Regrettably, the migration litera- 
ture alone has grown so large that  significant contributions such as the 
theoretical side of Kirchhoff migration (see Berkhout[l980]) are omitted. 

Organization 

Seismic imaging is a subject that  draws much from mathematics and 
physics. These subjects build one idea upon another in a logical progression. 
I chose t o  organize this book likewise. This organization favors the new stu- 
dent who wants t o  understand the material thoroughly. A detailed index and 
more than a hundred cross references are included t o  link the practical topics 
that  a logical organization has left somewhat scattered about. 

More encyclopedic, topic-oriented textbooks on reflection seismology are 
those of Waters [I9811 and Sengbush [1983]. Books focused on petroleum 
prospecting that  treat reflection seismology descriptively are Sheriff [1980] and 
Anstey [1980]. Recommended books on earthquake seismology with a 
mathematical level comparable to  this book are Aki and Richards [I9801 and 
Kennett [1983]. 

I have also tried to  reach readers who want to  learn concepts while skim- 
ming the mathematics. Individual sections (which are lectures) carry practical 
and descriptive matters as far as possible before the mathematical analysis. 
The chapters themselves are also organized in this way, so for example, when 
you get to  the middle of Chapter 1, you can skip forward t o  Chapter 2. 

As it happens, waves are marvelously geometrical objects, and much can 
be learned with little mathematical analysis. But you should begin the book 
having previous familiarity with calculus, complex exponentials, and Fourier 
transformation. 



Philosophy 

There is always a gap between theory and practice. Many books give 
you no clue as t o  the size and location of the gap - even books in exploration 
geophysics. This gap is nothing to  be embarrassed about. I t  represents the 
current life of the subject - the current life of any science. It is a moving 
target, and its size is a matter of opinion. So it is risky for me t o  tell you 
what works, what doesn't, what is important, and what isn't. Opinions go 
beyond facts. Your knowledge won't be complete if you don't know some 
opinions as well as the facts. You will be getting opinions as well as facts 
when I explain the discrepancies between theory and industrial practice, and 
when I explain what should work, but doesn't seem to. 

Thanks 

This book is less my personal creation than was FGDP. I am indebted to  
many people. My colleagues Francis Muir and Fabio Rocca collaborated 
extensively in research. The following Stanford students contributed figures, 
exercises or ideas: David Brown, Junyee Chen, Robert Clayton, Steve 
Doherty, Raul Estevez, Paul Fowler, Bob Godfrey, Alfonso Gonzalez, Dave 
Hale, Bill Harlan, Bert Jacobs, Einar Kjartansson, Walter Lynn, Larry Mor- 
ley, Dave Okaya, Richard Ottolini, Don Riley, Shuki Ronen, Dan Rothman, 
Chuck Sword, Jeff Thorson, John Toldi, Oz Yilmaz, and Li Zhiming. Indus- 
trial teaching helped me clarify the material in this book. Many useful ideas 
on presentation came from those who assisted me in industrial teaching, 
namely, Rob Clayton, Walt Lynn, Einar Kjartansson, Rick Ottolini, Fabio 
Rocca, Dave Hale, and Dan Rothman. Thanks are also due those who helped 
arrange the classes: Phil Hoyt, Lee Lu, A. Lamer, Aftab Alam, Gary Latham, 
and Mike Graul. 

JoAnn Heydron Pluemer was first my secretary, and a t  a later date, the 
editor. Terri Ramey provided drafting and graphics assistance. P a t  Bartz 
maintained order in ways too numerous t o  mention. I did most of the typing 
myself, as computerized typesetting has lightened that  load and allows a more 
heavily revised and debugged final product. Peter Mora, Stew Levin, Dan 
Rothman, and Bill Harbert assisted in final proof reading. 

Major thanks are due t o  Stanford University and the sponsoring organi- 
zations. Without them, much less would have been achieved. A list of spon- 
sor names is given in an  appendix. Many sponsors also donated data for our 
research. This is acknowledged in the figure caption. Many figures were 
based on data  from a world-wide assortment prepared for academic use by 
Yilmaz and Cumro [1983]. Where figures were prepared by students, I have 
also acknowledged them in the caption. I prepared most of the figures myself 



often using outstanding graphics software utilities prepared by Rick Ottolini 
(Tiplot, Movie), Shuki Ronen (Thplot), Rob Clayton (pen), Joe Dellinger 
(Ipen), and Dave Hale (Graph). 

Special thanks must also go t o  Western Electric Company, who donated 
the typesetting software that  I used t o  prepare my lecture notes a t  Stanford. 
This software enabled me t o  go through many generations of improvements, 
eradicating scores of errors, rarely introducing new ones, all the while seeing 
(and having the students see) the material in almost final form. I am 
confident that  this book has many fewer errors than did my previous book 
even after its second printing. When these lectures are in final form, I will 
simply mail a camera-ready copy and you my readers should have the book 
within eight weeks. So long, I'll see you at  the SEG meeting. 

Jon F. Claerbout 



Introduction 

S e e k  t ru th  from facts. - Deng Xiaoping 

Prospecting for oil begins with seismic soundings. The echoes are pro- 
cessed by computer into images that  reveal much geological history. World- 
wide, echo sounding and image making constitute about a four-billion-dollar- 
per-year activity. 

Meaning of the Measurements 

The presence of oil and gas has little direc t  effect on seismic reflections. 
The volume of rock is much larger than the volume of hydrocarbon. The 
reflections are well correlated, however, with interfaces between various rock 
types. In porous rocks, the hydrocarbons are free t o  flow. Fluids tend t o  rise. 
The shapes of rock interfaces tell us where hydrocarbons may accumulate. 
The discovery of oil and gas in the middle of the North Sea is a remarkable 
success story for the reflection seismic method. As  the first exploratory wells, 
located by reflection seismology, were being drilled, it was impossible to  
predict whether they would hit oil. But if oil was t o  be found anywhere 
under the North Sea, there was great confidence that  these initial drill sites 
were much more favorable than random locations. And as it turned out, of 
course, oil was soon found. 

After a well has been drilled and logged, the reflection images become 
even more valuable, because then it is known what rock type corresponds to  
each echo. Seismology is usually able to  provide a remarkably accurate map- 
ping of rock types at  some distance from the well. I t  is particularly valuable 
t o  know in which direction the rocks tilt upward, and where the strata are 
broken by faults. Seismology provides this information at  a much lower cost 
than more drilling. When petroleum prospecting moves offshore the cost of 



seismology goes down by an order of magnitude, while the cost of drilling goes 
up by an order of magnitude. 

Interested readers can purchase three volumes of reflection seismic images 
of the earth from the American Association of Petroleum Geologists (Bally 
[1983]). 

Reproducibility of the Data 

Reflection seismic data is voluminous. It is not like pencil marks on a 
sheet of paper. I t  is row upon row of high density magnetic tapes. Much 
seismic data  is readily comprehensible. But much remains tha t  is not, espe- 
cially on the first try. Although much data is incomprehensible and seems 
noisy and random, i t  is remarkable that  the data is experimentally repeatable. 
And we find that  by working with this data we learn more and more, and are 
encouraged t o  continue. Because there is so much still hidden in the data 
which is routinely collected, this book concentrates on the mainstream data  
geometry: single survey lines with conventional near-surface sources and 
receivers. Experimental techniques are indicated but not examined. 

Computers as Imaging Devices 

Philosophers ask the question, "What is knowledge?" As technologists, 
our answer is that  there is a real world and there is also an image of it in our 
minds. Icnowledge means that  the two are similar. To  help form images we 
use imaging devices, such as microscopes, telescopes, cameras, television, etc. 
In this book computers are imaging devices for seismic echo soundings. 

As an imaging device, a computer is in many ways ideal. A telescope is 
limited by the quality of its components. The image created by a computer is 
limited more by our understanding of mathematics, physics, and statistics, 
than by limitations inherent in the computer. For imaging radar or ultrason- 
ics, computer capacity would be a real problem. It happens that  the informa- 
tion content (bandwidth) of seismic echo soundings is about matched by 
today's computers. 

Why is it Fun? 

Many young people seem to  enjoy tackling tough theoretical problems, 
but when the time comes for application they are often disappointed t o  find 
that  the theory is in some ways irrelevant or inadequate t o  the problem at  
hand. At  first this causes a diminished interest in practical problems. But 
eventually many come to  see the real problems as more interesting than the 
original mathematical models. Why is this? 



Maybe life is like a computer game. I have noticed that  the games stu- 
dents like best are not those with a predetermined, intricate logical structure. 
They like the games which allow them to  gradually uncover the rules as they 

play. I t  is really fun when a period of frustration with a game is ended by 
some application of a personal idea. But to  be fun, a game must have rules, 
and you must be able t o  uncover them with a reasonable amount of effort. 
Luckily, reflection seismology, together with modern computers, provides us 
with a similar environment. Sometimes a game can be too frustrating, and 
you need a hint t o  get you over some obstacle into a new and deeper level. 
Reading this book is not like playing the game. I t  is more like being given a 
collection of hints, a bag of tricks, to  help you t o  the deeper level. 

These tricks are mostly new, many being less than ten years old. They 
have been selected because they really work, not always, but often enough. I 
have repressed the urge to  include many promising tricks which have not been 
sufficiently tested. 

Practical problems are not only deeper than theoretical problems, but 
ultimately they yield more interesting theory. For example, in freshman phy- 
sics laboratory I learned t o  deduce Newton's laws of motion from simple 
experiments. I should have found experimentally that  force equals mass times 
acceleration. Of course I didn't find exactly that.  The experiment didn't 
seem t o  work out too well because of friction. Friction, now there's a really 
interesting subject for you. Physicists, chemists, metallurgists, earth scien- 
tists, they all know Newton's laws but wish they understood friction! 

The theoretical book you are now holding wouldn't have been written 
except that  two earlier theoretical approaches, (1) the theory of mathematical 
physics in stratified media, and (2) time series analysis, couldn't touch some of 
the most interesting aspects of our data. Some people thought we just had 
dirty data! Reflection seismic data are repeatable. Most of our problems 
really arise from the theory, not the data. 

Computers and Movies 

This book includes a number of computer programs. These programs are 
used for illustration and as exercises, but they should also be useful for refer- 
ence. While they cannot be guaranteed, they worked for me when I generated 
many of the figures in this book, and they should work for you. You will 
notice that  they are in a language similar t o  Fortran. The language is 
described a t  the beginning of Section 1.7. Since everyone has different facili- 
ties for graphical output, t o  use these programs yourself, you will have to  
understand them well enough to  direct their outputs into your plotting equip- 
ment. 

xii 



A movie is really a stack of pictures. In a computer it is just a three- 
dimensional matrix of floating point numbers which must somehow be con- 
verted t o  brightness pixels (picture elements). At  the time of writing, few 
people are equipped t o  directly convert such a three-dimensional matrix into a 
movie. In our laboratory (Ottolini et al. [1984]) this is done on a high-quality 
video computer terminal (AED 512). Movie capability is a valuable asset. I t  
enhances our understanding of our data and of the processing. Students are 
inspired by seeing their programming work result immediately in a movie, 
which is easily videotaped. Compared to  other graphical devices this one is 
easy to  maintain. It is used by both the research students and the students in 
the master's degree program, who use it for homework exercises. 

The cost of such equipment, including the direct memory access ( D M )  
computer interface, is less than $10,000. For a really good experience with 
movies, you should also have physical control of a computer with a memory 
greater than a few megabytes. If you don't already have this, the price (1985) 
increases by about a factor of ten. 

Will There Be Jobs ? 

The main use of reflection seismic imaging is petroleum prospecting. 
Unlike nuclear energy, hydrocarbons are a non-renewable resource and there is 
evidence that  petroleum production must decline during the lifetimes of the 
young generation. Does this mean that  young people should avoid these stu- 
dies? I think not. Taking the long-range view, with the population of the 
earth continuing to  increase, it is not easy to imagine people losing interest in 
the earth's crust. A view of more intermediate range is that  as the resource 
declines in abundance, there will be greater efforts to  seek it. A short-range 
view is tha t  workers are needed today, and there are no coal- or nuclear- 
powered airplanes. In any case, the skills developed in this book, computer 
implementations of concepts from physics, will always be of general utility. 

Guide to This Book 

Chapters 1 and 3 describe the basic concepts of imaging in reflection 
seismology. Chapters 2 and 4 cover computer techniques for the analysis of 
observed wavefields. Chapter 5 describes advanced imaging concepts. At  
Stanford University, Chapters 1-3 are taught to  master's students in a course 
that  runs for one quarter. These students also take a class from FGDP either 
before or after the class from this book. 

You may want t o  understand concepts without learning about tech- 
niques. You could try reading just Chapters 1 and 3, but Chapter 2 will 
increase your comprehension because of its concrete nature and the examples 



it includes. Chapter 4 is for craftsmen who want t o  know what is involved in 
a high-quality implementation, or for unusually skilled interpreters who wish 
t o  understand artifacts and the accuracy limitations of various techniques. 
Chapter 5 describes seismic imaging concepts that  are novel and seem correct 
in principle, but for various reasons (many unknown t o  me) have not yet 
come into widespread practical use. Interpreters who can stand the 
mathematics may appreciate Chapter 5 because it claims t o  explain how and 
why things often work out the way they do in practice. But the main attrac- 
tion of Chapter 5 will be for those who wish to  develop new echo imaging 
techniques. 

xiv 



1.1 Exploding Reflectors 

The basic equipment for reflection seismic prospecting is a source for 
impulsive sound waves, a geophone (something like a microphone), and a mul- 
tichannel waveform display system. A survey line is defined along the earth's 
surface. I t  could be the path for a ship, in which case the receiver is called a 
hydrophone. About every 25 meters the source is activated, and the echoes 
are recorded nearby. The sound source and receiver have almost no direc- 
tional tuning capability because the frequencies that  penetrate the earth have 
wavelengths longer than the ship. Consequently, echoes can arrive from 
several directions a t  the same time. I t  is the joint task of geophysicists and 
geologists t o  interpret the results. Geophysicists assume the quantitative, 
physical, and statistical tasks. Their main goals, and the goal t o  which this 
book is mainly directed, is to  make good pictures of the earth's interior from 
the echoes. 

A Powerful Analogy 

Figure 1 shows two wave-propagation situations. The first is realistic 
field sounding. The second is a thought experiment in which the reflectors in 
the earth suddenly explode. Waves from the hypothetical explosion propagate 
up t o  the earth's surface where they are observed by a hypothetical string of 
geophones. 

Notice in the figure that  the raypaths in the field-recording case seem to  
be the same as those in the exploding-reflector case. I t  is a great conceptual 
advantage t o  imagine that  the two wavefields, the observed and the hypothet- 
ical, are indeed the same. If they are the same, then the many thousands of 
experiments that  have really been done can be ignored, and attention can be 
focused on the one hypothetical experiment. One obvious difference between 
the two cases is that  in the field geometry waves must first go down and then 
return upward along the same path, whereas in the hypothetical experiment 
they just go up. Travel time in field experiments could be divided by two. In 
practice, the data of the field experiments (two-way time) is analyzed 



1 . I  Exploding Rej lec tors  

Zero- oflset Section Exploding Reflectors 

FIG. 1.1-1. Echoes collected with a source-receiver pair moved t o  all points 
on the earth's surface (left) and the "exploding-reflectors" conceptual model 
(right). 

assuming the sound velocity to  be half its true value. 

Huygens Secondary Point Source 

Waves on the ocean have wavelengths comparable to  those of waves in 
seismic prospecting (15-500 meters), but ocean waves move slowly enough t o  
be seen. Imagine a long harbor barrier parallel t o  the beach with a small 
entrance in the barrier for the passage of ships. This is shown in figure 2. A 
plane wave incident on the barrier from the open ocean will send a wave 
through the gap in the barrier. I t  is an observed fact that  the wavefront in 
the harbor becomes a circle with the gap as its center. The difference between 
this beam of water waves and a light beam through a window is in the ratio 
of wavelength t o  hole size. 

Linearity is a property of all low-amplitude waves (not those foamy, 
breaking waves near the shore). This means that  two gaps in the harbor bar- 
rier make two semicircular wavefronts. Where the circles cross, the wave 
heights combine by simple linear addition. I t  is interesting t o  think of a bar- 
rier with many holes. In the limiting case of very many holes, the barrier 
disappears, being nothing but one gap alongside another. Semicircular wave- 
fronts combine t o  make only the incident plane wave. Hyperbolas do the 
same. Figure 3 shows hyperbolas increasing in density from left t o  right. All 
those waves a t  nonvertical angles must somehow combine with one another to  
extinguish all evidence of anything but the plane wave. 



1.1 Exploding Reflectors 

beach 
X 

Huygens Secondary 
Point Source 

open ocean 

z 

t incident wove 

FIG. 1.1-2. Waves going through a gap in a barrier have semicircular wave- 
fronts (if the wavelength is long compared t o  the gap size). 

FIG. 1.1-3. A barrier with many holes (top). Waves, ( x ,  t )-space, seen 
beyond the barrier (bottom). 



MIGRA TION 1.1 Exploding ReJec  tors 

A Cartesian coordinate system has been superimposed on the ocean sur- 
face with x going along the beach and z measuring the distance from 
shore. For the analogy with reflection seismology, people are confined t o  the 
beach (the earth's surface) where they make measurements of wave height as 
a function of x and t . From this data they can make inferences about the 
existence of gaps in the barrier out in the ( x ,  2)-plane. Figure 4a shows the 
arrival time a t  the beach of a wave from the ocean through a gap. The earli- 
est arrival occurs nearest the gap. What mathematical expression determines 
the shape of the arrival curve seen in the ( a ,  t )-plane? 

FIG. 1.1-4. The left frame shows the hyperbolic wave arrival time seen a t  the 
beach. Frames t o  the right show arrivals a t  increasing distances out  in the 
water. (The x-axis is compressed from figure 2). (Gonzalez) 

at z0  (beach) at z l  at z 2  at z (barrier) 

The waves are expanding circles. An equation for a circle expanding with 
velocity v about a point (x 3, z 3) is 

Considering t t o  be a constant, i.e. taking a snapshot, equation (1) is that  of 
a circle. Considering z t o  be a constant, it is an equation in the (x, t )- 
plane for a hyperbola. Considered in the ( t  , x , z )-volume, equation (1) is that  
of a cone. Slices a t  various values of t show circles of various sizes. Slices 
of various values of z show various hyperbolas. Figure 4 shows four hyper- 
bolas. The first is the observation made a t  the beach z 0  = 0. The second is a 

F x 

t t t t 

x 

n 

x x 



MIGRA TION 1.1 Exploding Reflectors 

hypothetical set of observations at some distance z out in the water. The 

third set of observations is a t  z 2 ,  an even greater distance from the beach. 

The fourth set of observations is a t  z 3 ,  nearly all the way out t o  the barrier, 

where the hyperbola has degenerated t o  a point. All these hyperbolas are 
from a family of hyperbolas, each with the same asymptote. The asymptote 
refers t o  a wave that  turns nearly 90" a t  the gap and is found moving nearly 
parallel t o  the shore a t  the speed dx l d t  of a water wave. (For this water 
wave analogy i t  is presumed -incorrectly- that  the speed of water waves is 
a constant independent of water depth). 

If the original incident wave was a positive pulse, then the Huygens 
secondary source must consist of both positive and negative polarities t o  
enable the destructive interference of all but the plane wave. So the Huygens 
waveform has a phase shift. In the next section, mathematical expressions 
will be found for the Huygens secondary source. Another phenomenon, well 
known t o  boaters, is that  the largest amplitude of the Huygens semicircle is in 
the direction pointing straight towards shore. The amplitude drops t o  zero 
for waves moving parallel t o  the shore. In optics this amplitude dropoff with 
angle is called the obliquity factor. 

Migration Defined 

A dictionary gives many definitions for the word run. They are related, 
but they are distinct. The word migration in geophysical prospecting like- 
wise has about four related but distinct meanings. The simplest is like the 
meaning of the word move. When an object a t  some location in the (x , z )- 
plane is found a t  a different location a t  a later time t , then we say it moves. 
Analogously, when a wave arrival (often called an event) a t  some location in 
the (x , t )-space of geophysical observations is found a t  a different position for 
a different survey line a t  a greater depth z ,  then we say it migrates. 

T o  see this more clearly imagine the four frames of figure 4 being taken 
from a movie. During the movie, the depth z changes beginning at  the 
beach (the earth's surface) and going out to  the storm barrier. The frames 
are superimposed in figure 5a. Mainly what happens in the movie is that  the 
event migrates upward toward t =O. To  remove this dominating effect of 
vertical translation make another superposition, keeping the hyperbola tops 
all in the same place. Mathematically, the time t axis is replaced by a so- 
called retarded time axis t '=t +z / v  , shown in figure 5b. The second, more 
precise definition of migration is the motion of an event in ( x ,  t ')-space as z 
changes. After removing the vertical shift, the residual motion is mainly a 
shape change. By this definition hyperbola tops, or horizontal layers, don't 
migrate. 



1.1 Exploding Ref lec tors  

FIG. 1.1-5. Left shows a superposition of the hyperbolas of figure 4. At  the 
right the superposition incorporates a shift, called retardation t '=t +z /v , t o  
keep the hyperbola tops together. (Gonzalez) 

The hyperbolas in figure 5 really extend t o  infinity, but the drawing cuts 
each one off at a time equal fi times its earliest arrival. Thus the hyperbo- 
las shown depict only rays moving within 45" of the vertical. I t  is good t o  
remember this, tha t  the ratio of first arrival time on a hyperbola t o  any other 
arrival time gives the cosine of the angle of propagation. The cutoff on each 
hyperbola is a ray a t  45" .  Notice that  the end points of the hyperbolas on 
the drawing can be connected by a straight line. Also, the slope a t  the end of 
each hyperbola is the same. For any wavefront, the angle of the wave is 
t an  B = dx /dz in physical space. For any seismic event, the slope v dt /dx 
is sin 0, as you can see by considering a wavefront intercepting the earth's 
surface at angle 8. So, energy moving on a straight line in physical ( x ,  z )- 
space migrates along a straight line in data ( x ,  t >space. As z increases, the 
energy of all angles comes together t o  a focus. The focus is the exploding 
reflector. It is the gap in the barrier. This third definition of migration is 
that  it is the process that  somehow pushes observational data  - wave height 
as a function of x and t  - from the beach t o  the barrier. The third 
definition stresses not so much the motion itself, but the transformation from 
the beginning point t o  the ending point. 



M I G R A  T I O N  1.1 Exploding Reflectors 

T o  go further, a more general example is needed than the storm barrier 
example. The barrier example is confined t o  making Huygens sources only at 
some particular z .  Sources are needed a t  other depths as well. Then, given 
a wave-extrapolation process t o  move data  t o  increasing z  values, 
exploding-reflector images are constructed with 

Image ( x ,  z )  = Wave ( t  =0, x ,  z )  (2) 

The fourth definition of migration also incorporates the definition of 
d i f i ac t i on  as the opposite of migration. 

observations model 

migration 

D i p a c t i o n  is sometimes regarded as the natural process that  creates and 
enlarges hyperboloids. Migration is the computer process that  does the 
reverse. 

Another aspect of the use of the word migration arises in Chapter 3, 
where the horizontal coordinate can be either shot-to-geophone midpoint y , 
or offset h . Hyperboloids can be downward continued in both the ( y  , t )- 
and the ( h  , t )-plane. In the ( y  , t )-plane this is called migration or imaging, 
and in the (h , t )-plane it is called focusing or velocity analysis. 

An Impulse in the Data 

The Huygens diffraction takes an isolated pulse function (delta function) 
in ( x ,  z )space and makes it into a hyperbola in (a, t >space a t  z =O. The 
converse is t o  start  from a delta function in (x , t >space a t  z  =O. This con- 
verse refers to  a seismic survey in which no echoes are recorded except a t  one 
particular location, and a t  that  location only one echo is recorded. What 
earth model is consistent with such observations? As shown in figure 6 this 
earth must contain a spherical mirror whose center is a t  the anomalous 
recording position. 

I t  is unlikely that  the processes of nature have created many spherical 
mirrors inside the earth. But when we look a t  processed geophysical data, we 
often see spherical mirrors. Obviously, such input data contains impulses that 
are not consistent with the wave-propagation theory being explained here. 
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FIG. 1.1-6. When the seismic source S is a t  the exact center of a semicircu- 
lar mirror, then, and only then, will an echo return t o  the geophone a t  the 
source. This semicircular reflector is the logical consequence of a dataset 
where one echo is found a t  only one place on the earth. 

This illustrates why petroleum prospectors study reflection seismic data pro- 
cessing, even though they personally plan t o  write no processing programs. 
The raw data is too complex t o  comprehend. The processed data gives an 
earth model, but its reliability is difficult t o  know. You may never plan t o  
build an automobile, but when you drive alone far out into the desert, you 
should know as much as you can about automobiles. 

Hand Migration 

Given a seismic event a t  (xO, to )  with a slope p = dt l dx  , let us deter- 

mine its position (x, , t, ) after migration. Consider a planar wavefront at 

angle 8 t o  the earth's surface traveling a distance dx in a time d t .  
Assuming a velocity v we have the wave angle in terms of measurable quan- 
tities. 

The vertical travel path is less than the angled path by 

- 
t, - t o c o s e  = t o  d m  ( 4 4  

A travel time t o  and a horizontal component of velocity v sin 8 gives the 

lateral location after migration: 

- x O -  t o  u sin 8 = ~ 0 - t ~ ~  v 
2 

xm - (4b) 

Consideration of a hyperbola migrating towards its apex shows why (4b) con- 
tains a minus sign. Equations (4a) and (4b) are the basic equations for 
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manual migration of reflection seismic data. They tell you where the point 
migrates, but they do not tell you how the slope p will change. 

FIG. 1.1-7. Left is a superposition of many hyperbolas. The top of each 
hyperbola lies along a straight line. That  line is like a reflector, but instead of 
using a continuous line, it is a sequence of points. Constructive interference 
gives an apparent reflection off to  the side. 

Right shows a superposition of semicircles. The bottom of each semicircle lies 
along a line that  could be the line of an observed plane wave. Instead the 
plane wave is broken into point arrivals, each being interpreted as coming 
from a semicircular mirror. Adding the mirrors yields a more steeply dipping 
reflector. 

Reflector Steepening 

Consider a vertical wall, a limiting case of a dipping bed. Its reflections, 
the asymptotes of a hyperbola, have a nonvertical steepness. This establishes 
that  migration increases the apparent steepness of dipping beds. I use the 
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words apparent steepness because it is the slope as seen in the ( x ,  t )-plane 
that  has steepened. Migration really produces its output in z . but z / v  is 
often overlain on t t o  create a migrated time section. When we say a 
hyperbola migrates t o  its apex, we are of course thinking of the migrated time 
section. Let us determine the steepening as a function of angle. 

Consider a point (xO+, t 0+) = x 0  + A, t o  + p A neighboring the origi- 

nal point (xO, to). By equation (4), this neighbor migrates t o  

Now we compute the stepout pm of the migrated event 

n- - P 1 - P  v - P - tan  0 
P m  - - -  

2 2 1 - p  v J- v 
(6) 

So slopes on migrated time sections, like slopes in Cartesian space, imply 
tangents of angles while slopes on unmigrated time sections imply sines. 

It may seem paradoxical that  dipping beds change slope on migration 
whereas flanks of hyperbolas do not change slope during downward continua- 
tion. One reason is that  migration is downward continuation plus imaging 
(selecting t =O). Another reason is that  a hyperbola is a special event that  
comes from a single source a t  a single depth whereas a dipping bed is a super- 
position of point sources from different depths. Figure 7 shows how points 
making up a line reflector diffract t o  a line reflection, and how points making 
up a line reflection migrate t o  a line reflector. 

Limitations of the Exploding-Reflector Concept 

The exploding-reflector concept is a powerful and fortunate analogy. For 
people who spend their time working entirely on data  interpretation rather 
than on processing, the exploding-reflector concept is more than a vital 
crutch. It's the only means of transportation! But for those of us who work 
on data processing, the exploding-reflector concept has a serious shortcoming. 
No one has yet figured out how t o  extend the concept t o  apply t o  data 
recorded a t  nonzero offset. Furthermore, most data is recorded a t  rather large 
offsets. In a modern marine prospecting survey, there is not one hydrophone, 
but hundreds, which are strung out in a cable towed behind the ship. The 
recording cable is typically 2-3 kilometers long. Drilling may be about 3 kilo- 
meters deep. So in practice the angles are big. Therein lie both new 



MIGRA TION 1 . I  Exploding Reflectors 

problems and new opportunities, none of which will be considered until 
Chapter 3.  

Furthermore, even at zero offset, the exploding-reflector concept is not 
quantitatively correct. For the moment, note three obvious failings: figure 8 
shows rays that  are not predicted by the exploding-reflector model. These 
rays will be present in a zero-offset section. Lateral velocity variation is 
required for this situation t o  exist. 

FIG. 1.1-8. Two rays, not predicted by the exploding-reflector model, that  
would nevertheless be found on a zero-offset section. 

Second, the exploding-reflector concept fails with multiple reflections. 
For a flat sea floor with a two-way travel time t l ,  multiple reflections are 

predicted a t  times 2t l, 3t l, 4t  l, etc. In the exploding-reflector geometry 

the first multiple goes from reflector to  surface, then from surface t o  reflector, 
then from reflector t o  surface, for a total time 3 t  Subsequent multiples 

occur a t  times 5 t  l, 7 t  l, etc. Clearly the multiple reflections generated on 

the zero-offset section differ from those of the exploding-reflector model. 

The third failing of the exploding-reflector model is where we are able to  
see waves bounced from both sides of an  interface. The exploding-reflector 
model predicts the waves emitted by both sides have the same polarity. The 
physics of reflection coefficients says reflections from opposite sides have oppo- 
site polarities. 

Plate Tectonics Example 
Plate tectonic theory says the ocean floors are made of thin plates that  

are formed a t  volcanic ridges near the middle of the oceans. These plates 
move toward trenches in the deepest part of the ocean where they plunge 
back down into the earth. The best evidence for the theory is the lack of old 
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. 1.1-9. Top is 11 kilometers of reflection data from a survey line across 
Japan trench (Tokyo University Oceanographic Research Institute). Bot- 
shows the result of migration processing. (Ottolini) 

rocks on the floors of the earth's oceans. Generally, continents are older rocks 
jostled by the younger moving oceanic plates. The formation of plates by 
mid-ocean ridge volcanism is readily observed in a variety of ways. Whether 
the plates really do plunge a t  the trenches is not so clear observationally. 
The evidence comes from earthquake locations and from reflection seismology. 
Figure 9 shows some reflection data from the Japan trench. Two reflections 
dominate, the sea floor reflection and a deeper layer dipping down t o  the left. 
This latter is presumably the top part of a plate that  is beginning its descent 
into the earth. We can examine it for evidence of bending downward, such as 



AJIGRA TION 1.1 Exploding Ref lec tors  

tension fractures near the surface. (The topmost layer is soft recent marine 
sediment loosely attached t o  the plate). 

kilometers 
0 1 2 3 4 5 6 

FIG. 1.1-10. Top is 6.5 kilometers of reflection data from a survey line 
offshore from the Texas coast of the Gulf of Mexico. Bottom shows the result 
of migration processing. (Rothman). 

Notice that  the top of the plot is not zero time. The time axis runs from 
9.5 t o  11.0 seconds. Before 9.5 sec there are no echoes - we are waiting for 
the waves t o  go between the ship and the ocean floor. Hyperbolic reflections 
around kilometers 1-3 are collapsed by migration to  form interesting "blocky" 
shapes. Look a t  the sea floor topography near kilometer 8 and the difference 
between migrated and unmigrated data sections. After migration, the sea 
floor diffraction hyperbolas move away from the plate echo (kilometer 4). 
Fractures (especially the one at  6.2 km) are more sharply defined. Finally, if 
the plate bends downward, it is not apparent from the data given. The bend- 
ing question really requires a more detailed analysis of lateral variation in 
seismic velocity. 
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For an example with petroleum interest, see figure 10, data from offshore 
Texas. Sediments are dropped where coastal rivers enter the Gulf of Mexico. 
The added weight causes slumping along steep faults. After a permeable 
sandstone layer has been identified by drilling, its reflection can be extrapo- 
lated up dip to  the nearest fault on data like figure 10. The fault is likely to  
break the continuity of the permeability trapping the upward flowing hydro- 
carbons. A sandstone a t  this depth can have a porosity of 25%. Assume a 
seismic velocity of 2.2 km/sec. Deduce the scale between physical volume and 
the data  in figure 10. Comparing the value of a volume of oil to  the size of 
that  same volume on figure 10, you can see the importance of good images. 

EXERCISES 

1. Prove the Pythagorean theorem, that  is, the length of the hypotenuse 
v t of a right triangle is determined by x 2  + z 2  = v 2 t  2. Hint: 

x 

2. Compute propagation angles for the hyperbola flanks in figure 9. 

3. Using the result of exercise 2, deduce the plunge angle of the plate. 

4. How deep is the Japan trench (water velocity is 1.5 km/sec)? 

5. On the Gulf Coast data, which direction is offshore? Why? 
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1.2 Wave Extrapolation as a 2-D Filter 

One of the main ideas in Fourier analysis is that  an impulse function (a 
delta function) can be constructed by the superposition of sinusoids (or com- 
plex exponentials). In the study of time series this construction is used for the 
impulse response of a filter. In the study of functions of space, it is used t o  
make a physical point source. 

Taking time and space together, Fourier components can be interpreted 
as monochromatic plane waves. Physical optics (and with it reflection 
seismology) becomes an extension t o  filter theory. In this section we learn the 
mathematical form, in Fourier space, of the Huygens secondary source. It is a 
two-dimensional (2-D) filter for spatial extrapolation of wavefields. 

Rays and Fronts 

Figure 1 depicts a ray moving down into the earth a t  an angle 0 from 
the vertical. Perpendicular t o  the ray is a wavefront. By elementary 
geometry the angle between the wavefront and the earth's surface is also 0. 
The ray increases its length at  a speed v .  The speed that  is observable on 
the earth's surface is the intercept of the wavefront with the earth's surface. 
This speed, namely v /sin 0, is faster than v . Likewise, the speed of the 
intercept of the wavefront and the vertical axis is v /cos 0. A mathematical 
expression for a straight line, like that  shown to  be the wavefront in figure 1, 

is 

z = z 0  - x tan 6' (1) 

In this expression z 0  is the intercept between the wavefront and the 
vertical axis. T o  make the intercept move downward, replace it by the 
appropriate velocity times time: 

z = 
t 

v--  x tan  0 
cos 0 

Solving for time gives 

z x 
t ( x ,  z )  = - cos 0 + - sin 0 

v v 

Equation (3) tells the time that  the wavefront will pass any particular location 
( x ,  z ) .  The expression for a shifted waveform of arbitrary shape is 

j ( t  - to). Using (3) t o  define the time shift t o  gives an expression for a 
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FIG. 1.2-1. Downgoing ray and wavefront. 

wavefield that  is some waveform moving on a ray. 

x Z 
moving wavefield = j sin 0 - - cos 0 

v I 
Waves in Fourier Space 

Arbitrary functions can be made from the superposition of sinusoids. 
Sinusoids and complex exponentials often occur. One reason they occur is 
that  they are the solutions t o  linear partial differential equations (PDEs) with 
constant coefficients. The PDEs arise because most laws of physics are 
expressible as PDEs. 

Using Fourier integrals on time functions we encounter the Fourier ker- 
nel exp(-iwt ). Specializing the arbitrary function in equation (4) t o  be the 
real part of the function exp[-i w(t -t o)] gives 

Z 
moving cosine wave = cos [-I 2 sin 8 + - cos o - t 

v v I (5) 

To  use Fourier integrals on the space-axis x the spatial angular frequency 
must be defined. Since we will ultimately encounter many space axes (three 
for shot, three for geophone, also the midpoint and offset), the convention will 
be t o  use a subscript on the letter k t o  denote the axis being Fourier 
transformed. So k, is the angular spatial frequency on the x-axis and 

exp(ik, x ) is its Fourier kernel. For each axis and Fourier kernel there is the 

question of the sign of i. The sign convention used here is the one used in 
most physics books, namely, the one that  agrees with equation (5). Reasons 
for the choice are given in Section 1.6. With this convention, a wave moves 
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in the positive direction along the space axes. Thus the Fourier kernel for 
( x ,  z ,  t )-space will be taken to  be 

Fourier kernel = 

- ik ,z  i k , z  - j u t  - e e e = exp[i(kxx + k , z  - w t ) ]  (6) 

Now for the whistles, bells, and trumpets. Equating (5) t o  the real part 
of (6), physical angles and velocity are related t o  Fourier components. These 
relations should be memorized! 

Equally important is what comes next. Insert the angle definitions into the 
familiar relation sin2 9 + cos2 9 = 1. This gives a most important relation- 
ship, known as the dispersion relation of the scalar wave equation. 

Angles and Fourier Components 

We'll encounter dispersion relations and the scalar wave equation later. The 
importance of (8) is that  it enables us to  make the distinction between an 
arbitrary function and a chaotic function that  actually is a wavefield. Take 
any function p ( t  , x , z ). Fourier transform i t  t o  P (w,  kz , kz ). Look in the 

(o, k,, k,)-volume for any nonvanishing values of P .  You will have a 

wavefield if and only if all nonvanishing P have coordinates that  satisfy (8). 
Even better, in practice the (x , t )-dependence a t  z =O is usually known, but 
the z -dependence is not. Then the z -dependence is found by assuming P is 
a wavefield, so the z-dependence is inferred from (8). 

kx 
sin 6' = - 

w 

Migration Improves Horizontal Resolution 

kz 
cos 9 = - 

W 

In principle, migration converts hyperbolas t o  points. In practice, hyper- 
bolas don't collapse t o  a point, they collapse t o  a focus. A focus has measur- 
able dimensions. Migration is said t o  be "good" because i t  increases spatial 
resolution. I t  squeezes a large hyperbola down to  a tiny focus. T o  quantita- 
tively describe the improvement of migration, the size of the hyperbola and 
the size of the focus must be defined. Figure 2 shows various ways of measur- 
ing the size of a hyperbola. 
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A ~1 l 
FIG. 1.2-2. Measurements of width parameters of a hyperbola. 

The hyperbola carries an impulsive arrival. So the w-bandwidth of the 
hyperbola is roughly given by the zero crossings on the time axis of the main 
energy burst. I'll mention 50 Hz as a typical value, though you could 
encounter values four times higher or four times lower. Knowledge of a 
seismic velocity determines depth resolution. I'll suggest 3 km/sec, though 
once again you could encounter velocities four times greater or four times less. 
These values imply a seismic wavelength of v / f = 60 meters. But the 
effective seismic wavelength is half the actual wavelength. The half comes 
from halving the velocity v in exploding reflector calculations, or 
equivalently, from realizing that  the seismic wavelength is divided equally into 
upgoing and downgoing parts. Resolving power is customarily defined as 
about half the effective wavelength or about 15 meters. (Whether seismic 
resolution should be half the effective wavelength or a smaller fraction is an 
issue that  involves signal-to-noise considerations outside our present study). 

The lateral resolution requires estimates of hyperbola width and focus 
width. Figure 2 shows three hyperbola widths. The widest, A x l,  includes 

about three-quarters of the energy in the hyperbola. Next is the width A x2, 
called the Fresnel Zone. I t  is measured across the hyperbola a t  the time 
when the first arrival has just changed polarity. Third is the smallest measur- 
able width, found far out on a flank. This width, A x3, is the shortest 
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horizontal wavelength t o  be found. Resolution is the study of the size of 
error, and it is not especially useful t o  be precise about the error in the error. 
The main idea is that  A x l  > A x 2  > Ax,. The bandwidth of the spatial 

k, spectrum is roughly l / A  x 3 .  How small a focus can migration make? It 

will be limited by the available bandwidth in the k, spectrum. The size of 

the focus will be about the same as A x ,. 

FIG. 1.2-3. Fresnel zone in ( x  , x )-space (left) and in ( x  , t >space (right). 

Figure 3 shows the geometry of the Fresnel zone concept. A Fresnel zone 
is an  intercept of a spherical wave with a plane. The intercept is defined 
when the spherical wave penetrates the plane t o  a depth of a half wavelength. 
What is the meaning of the Fresnel width A x2? Imagine yourself in Berlin. 

There is a wall there. You may not go near it. Imagine a hole in the wail. 
You are shouting to  a friend on the opposite side. How does the loudness of 
the sound depend on the size of the hole A X ?  It is not obvious, but i t  is 
well known, both theoretically and experimentally, that  holes larger than the 
Fresnel zone cause little attenuation, but smaller holes restrict the sound in 
proportion t o  their size. 

Wave propagation is a convolutional filter that  smears information from 
a region A x 2  along a reflector (or A x in the subsurface) t o  a point on 

the surface. Migration, the reverse of wave propagation, is the deconvolution 
operation. The final amount of lateral resolution is limited by the spatial 
bandwidth of the data. 

Migration may be called for even where reflectors show no dip. When a 
well site is t o  be chosen within an accuracy of less than A x 2  then the 
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interpreter is looking a t  subtle changes in amplitude or waveform along the 
reflector. Migration causes these amplitude and waveform variations t o  
change and t o  move horizontally along the reflector. The distance moved is 
about equal the Fresnel zone. 

FIG. 1.2-4. Hyperboloids for an earth of velocity increasing with depth. 
Observable lateral wavelengths get longer with increasing depth. Thus lateral 
resolving power decreases with depth. 

A basic fact of seismology is the resolution limitation caused by the 
increase with depth of the seismic velocity. What happens is that  as the 
waves get deeper into the earth, their spatial wavelengths get longer because 
of the increasing velocity. The case of vertical resolution is simply this: longer 
wavelengths, less resolution. The case of horizontal resolution is similar, but  
the horizontal wavelength is directly measurable a t  the earth's surface. Fig- 
ure 4 demonstrates this. Hyperboloids from shallow and deep scatterers are 
shown. Shallow hyperbolas have early tops and steep asymptotes. Deep 
scatterers have late tops and less steep asymptotes. The less steep asymp- 
totes have longer horizontal wavelength. Horizontal wavelengths measured a t  
the surface are unchanged a t  depth, even though velocity increases with 
depth. (This implication of Snell's law is shown in Section 1.5). Thus, lateral 
spatial resolution gets worse with depth. Compounding the above reason for 
decreasing resolution is the loss of high-frequency energy a t  late travel time. 
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Two-Dimensional Fourier Transform 

Before going any further, let us review some basic facts about two- 
dimensional Fourier transformation. A two-dimensional function is 
represented in a computer as numerical values in a matrix. A one- 
dimensional Fourier transform in a computer is an operation on a vector. A 
two-dimensional Fourier transform may be computed by a sequence of one- 
dimensional Fourier transforms. You may first transform each column vector 
of the matrix and then transform each row vector of the matrix. Alternately 
you may first do the rows and later do the columns. This is diagramed as fol- 
lows: 

A notational problem on the diagram is that  we cannot maintain the 
usual convention of using a lower-case letter for the domain of physical space 
and an upper-case letter for the Fourier domain, because that  convention can- 
not include the mixed objects P ( t  , k, ) and P (w, x ). Rather than invent 

some new notation it seems best to  let the reader use the context t o  cope with 
this notational problem. The arguments of the function must help name the 
function. 

An example of these transformations on typical deep-ocean data is shown 
in figure 5. 

In the deep ocean, sediments are fine-grained and deposit slowly in flat, 
regular, horizontal beds. The lack of permeable rocks like sandstone severely 
reduces the potential for petroleum production from the deep ocean. The 
fine-grained shales overlay irregular, igneous, basement rocks. In the plot of 
P ( t  , k, ) the lateral continuity of the sediments is shown by the strong spec- 

trum a t  low k,. The igneous rocks show a k, spectrum extending t o  such 

large k, tha t  the deep data may be somewhat spatially aliased (sampled too 

coarsely). The plot of P(w, x )  shows that  the data contains no low- 
frequency energy. At  large w the energy is not dropping off as fast as one 
might like, which indicates temporal frequency aliasing. This aliasing is also 
apparent in the plot of p ( t  , x ) in the steplike appearance of the sea-floor 
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FIG. 1.2-5. A deep-marine dataset p ( t  , x ) from Alaska (U.S. Geological 
Survey) and the real part of various Fourier transforms of it. Because of the 
long travel time through the water, the time axis does not begin a t  t =O. 

arrival. The dip of the sea floor shows up in (w, k,)-space as the energy 

crossing the origin a t  an angle. 

Altogether, the two-dimensional Fourier transform of a collection of 
seismograms involves only twice as much computation as the one-dimensional 
Fourier transform of each seismogram. This is lucky. Let us write some 
equations t o  establish that  the asserted procedure does indeed do a two- 
dimensional Fourier transform. Say first that  any function of x and t 
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may be expressed as a superposition of sinusoidal functions: 
- iwt+i kzz  

P ( ~ , x )  = Is P (w, k, ) d w dk, 

(Sign convention used in Fourier transformation is explained in Section 1.6). 
The kernel in this inverse Fourier transform has the form of a wave moving 
in the plus x direction. Likewise, in the forward Fourier transform, the signs 
of both exponentials change, preserving the fact that  the kernel is a wave 
moving positively. The scale factor and the infinite limits are omitted a .  a 
matter of convenience. (The limits and scale both differ from the sampled- 
time computation, so why bother?) The double integration can be nested t o  
show tha t  the temporal transforms are done first (inside): 

P ( ~ , x )  = J e  ' k z z  [J e-iwt P(w,  k,) dw] dk, 

The quantity in brackets is a Fourier transform over w done for each and 
every k,. Alternately, the nesting could be done with the k,-integral on the 

inside. That  would imply rows first instead of columns (or vice versa). I t  is 
the separability of exp(-iwt + i k, x )  into a product of exponentials that  

makes the computation this easy and cheap. 

The Input-Output Relation 

At  the heart of the migration process is the operation of downward con- 
tinuing data. Given the input data on the plane of the earth's surface z =0, 
we must manufacture the data that  could be recorded a t  depth z .  This is 
most easily done in the Fourier domain. The method will be seen t o  be sim- 
ply multiplication by a complex exponential, namely, 

Since the operation is a multiplication in the Fourier domain, i t  may be 
described as an engineering diagram. 

Filter 
input I I output 

Downward continuation is a product relationship in both the w-domain 
and the k,-domain. What does the filter look like in the time and space 
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domain? I t  turns out like a cone, that  is, i t  is roughly an impulse function of 
2 + z - v t 2. More precisely, it is the Huygens secondary wave source 
that  was exemplified by ocean waves entering a gap through a storm barrier. 
Adding up the response of multiple gaps in the barrier would be convolution 
over x .  Superposing many incident ocean waves would be convolution over 
t .  

Now let us see why the downward continuation filter has the mathemati- 
cal form stated. Every point in the (w, k,)-plane refers t o  a sinusoidal plane 

wave. The variation with depth will also be sinusoidal, namely exp(ik, z ). 
The value of k, for the plane wave is found simply by solving equation (8): 

w 
= f - cos 9 

v 

Choice of the plus sign means that  exp(-i wt + i k, z ) is a downgoing wave 

(because the phase will stay constant if z increases a s  t increases). Choice 
of a minus sign makes the wave upcoming. The exploding-reflector concept 
requires upcoming waves, so we nearly always use the minus sign, whether we 
are migrating or modeling. 

The input-output filter, being of the form e '4, appears t o  be a phase- 
shifting filter with no arnplitude scaling. This bodes well for our plans t o  
deconvolve. I t  means that  signal-to-noise power considerations will be much 
less relevant for migration than for ordinary filtering. 

EXERCISES 

1. Suppose that  you are able t o  observe some shear waves a t  ordinary 
seismic frequencies. Is the spatial resolution better, equal, or worse than 
usual? Why? 

2. Scan this book for hyperbolic arrivals on field data  and measure the 
Fresnel zone width. Where zero offset recordings are not made, a valid 
approximation is to  measure A x 2  along a tilted line. 

3. Explain the horizontal "layering" in figure 1.2-5 in the plot of P (w, x ) .  
What determines the "layer" separation? What determines the "layer" 
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slope? 

4. Evolution of a wavefield with time is described by 

dlc, dt, 

Let P (k,, k, , 0) be constant, signifying a point source at the origin in 
( x ,  z)-space. Let t be very large, meaning that  phase = = 

[-w(k,, k,) + t, (x / t  ) + k, (z / t  )]t  in the integration is rapidly alter- 
nating with changes in k, and k,. Assume that  the only significant 

contribution t o  the integral comes when the phase is stationary, that  is, 
where dq!J/dk, and aq!J/dk, both vanish. Where is the energy in 

(x , z , t )-space? 

5. Downward continuation of a wave is expressed by 

Let P (k, , 0, w )  be constant, signifying a point source a t  the origin in 
(x , t )-space. Where is the energy in (x , z , t )-space? 

1.3 Four Wide-Angle Migration Methods 

The four methods of migration of reflection seismic data  that  are 
described here are all found in modern production environments. As a group 
they handle wide-angle rays easily. As a group they are used less successfully 
t o  deal with lateral velocity variation. 

Travel-Time Depth 

Conceptually, the output of a migration program is a picture in the 
(x , z )-plane. In practice the vertical axis is almost never depth z ;  it is the 
vert ical  travel t i m e  T. In a constant-velocity earth the time and the depth are 
related by a simple scale factor. The meaning of the scale factor is that  the 
(x , T)-plane has a vertical exaggeration compared t o  the (x , z )-plane. In 
reconnaissance work, the vertical is often exaggerated by about a factor of 
five. By the time prospects have been sufficiently narrowed for a drill site to  
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be selected, the vertical exaggeration factor in use is likely t o  be about unity 
(no exaggeration). 

The travel-time depth T is usually defined to  include the time for both 
the wave going down and the wave coming up. The factor of two thus intro- 
duced quickly disappears into the rock velocity. Recall that  zero-offset data 
sections are generally interpreted a s  exploding-reflector wavefields. T o  make 
the correspondence, the rock velocity is cut in half for the wave analysis: 

2 2 
T = - -  

2 - -  
'true half 

The first task in interpretation of seismic data is t o  figure out the 
approximate numerical value of the vertical exaggeration. It probably won't 
be printed on the data header because the seismic velocity is not really 
known. Furthermore, the velocity usually increases with depth, which means 
that  the vertical exaggeration decreases with depth. For velocity-stratified 
media, the time-to-depth conversion formula is 

Hyperbola-Summation and Semicircle-Superposition Methods 

The methods of hyperbola summation and semicircle superposition are 
the most comprehensible of all known methods. 

Recall the equation for a conic section, that  is, a circle in ( x ,  2)-space 
or a hyperbola in ( x ,  t >space. Converting t o  travel-time depth T 

2 x + z 2  = v 2 t 2  (34 

Figure 1 illustrates the semicircle-superposition method. (Both the 
figure and its caption are from Schneider's classic paper [1971]). Taking the 
data  field t o  contain a few impulse functions, the output should be a superpo- 
sition of the appropriate semicircles. Each semicircle denotes the spherical- 
reflector earth model that  would be implied by a dataset with a single pulse. 
Taking the data field t o  be one thousand seismograms of one thousand points 
each, then the output is a superposition of one million sen~icircles. Since a 
seismogram has both positive and negative polarities, about half the semicir- 
cles will be superposed with negative polarities. The resulting superposition 
could look like almost anything. Indeed, the semicircles might mutually de- 

stroy one another almost everywhere except a t  one isolated impulse in (x , 7)- 
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space. Should this happen you might rightly suspect that  the input data sec- 
tion in ( x ,  t )-space is a Huygens secondary source, namely, energy concen- 
trated along a hyperbola. This leads us to  the hyperbola-summation method. 

SOURCE x - RECEIVER 

LOCI OF EOUAL 
TRAVEL TIMES 

INPUT TRACE 

FIG. 1.3-1. The process may be described in numerous ways. Two very sim- 
ple and equally valid representations are indicated in figures 1 and 2. Shown 
here is a representation of the process in terms of what happens t o  a single 
input trace plotted in depth (time may also be used) midway between its 
source and receiver. Each amplitude value of this trace is mapped into the 
subsurface along a curve representing the loci of points for which the travel 
time from source t o  reflection point t o  receiver is constant. If the velocity is 
constant, these curves are ellipses with source and receiver as foci. The pic- 
ture produced by this operation is simply a wavefront chart modulated by the 
trace amplitude information. This clearly is not a useful image in itself, but 
when the map is composited with similar maps from neighboring traces (and 
common-depth-point traces of different offsets), useful subsurface images are 
produced by virtue of constructive and destructive interference between wave- 
fronts in the classical Huygens sense. For example, wavefronts from neighbor- 
ing traces will all intersect on a diffraction source, adding constructively to  
produce an image of the diffractor as a high-amplitude blob whose ( 2 ,  x )  
resolution is controlled by the pulse bandwidth and the horizontal aperture of 
the array of neighboring traces composited. For a reflecting surface, on the 
other hand, wavefronts from adjacent traces are tangent t o  the surface and 
produce an image of the reflector by constructive interference of overlapping 
portions of adjacent wavefronts. In subsurface regions devoid of reflecting 
and scattering bodies, the wavefronts tend t o  cancel by random addition. 
(from Schneider, W. A., 1971 [by permission]) 
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The hyperbola-summation method of migration is depicted in figure 2. 
The idea is t o  create one point in ( x ,  r jspace at a time, unlike in the semi- 
circle method, where each point in ( x ,  T)-space is built up bit by bit as the 
one million semicircles are stacked together. T o  create one fixed point in the 
output (x , T)-space, imagine a hyperbola, equation (3b), set down with its top 
on the corresponding position of (x ,  t )-space. All data values touching the 
hyperbola are added together t o  produce a value for the output at the 
appropriate place in ( x ,  T)-space. In the same way, all other locations in 
( x ,  T)-space are filled. We can wonder whether the hyperbola-migration 
method is better or  worse than or equivalent t o  the semicircle method. 

OUTPUT TRACE 

FIG. 1.3-2. A second description of the process is provided here. The process 
is represented in terms of how an output trace is developed from an ensemble 
of input traces, shown as CDP-stacked traces in the upper half of the figure. 
The output in the lower half reflects how each amplitude value a t  ( x ,  x )  is 
obtained by summing input amplitudes along the travel-time curve shown. 
This curve defines a diffraction hyperbola. If a diffraction source existed in 
the subsurface a t  the output point shown, then a large amplitude would 
result. The process also works for reflectors since a reflector may be regarded 
as a continuum of diffracting elements whose individual images merge t o  pro- 
duce a smooth continuous boundary. (also from Schneider, 1971) 
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The opposite of data processing or building models from data  is con- 
structing synthetic data from models. With a slight change, the above two 
processing programs can be converted t o  modeling programs. Instead of 
hyperbola summation or senzicircle superposition, you do hyperbola superposi- 
tion or semicircle sumnzation. We can also wonder whether the processing 
programs really are inverse to  the modeling programs. Some factors that  need 
t o  be considered are (1) the angle-dependence of amplitude (the obliquity 
function) of the Huygens waveform, (2) spherical spreading of energy, and (3) 
the phase-shift on the Huygens waveform. I t  turns out that  results are rea- 
sonably good even when these complicating factors are ignored. 

As other methods of migration were developed, the deficiencies of the 
earlier methods were more clearly understood and found t o  be largely correct- 
able by careful implementation. One advantage of the later methods is that  
they implement true all-pass filters. Such migrations preserve the general 
appearance of the data. This suggests restoration of high frequencies, which 
tend t o  be destroyed by hyperbolic integrations. Work with the Kirchhoff 
diffraction integral by Trorey [I9701 and Hilterman [I9701 led t o  forward 
modeling programs. Eventually (Schneider [1977]) this work suggested quanti- 
tative means of bringing hyperbola methods into agreement with other 
methods, at least for constant velocity. Common terminology nowadays is t o  
refer t o  any hyperbola or semicircular method as a Kirchhoff method, 
although, strictly speaking, the Kirchhoff integral applies only in the 
constant-velocity case. 

Spatial Aliasing 

Spatial aliasing means insufficient sampling of the data along the space 
axis. This difficulty is so universal, that  all migration methods must consider 
it. 

Data should be sampled a t  more than two points per wavelength. Other- 
wise the wave arrival direction becomes ambiguous. Figure 3 shows synthetic 
data  that  is sampled with insufficient density along the x-axis. You can see 
that  the problem becomes more acute a t  high frequencies and steep dips. 

There is no generally-accepted, automatic method for migrating spatially 
aliased data. In such cases, human beings may do better than machines, 
because of their skill in recognizing true slopes. When the data  is adequately 
sampled, however, computer migration based on the wave equation gives 
better results than manual methods. Contemporary surveys are usually ade- 
quately sampled along the line of the survey, but there is often difficulty in 
the perpendicular direction. 
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FIG. 1.3-3. Insufficient spatial sampling of synthetic data. T o  better perceive 
the ambiguity of arrival angle, view the figures a t  a grazing angle from the 
side. 

The hyperbola-sum-type methods run the risk of the migration operator 
itself becoming spatially aliased. This should be avoided by careful imple- 
mentation. The first thing t o  realize is that  you should be integrating along 
a hyperbolic trajectory. A summation incorporating only one point per trace 
is a poor approximation. I t  is better t o  incorporate more points, as depicted 
in figure 4. The likelihood of getting an aliased operator increases where the 
hyperbola is steeply sloped. In production examples an aliased operator often 
stands out above the sea-floor reflection, where - although the sea floor may 
be flat - it acquires a noisy precursor due to the steeply flanked hyperbola 
crossing the sea floor. 

The Phase-Shift Method (Gazdag) 

The phase-shift method proceeds straightforwardly by extrapolating 
downward with exp(ik, z ) and subsequently evaluating the wavefield at  

t =O (the reflectors explode a t  t =O). Of all the wide-angle methods it most 
easily incorporates depth variation in velocity. Even the phase angle and 
obliquity function are correctly included, automatically. Unlike Kirchhoff 
methods, with this method there is no danger of aliasing the operator. 
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FIG. 1.3-4. For a low-velocity hyperbo- 
la, integration will require more than 
one point per channel. 

The phase-shift method begins with a two-dimensional Fourier transform 
(2D-FT) of the dataset. (Some practical details about 2D-FT are described in 
Section 1.7). Then the transformed data values, all in the (w, k, >plane, are 

downward continued t o  a depth Az by multiplying by 
2 1/2 

i k,Az  
e 

kx 
= exp { i  1 [,I ] AT] 

Ordinarily the time-sample interval AT for the output-migrated section is 
chosen equal to  the time-sample rate of the input data  (often 4 milliseconds). 
Thus, choosing the depth Az = v AT, the downward-extrapolation operator 
for a single time unit is 

Data will be multiplied many times by C ,  thereby downward continuing it 
by many steps of AT. 

Next is the task of imaging. A t  each depth an inverse Fourier transform 
is followed by selection of its value a t  t =O. (Reflectors explode a t  t =O). 
Luckily, only the Fourier transform at  one point, t =0, is needed, so that  is 
all tha t  need be computed. The computation is especially easy since the value 
a t  t =O is merely a summation of each w frequency component. (This may 
be seen by substituting t =O into the inverse Fourier integral). Finally, 
inverse Fourier transform kz t o  x .  The migration process, computing the 

image from the upcoming wave u , may be summarized as follows: 
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U (w, k, ) = FT [ u ( t  , x )I 
For T = AT,   AT, . - - , end of time axis on seismogram { 

For all & { 
Image (k, 9 T) = 0. 

For all w { 
C = exp ( - i  wArd-) 

U(o,  k,) = U(w, k.,) * C 
Image (k, , T) = Image (k, , T) + U (w, k, ) 
} 

} 
image ( x ,  T) = FT [Image (k, , T)] 

1 

Inverse migration (modeling) proceeds in much the same way. Beginning 
from an upcoming wave that  is zero a t  great depth, the wave is marched 
upward in steps by multiplication with exp(i k, A z) .  As each level in the 

earth is passed, exploding reflectors from that  level are added into the upcom- 
ing wave. The program for modeling the upcoming wave u is 

Image (k, , z ) = FT [ image (x , z )] 
For all w and all k, 

U (w, k, ) = 0. 

For all w { 
For all k, { 
For z = zm,, z,,Az, z m ax -2Az, . . . ,O { 

c = exp( + i ~z w d- ) 
U (w, k, ) = U (w, k, ) * C + Image (k, , z ) 
} > I  

u ( t  , x )  = FT [ U(w, k,)] 

The positive sign in the complex exponential is a combination of two nega- 
tives, the upcoming wave and the upward extrapolation. The three loops on 
w, k, , and z are interchangeable. When the velocity v is a constant func- 

tion of depth the program can be speeded by moving the computation of the 
complex exponential C out of the inner loop on z .  

The velocity is hardly ever known precisely, so although i t  may be 
increasing steadily with depth, it is often approximated as constant in layers 
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instead of slowly changing a t  each of the thousand or so time points on a 
seismogram. The advantage of this approximation is economy. Once the 
square root and the sines and cosines in (5) have been computed, the complex 
multiplier (5) can be reused many times. With a 4-millisecond sample rate 
and a layer 200 milliseconds thick, the complex multiplier gets used 50 times 
before it is abandoned. 

The Stolt Method 

On most computers the Stolt method of migration is the fastest one - 
by a wide margin. For many applications, this will be its most important 
attribute. For a constant-velocity earth it incorporates the Huygens wave 
source exactly correctly. Like the other methods, this migration method can 
be reversed and made into a modeling program. One drawback, a matter of 
principle, is that  the Stolt method does not handle depth variation in velocity. 
This drawback is largely offset in practice by an approximate correction that  
uses an axis-stretching procedure (Section 4.5). A practical problem is the 
periodicity of all the Fourier transforms. In principle this is no problem a t  all, 
since it can be solved by adequately surrounding the data  by zeroes. 

A single line sketch of the Stolt method is this: 

T o  see why this works, begin with the input-output relation for down- 
ward extrapolation of wavefields: 

i kzr 
P(w,k , ,  z )  = e P (w, k,, z =O) 

Perform a two-dimensional inverse Fourier transform: 

i k,z-iwt+i k z z  
p ( t , x , z )  = JJ e P (w, k, , 0) d w dk, 

Apply the idea that  the image a t  ( x ,  z )  is the exploding-reflector wave a t  
time t =0: 

i k z x  
Image (x , z ) = JJ e e ( P (w, k, , 0) d w dk, 

Equation (7) gives the final image, but it is in an unattractive form, since 
it implies that  a two-dimensional integration must be done for each and every 
z-level. The Stolt procedure converts the three-dimensional calculation thus 
implied by (7) to  a single two-dimensional Fourier transform. 

So far nothing has been done t o  specify an upcoming wave instead of a 
downgoing wave. The direction of the wave is defined by the relationship of 
z and t that  is required t o  keep the phase constant in the expression 
exp(-i wt + ilc, z ). If w were always positive, then +k, would always refer 
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t o  a downgoing wave and -k, t o  an upcoming wave. Negative frequencies 

w as well as positive frequencies are needed t o  describe waves that  have real 
(not complex) values. So the proper description for a downgoing wave is that  
the signs of w and k, must be the same. The proper description for an 

upcoming wave is the reverse. With this clarification the integration variable 
in (7) will be changed from w to  k,. 

w = - sgn (k, ) v Jm 

Pu t  (8) into (7), and include also a minus sign so that  the integration on k, 

goes from minus infinity to  plus infinity as was the integration on w. 

Image(x, z )  = (9) 

= J J e i k , ~ + q t  Ikz I 
P [ ~ ( k , ,  k, ), k,, 01 dk, dk, 

J- 

Equation (9) states the result as a two-dimensional inverse Fourier transform. 
The Stolt migration method is a direct implementation of (9). The steps of 
the algorithm are 

1. Double Fourier transform data from p ( t  , x , 0) t o  P (w, Ic, , 0). 

2. Interpolate P onto a new mesh so that  it is a function of k, and 

k,. Multiply P by the scale factor (which has the interpretation 

cos el. 
3. Inverse Fourier transform t o  (x , z )-space. 

Samples of Stolt migration of impulses are shown in figure 5. You can 
see the expected semicircular smiles. You can also see a semicircular frown 
hanging from the bottom of each semicircle. The worst frown is on the 
deepest spike. The semicircular mirrors have centers not only a t  the earth's 
surface z =0 but also a t  the bottom of the model z =z,,. It is known 

that  these frowns can be suppressed by interpolating more carefully. (Interpo- 
lation is the way you convert from a uniform mesh in w, t o  a uniform mesh 
in k, ). Interpolate with say a sinc function instead of a linear interpolator. 

(See Section 4.5). A simpler alternative is t o  stay away from the bottom of 
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the model, i.e. pad with lots of zeroes. 

FIG. 1.3-5. Response of Stolt method t o  data with impulses. Semicircles are 
seen, along with computation artifacts. 

I t  seems that  an extraordinary amount of zero padding is required on the 
time axis. T o  keep memory requirements reasonable, the algorithm can be 
reorganized as described in an exercise. Naturally, the periodicity in x also 
requires padding the x-axis with zeroes. 

Hyperbola Summation Refined into the Kirchhoff Method 

Schneider [I9781 states the analytic representation for the Huygens secon- 
dary wavelet 

where r is the distance d- between the (exploding reflector) 

source and the receiver. The function (10) contains a pole and the derivative 
of a step function. Because of the infinities it really cannot be graphed. But 
from the mathematical form you immediately recognize that  the disturbance 
concentrates on the expected cone. The derivative of the step function gives 
a positive impulsive arrival on the cone. The derivative of the inverse square 
root gives the impulse a tail of negative polarity decaying with a -312 power. 
The cosine obliquity arises because the derivative is a z derivative and not 
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an r derivative. 

Equation (10) states the two-dimensional I-Iuygens wavelet, not the 
three-dimensional wavelet (which differs in some minor aspects). Although 
waves from point sources are mainly spherical, the focusing of bent layers is 
mainly a two-dimensional focusing, i.e., bent layers are more like cylinders 
than spheres. 

FIG. 1.3-6. The Huygens wavelet (top) and a smoothed time integral (bot- 
tom). 

You might wonder why anyone would prefer approximations, given the 
exact inverse transform (10). The difficulty of graphing (10) shows up in prac- 
tice as a difficulty in convolving it with data. That  is why early Kirchhoff 
migrations were generally recognizable by precursor noise above a flat sea 
floor. Chapters 2 and 4 are largely devoted to  extensions of (10) that  are 
valid with variable velocity and that  are better representations on a data 
mesh. 

In the Fourier domain, the Huygens secondary source function is simple 
and smooth. I t  is a straightforward matter t o  evaluate the function on a rec- 
tangular mesh and inverse transform with the programs in Section 1.7. Fig- 
ure 6 shows the result on a 256 X 64 point mesh. (In practice the mesh 
would be about 1024 X 256 or more, but the coarser mesh used here provides 
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a plot of suitable detail). Because of the difficulty in plotting functions that  
resemble an impulsive doublet, a second plot of the time integral, (with gentle 
band limiting) is displayed in the lower part of figure 6. 

Data Model Migrated Time Section 

FIG. 1.3-7. Velocity error sensitivity increases with angle up t o  90" . Migra- 
tion of a data  impulse as a function of velocity. Three possible choices of con- 
stant velocity are shown superposed on one plane. 

Sensitivity of Migration to Velocity Error 

Figure 7 shows how the migration impulse response depends on velocity. 
Recall that  migrated data is ordinarily displayed as a time section. Arbitrary 
velocity error makes no difference for horizontal bedding. 

Different people have different accuracy criteria. A reasonable criterion is 
that  the positioning error of the energy in the semicircles should be less than 
a half-wavelength. For the energy moving horizontally, the positioning error 
is simply related t o  the dominant period A T  and the travel time T .  The 
ratio T / A T  is rarely observed t o  exceed 100. This 100 seems t o  be a fun- 
damental observational parameter of reflection seismology in sedimentary 
rock. (Theoretically, it might be related t o  the "Q " of sedimentary rock or it 
may relate t o  generation of chaotic internal multiple reflections. Larger 
values than 100 occur when (1) much of the path is in water or (2) a t  time 
depths greater than about 4 seconds). Figure 8 compares two nearby migra- 
tion velocities. The separation of the curves increases with angle. For the 
separation t o  be less than a wavelength, for 90" dip the velocity error must be 
less than one part in 100. For 45" migration velocity error could be larger by 
a. 
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Velocities are rarely known this accurately. So we may question the 
value of migration a t  wide angles. 

Subjective Comparison and Evaluation of Methods 

The three basic methods of migration described in this section are com- 
pared subjectively in table 1. 

TABLE 1.3-1. Subjective comparison of three wide-angle migration methods. 

~ ( 2 )  

wide angle? 

correct phase and 
obliquity? 

wraparound noise? 

~ ( 2 )  

side boundaries 
and irregular spac- 
ing 
Speed 
memory organiza- 

- tion 

Hyperbola Sum or 
Semicircle Super- 
pose 

ray tracing 

Beware of data  
alias and operator 
alias. 

possible with some 
effort for const 
v  

no 

Production pro- 
grams have serious 
pitfalls. 

excellent 

slow 
awkward 

Phase Shift 

easily 

Beware of data 
alias. 

easy for any v  (z  ) 

on z , see Section 
4.5 to alleviate on 
t 
approximately by 
iteration and 
interpolation 

poor 

average 
good 

Stolt 

approximately by 
stretching 

Beware of data 
alias. 

for const v  

on z , see Section 
4.5 t o  alleviate on 
( t ,  z )  
no known program 

poor 

very fast 
good 
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The perspective of later chapters makes it possible to  remark on the 
quality of the wide-angle methods as a group, and it is useful t o  do that  now. 
Their greatest weakness is their difficulties with lateral velocity variation. 
Their greatest strength, wide-angle capability, is reduced by the weakness of 
other links in the data collection and processing chain, namely: 

1. Shot-to-geophone offset angles are often large but ignored. A CDP 
stack is not a zero-offset section. 

2. Why process t o  the very wide angles seen in the survey line when 
even tiny angles perpendicular t o  the line are being ignored? 

3. Data is often not sampled densely enough to  represent steeply dip- 
ping data  without aliasing. 

4. Accuracy in the knowledge of velocity is seldom enough t o  justify 
processing to  wide angles. 

5. Noise eventually overpowers all echoes and this also implies an angle 
cutoff. For example, imagine oil reservoirs a t  a time depth of two 
seconds, where data recording stopped a t  four seconds. The implied 
angle cutoff is a t  60". 

EXERCISES 

I. The wave modeling program sketch assumes that  the exploding reflectors 
are impulse functions of time. Modify the program sketch for wave 
modeling t o  include a source waveform s (t ). 

2. The migration program sketch allows the velocity t o  vary with depth. 
However the program could be speeded considerably when the velocity is 
a constant function of depth. Show how this could be done. 

3. Define the program sketch for the inverse t o  the Stolt algorithm - that  
is, create synthetic data from a given model. 

4. The Stolt algorithm can be reorganized to reduce the memory require- 
ment of zero padding the time axis. First Fourier transform x t o  k , .  

Then select, from the ( t ,  k,)-plane of data, vectors of constant k , .  
Each vector can be moved into the space of a long vector, then zero pad- 
ded and interpolated. Sketch the implied program. 

5. Given seismic data that  is cut off at  four seconds, what is the deepest 
travel time depth from which 80" dips can be observed? 
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The Physical Basis 

Previous sections have considered the geometr ica l  aspects of wave propa- 
gation and how they relate t o  seismic imaging. Now we will consider how the 
physical  aspects relate t o  imaging. The propagation medium has a mass den- 
sity and compressibility. The waves have a material acceleration vector and a 
pressure gradient. Static deformation, ground roll, shear, rigidity, dissipation, 
sedimentary deposition - how are these related t o  image construction? 

Because of the complexity of sedimentary rocks, there is not universal 
agreement on an appropriate mathematical description. T o  help you under- 
stand the degree t o  which theory can be used as a guide, I will point t o  some 
inconsistencies between theory and current industrial practice. 

The Clastic Section 

Generally speaking, most petroleum reservoir rocks are sandstones. 
Sandstones are most often made by the sands that  are deposited near the 
mouths of rivers where the water velocity is no longer sufficient to  move 
them. The sands deposit along the terminus of the sand bars found a t  the 
river mouth, often along a slope of 25" or so, as depicted in figure 1. 
Although the sands are not laid down in flat layers, the process may build a 
horizontal layer. 

river 

FIG. 1.4-1. Sands (petroleum reservoir rocks) deposit on fairly steep slopes 
where rivers run into the ocean. 
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Clays are more fine-grained materials (dirt) that are carried out t o  deeper 
water before they settle to  make shale. Shale deposits tend t o  be layered 
somewhat more horizontally than sandstones. Specific locations of sand depo- 
sition change with the passing of storms and seasons, leaving a wood-grain- 
like appearance in the rock. 

The river delta itself is a complicated, ever-changing arrangement of 
channels and bars, constantly moving along the coastline. At  any one time 
the delta seems t o  be moving seaward as deposits are left, but later settling, 
compression, or  elevation of sea level can cause it t o  move landward. 

Sand is important because its porosity enables oil t o  accumulate and its 
permeability enables the oil t o  move to  a well. Shale is important because it 
contains the products of former life on earth, and their hydrocarbons. These 
escape t o  nearby sands, but often not t o  the earth's surface, because of cover- 
ing impermeable shales. The acoustic properties of sands and shales often 
overlap, though there is a slight tendency for shales t o  have a lower velocity 
than sands. Geophysicists on the surface see with seismic wavelengths (E 30 
meters) the final interbedded three-dimensional mixture of sands and shales. 

Mixtures of sands and shales are called clastic rocks. The word clast 
means break. Clastic rocks are made from broken bits of crystalline rock. 
Most sedimentary rocks are clastic rocks. Most oil is found in clastic rocks. 
But much oil is also found in association with carbonates such as limestone. 
Carbonates are formed in shallow marine environments by marine organisms. 
Many carbonates (and elastics) contain oil that  cannot be extracted because of 
lack of permeability. Permeability in carbonate rocks arises through several 
obscure processes. The seismologist knows carbonates as rocks with greater 
velocity than clastic rocks. Typically, a carbonate has a 20-50% greater ve- 
locity than a nearby clastic rock. Clastic rock sometimes contains limestone, 
in which case it is called marl. 

Chrono-Stratigraphy 

Strange as i t  may seem, there is not universal agreement about the exact 
nature of seismic reflections. Physicists tend t o  think of the reflections as 
caused by the interface between rock types, as a sand-to-shale contact. The 
problem with this view is that  sands and shales interlace in complex ways, 
both larger and smaller than the seismic wavelength. Many geologists, partic- 
ularly a group known as seismic stratigraphers, have a different concept. (See 
Seismic Stratigraphy - Applications to  Hydrocarbon Exploration, memoir 26 
of the American Association of Petroleum Geologists). They have studied 
thousands of miles of reflection data along with well logs. They believe a 
reflection marks a constant geological time horizon. They assert that  a long, 
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continuous reflector could represent terrigenous deposition on one end and 
marine deposition on the other end with a variety of rock types in between. 
Data  interpretation based on this assumption is called chrono-stratigraphy. 
The view of the seismic stratigrapher seems reasonable enough for areas that  
are wholly clastic, but when carbonates and other rocks are present, the 
physicist's view seems more appropriate. For further details, the book of 
Sheriff [I9801 is recommended. 

Nonobservation of Converted Shear Waves 

In earthquake seismology and in laboratory measurement there are two 
clearly observed velocities. The faster velocity is a pressure wave ( P  -wave), 
and the slower velocity is a shear wave (S-wave). The shear wave can be 
polarized with ground motion in a horizontal plane (SH)  or in a vertical plane 

(SV). Theory, field data, and laboratory measurement are in agreement. 
Successful experimental work with S-waves in the prospecting environment 
was done by Cherry and Waters [I9681 and Erickson, Miller and Waters 
[1968]. 

It is remarkable that  more than 99% of industrial petroleum prospecting 
ignores the existence of shear waves. Mathematically the earth is treated as if 
it were a liquid or a gas. The experimental work with shear waves used spe- 
cial equipment t o  generate and record vibration perpendicular t o  the survey 
line, i.e. SH-waves. The picture of the earth given by these transverse waves 
is often impaired by the soil layers, but sometimes the SH-wave picture is 
clear and consistent. Surprisingly, even good SH-wave data is often difficult 
t o  relate t o  the P-wave picture. These experimental studies show that  the 
shear waves typically travel about half the speed of the pressure waves except 
in the soil layer, where the shear wave speed is often much slower and more 
variable. Observed shear waves usually have lower frequency than pressure 
waves. A shear wave with half the frequency and half the velocity of a pres- 
sure wave has just the same wavelength and hence the same resolving power 
as  the pressure wave. Indeed, experimental work shows that  shear waves do 
offer us about the same spatial resolution as pressure waves. Most land 
seismic data  shows only the vertical component of motion, and all marine 
seismic data records the pressure. So in the conventional recording geometry, 
ideally we should never see SH-waves. More precisely, SH-waves should be 
small, arising only from the earth's departure from simple stratification. 

The puzzling aspect of shear waves in reflection seismology is the failure 
of petroleum prospectors using the standard operating arrangement t o  rou- 
tinely observe P -teS conversions. Theory predicts that  P -waves hitting an 
interface at an angle should be partially converted t o  SV-waves. 
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Furthermore, for the 30 " -60 " angle reflections that  are routinely encountered, 
these converted waves should have a size comparable t o  the P-wave. 

The routine geometry of recording and processing discriminates some- 
what against converted shear waves. But i t  discriminates against multiple 
reflections too (in much the same way) and we see multiples all the time. 
Furthermore the signature of converted waves should resemble that  of multi- 
ples, but be distinctly different. Converted waves should show up routinely in 
velocity surveys (Chapter 3) .  Figure 2 shows a zero-offset section containing 
some multiple reflections. The multiple reflection is recognizable as a replica 
of earlier topography. Converted waves would replicate the topography but 
the time scaling would be in the ratio of about 312 instead of exactly 412. 
With a sufficiently complex topography, as in figure 2, the probability is low 
tha t  the converted wave would be mistaken for another primary reflection. 

FIG. 1.4-2. A zero-offset section from east Africa with multiple reflections. 
(Teledyne) 
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Converted waves should have good diagnostic value in exploration. But 
the likelihood of seeing converted shear waves in conventional data seems to  
be so remote that  most interpreters have given up looking. Why aren't con- 
verted waves seen in conventional data? Some reasons can be offered: 

I. In marine data there would have t o  be an additional conversion t o  
P for the water path. 

2. In land data the soil is especially absorptive of shear. 

3. Vertical component recorders tend t o  see P better than S. This 
is especially so because rays bend toward the vertical in the near 
surface. 

Of all the reasons why converted shear waves should be weaker than 
pressure waves, none is overwhelming. A wide range of amplitudes are 
recorded in a wide variety of environments. Data are often displayed with 
automatic gain control (AGC). Weakened amplitude appears t o  be 
insufficient cause for the failure of observation. We should keep looking. 
Converted waves are certainly more prevalent than our recognition of them. 
(I have never identified a converted shear wave on conventional recordings). 

So although converted shear waves might some day play a significant role 
in reflection seismology, we now return to  the mainstream - how t o  deal 
effectively with that  which is routinely observable. 

Reliability of Reverberation Modeling 

The seismological literature contains an abundance of theory to  describe 
seismic waves in layered media. A significant aspect of applied seismology is 
the general neglect of intrabed reverberation. When a wave reflects from an 
interface, the strength of the reflected wave is a small fraction, typically less 
than lo%, of the strength of the incident wave. This reflected wave is the 
one that  is mainly dealt with in this book. However, the reflected wave itself 
reflects again and again, ad infinitum. For short path geometries, there can 
be very many of these rays. The question is whether these reverberations can 
ever amount t o  enough t o  make considering them worthwhile. The answer 
seems t o  be that  although reverberation may be significant, seismologists are 
rarely able t o  improve interpretation of reflection survey data with the more 
complicated theory that  is required to  incorporate reverberation. A few more 
details are in Section 5.5. 

The situation is somewhat improved when well logs are available, but 
even then there are serious difficulties. The best possible lateral resolving 
power, say about 20-50 meters, is obtained after migration. The well log, 
however, is not a 20-50 meter lateral average of the earth. Next time you see 
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a highway cut through sedimentary rocks, think of the difference between a 
point and a lateral average over 20-50 meters. In practice, people smooth the 
well log (vertical smoothing). Too little smoothing gives too much reverbera- 
tion. Too much smoothing gives no reverberation. The amount of vertical 
smoothing is an empirically determined parameter, and results are 
significantly sensitive t o  it. Vertical averages of the well log may or may not 
be a satisfactory approximation t o  the required horizontal average. 

Failure of Newtonian Viscosity 

Also remarkable is the failure of basic textbook seismology t o  explain the 
observed frequency-dependence of the dissipation parameter Q . The simplest 
theoretical approach t o  dissipation is to  add a strain-rate term t o  Hooke's 
stress-strain law. This predicts stronger relative dissipation of high frequen- 
cies than of low frequencies. Experimentally, relative dissipation is observed 
t o  be roughly constant over many decades of frequency. Other simple 
Newtonian theories yield polynomial ratios in -i w for the stress/strain ratio. 
These theories contain scale lengths and characteristic frequencies. They do 
not predict constant Q .  The heterogeneity of the rock a t  all scales seems t o  
be an essential attribute of a successful theory (Section 4.6). 

Philosophy of Inverse Problems 

Physical processes are often simulated with computers in much the same 
way they occur in nature. The machine memory is used as a map of physical 
space, and time evolves in the calculation as i t  does in the simulated world. 
A nice thing about solving problems this way is that  there is never any ques- 
tion about the uniqueness of the solution. Errors of initial data and model 
discretization do not tend to  have a catastrophic effect. Exploration geophysi- 
cists, however, rarely solve problems of this type. Instead of having (x , z )- 
space in the computer memory and letting t evolve, we usually have (x , t )- 
space in memory and extrapolate in depth z .  This is our business, taking 
information (data) a t  the earth's surface and attempting t o  extrapolate t o  
information a t  depth. Stable time evolution in nature provides no "existence 
proof" that  our extrapolation goals are reasonable, stable, or even possible. 

The time-evolution problems are often called forward problems and the 
depth-extrapolation problems inverse  problems. In a forward problem, such as 
one with acoustic waves, it is clear what you need and what you can get. 
You need the density p(x , z ) and the incompressibility K (x , z ), and you 
need t o  know the initial source of disturbance. You can get the wavefield 
everywhere a t  later times but you usually only want it a t  the earth's surface 
for comparison t o  some data. In the inverse problem you have the waves seen 
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a t  the surface, the source specification, and you would like t o  determine the 
material properties p(x, z )  and K (x , z). What has been learned from 
experience is that  routine observations do not give reasonable estimates of 
images or maps of p and K .  

What You Can Get from Reflection Seismology 

Luckily, i t  has been discovered that  certain functions of p and K can 
be reliably determined and mapped. The velocity v and the acoustic 
impedance R are given by the equations 

v = J r r 7 i ;  ( l a )  

R = m  ( l b )  

Mathematically, it is a simple job t o  back-solve equation (I), which gives 

In practice, the solution (2) has little value because the two parameters v 
and R are seen through nonoverlapping spectral windows. The acoustic 
impedance R is seen through the typical 10 t o  100 Hz spectral window of 
good quality reflection data. Since the low frequency part of the spectrum is 
missing, it is common to  say that  it is not the impedance which is seen, but 
the gradient repectivity = c (x , z ) = v log (R ). 

The velocity v is seen through a much smaller window. Observation of 
i t  involves studying travel time as shot-to-geophone offset varies and will be 
described in Chapter 3. With this second window it is hard t o  discern sixteen 
independent velocity measurements on a 4-second reflection time axis. So this 
window goes from zero t o  about 2 Hz, as depicted in figure 3. 

Note that  there is an information gap from 2-10 Hz. Even presuming 
tha t  rock physics can supply us with a relationship between p and K ,  the 
gap seriously interferes with the ability of a seismologist t o  predict a well log 
before the well is drilled. What seismologists can do somewhat reliably is 
predict a filtered log. 

The observational situation described above has led reflection seismole 
gists t o  a specialized use of the word velocity. To a reflection seismologist, ve- 
locity means the low spatial frequency part of "real velocity." The high- 
frequency part of the "real velocity" isn't called velocity: it is called 
repectivity. Density is generally disregarded as being almost unmeasurable by 
surface reflection seismology. 
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FIG. 1.4-3. Reliability of information obtained from surface seismic measure- 
ments. 

Mathematical Inverse Problems 

In mathematics the solution t o  an inverse problem has come to  mean the 
"determination" of material properties from wavefields. Often this is 
achieved with a "convergent sequence." Geophysicists are less precise (or 
more inclusive) about what they mean by "determination." In Chapters 1-2 of 
this book reflectors are "determined" by the exploding-reflection concept. In 

Chapter 3 shot-to-geophone offset is incorporated, and reflectivity c ( x ,  z )  
and velocity v ( z  ) are "determined" with a buried-experiment concept. In 
Chapter 5 the concept is developed of suppressing multiple reflections and 
finding the "true" amplitudes of reflections by having the upcoming wave 
vanish before the onset of the downgoing wave. Other imaging concepts seem 
likely t o  result from future processing schemes. It might be possible t o  show 
that  some of our "determinations" coincide with those of mathematicians, but 
such coincidence is not our goal. 

Derivation of the Acoustic Wave Equation 

The acoustic wave equation describes sound waves in a liquid or gas. 
Another more complicated set of equations describes elastic waves in solids. 
Begin with the acoustic case. Define 

P = mass per unit volume of the fluid 
7 u - velocity flow of fluid in the x-direction 

w = velocity flow of fluid in the z-direction 
P = pressure in the fluid 

Newton's law of momentum conservation says that  a small volume within a 
gas will accelerate if there is an applied force. The force arises from pressure 
differences at opposite sides of the small volume. Newton's law says 
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m a s s  X acceleration = force = - pressure gradient 

The second physical process is energy storage by compression and volume 
change. If the velocity vector u a t  x + Ax exceeds that  at x , then the 
flow is said to  be diverging. In other words, the small volume between x 
and x + Ax is expanding. This expansion must lead t o  a pressure drop. 
The amount of the pressure drop is in proportion t o  a property of the fluid 
called its incompressibil i ty  K .  In one dimension the equation is 

pressure drop = ( incompressibil i ty)  X (divergence of velocity)  

In two dimensions it is 

To  arrive a t  the one-dimensional wave equation from (3a) and (4a), first 
divide (3a) by p and take its x -derivative: 

Second, take the time-derivative of (4). In the solid-earth sciences we are for- 
tunate that  the material in question does not change during our experiments. 
This means that  K is a constant function of time: 

Inserting (5) into (6), the one-dimensional scalar wave equation appears. 

In two space dimensions, the exact, acoustic scalar wave equation is 

You will often see the scalar wave equation in a simplified form, in which i t  is 
assumed that  p is not a function of x and z . Two reasons are often given 
for this approximation. First, observations are generally unable t o  determine 
density, so density may as well be taken as constant. Second, we will soon 
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see that  Fourier methods of solution do not work for space variable 
coefficients. Before examining the validity of this approximation, its conse- 
quences will be examined. I t  immediately reduces (7b) t o  the usual form of 
the scalar wave equation: 

T o  see that  this equation is a restatement of the geometrical concepts of 
previous sections, insert the trial solution 

P = exp(-iwt + i  k,x + i  k z z )  (9) 

What is obtained is the dispersion relation of the two-dimensional scalar wave 
equation: 

Earlier (Section 1.2, equation(8)) an equation like (10) was developed by con- 
sidering only the geometrical behavior of waves. In that  development the 
wave velocity squared was found where K l p  stands in equation (10). Thus 
physics and geometry are reconciled by the association 

Last, let us see why Fourier methods fail when the velocity is space vari- 
able. Assume that  w, k,, and kz are constant functions of space. Substi- 

tute (9) into (8) and you get the contradiction that  w, k,, and k, must be 

space variable if the velocity is space variable. Try again assuming space 
variability, and the resulting equation is still a differential equation, not an 
algebraic equation like (10). 

Evanescence and Ground Roll 

Completing the physical derivation of the dispersion relation, 

we can now have a new respect for it. It carries more meaning than could 
have been anticipated by the earlier geometrical derivation. The dispersion 
relation was originally regarded merely as sin2 6' + cos2 0 = 1 where 
sin 0 = v k, l w .  There was no meaning in sin 0 exceeding unity, in other 
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words, in v k, exceeding w. Now there is. There was a hidden ambiguity 

in two of the previous migrat,ion methods. Since data could be an arbitrary 
function in the ( t  , a:)-plane, its Fourier transform could be an arbitrary func- 
tion in the (w, k,)-plane. In practice then, there is always energy with an 

angle sine greater than one. This is depicted in figure 4. What should be 
done with this energy? 

+ reflection -4 v ( z  2) 

FIG. 1.4-4. The triangle(s) of reflection energy I w I > v ( z  ) I k, I become 
narrower with velocity, hence with depth. Ground roll is energy that  is prop- 
agating a t  the surface, but evanescent a t  depth. 

When v k;, exceeds w, the familiar downward-extrapolation expression 

is better rewritten as 

This says that  the depth-dependence of the physical solution is a growing or a 
damped exponential. These solutions are termed evanescent waves. In the 
most extreme case, w = 0, k, is real, and kz = ki  Ic,.  For elastic waves, 

that  would be the deformation of the ground under a parked airplane. Only 
if the airplane can move faster than the speed of sound in the earth will a 
wave be radiated into the earth. If the airplane moves a t  a subsonic speed 
the deformation is said to  be quasi-static. 

Perhaps a better physical description is a thought experiment with a 
sinusoidally corrugated sheet. Such metallic sheet is sometimes used for roofs 
or garage doorways. The wavelength of the corrugation fixes k,. Moving 
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such a sheet past your ear a t  velocity V you would hear a frequency of 
oscillation equal t o  V k., , regardless of whether V is larger or  smaller than 

the speed of sound in air. But the sound you hear would get weaker exponen- 
tially with distance from the sheet unless i t  moved very fast, V > v ,  in 
which case the moving sheet would be radiating sound t o  great distances. 
This is why supersonic airplanes use so much fuel. 

What should a migration program do with energy tha t  moves slower 
than the sound speed? Theoretically, such energy should be exponentially 
damped in the direction going away from the source. The damping in the 
offending region of (w, kz)-space is, quantitatively, extremely rapid. Thus, 

simple exploding-reflector theory predicts that  there should be almost no 
energy in the data a t  these low velocities. 

FIG. 1.4-5. Florida shallow marine profile, exhibiting ground roll with fre- 
quency dispersion. (Conoco, Yedlin) 
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The reality is that ,  instead of tiny amounts of energy in the evanescent 
region of (w, k, )-space, there is often a great deal. This is another breakdown 

of the exploding-reflector concept. The problem is worst with land data. 
Waves that  are evanescent in deep, fast rocks of interest can be propagating 
in the low-velocity soil layer. This energy is called ground roll. Figure 5 
shows an example. Like the surface of the earth, which varies greatly from 
place t o  place, the immediate subsurface which controls the ground roll varies 
substantially. So although figure 5 is a nice example, no example can really 
be typical. This data is not a zero-offset section. The shot is on the left, and 
the traces t o  the right are from geophones at increasing distances from the 
shot. The straight line drawn onto the data defines a slope equal t o  the water 
velocity. Steeper events are ground roll. In this figure there are two types of 
ground roll, one a t  about half of water velocity, and a stronger one at about a 
quarter of water velocity. The later and stronger one shows an  interesting 
feature known as frequency dispersion. Viewing the data from the side, you 
should be able t o  notice that  the high frequencies arrive before the low fre- 
quencies. 

Ground roll is unwanted noise since its exponential decay effectively 
prevents i t  from being influenced by deep objects of interest. In practice, 
energy in the offending region of (w, k,)-space should be attenuated. A 
mathematical description is t o  say that  the composite mapping from model 
space t o  data  space and back t o  model space again is not an identity transfor- 
mation but an idempotent transformation. 

Reflections and the High-Frequency Limit 

It is well known that  the contact between two different materials can 
cause acoustic reflections. A material contact is defined t o  be a place where 
either K or p changes by a spatial step function. In one dimension either 
dK /ax or apldx or both would be infinite a t  a point, and we know that  
either can cause a reflection. So it is perhaps a little surprising that  while the 
density derivative is explicitly found in (7b), the incompressibility derivative 
is not. This means that  dropping the density gradients in (7b) will not elim- 
inate all possible reflections. Dropping the terms will slightly simplify further 
analysis, however, and since constant density is a reasonable case, the terms 
are often dropped. 

There are also some well-known mathematical circumstances under which 
the first-order terms may be ignored. Fix your attention on a wave going in 
any particular direction. Then w, k,, and k, have some prescribed ratio. 

In the limiting case that  frequency goes t o  infinity, the Ptt , P Z Z ,  and PZZ 

terms in (8) all tend t o  the second power of infinity. Suppose two media 
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gradually blend into one another so that  ap /ax  is less than infinity. The 
terms neglected in going from (7b) to  (8) are of the form p, P, and p, P,. 
As frequency tends t o  infinity, these terms only tend t o  the first power of 
infinity. Thus, in that  limit they can be neglected. 

These terms are usually included in theoretical seismology where the goal 
is t o  calculate synthetic seismograms. But where the goal is t o  create earth 
models from seismic field data - as in this book - these terms are generally 
neglected. Earth imaging is more difficult than calculating synthetic seismo- 
grams. But often the reason for neglecting the terms is simply t o  reduce the 
clutter. These terms may be neglected for the same reason that  equations are 
often written in two dimensions instead of three: the extension is usually pos- 
sible but not often required. Further, these terms are often ignored t o  facili- 
tate Fourier solution techniques. Practical situations might arise for which 
these terms need t o  be included. With the finite-difference method (Section 
2.2), they are not difficult t o  include. But any effort t o  include them in data  
processing should also take into account other factors of similar significance, 
such as the assumption that  the acoustic equation approximates the elastic 
world. 

EXERCISES 

1. Soil is typically saturated with water below a certain depth, which is 
known as the water table. Experience with hammer-seismograph systems 
shows that  seismic velocity typically jumps up t o  water velocity 
(VHSO = 1500 m /s ) a t  the water table. Say that  in a certain location, 

the ground roll is observed t o  be greater than the reflected waves, so a 
decision has been made to  bury geophones. The troublesome ground roll 
is observed t o  travel a t  six-tenths the speed of a water wave. How deep 
must the geophones be buried below the water table to  attenuate the 
ground roll by a factor of ten? Assume the data contains all frequencies 
from 10 t o  100 Hz. (Hints: log, 10E2, 2n-6, etc.) 

2. Consider the function 

1 
i w t  - i / w  ' J x d F  

P ( 2 ,  t )  = P o  0 K ( 0  JYoe (1.4El) 

where 

P o  = constant 
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as a trial solution for the one-dimensional wave equation: 

Substitute the trial solution (E l )  into the wave equation (E2). Discuss 
the trade-off between changes in material properties and the validity of 
your solution for different wavelengths. 

1.5 The Paraxial Wave Equation 

The scalar wave equation, unlike Fourier equations, allows arbitrary spa- 
tial variation in density and velocity. Because of this you might expect that  
i t  would be used directly in the manufacture of migrated sections. But i t  is 
used little for migration, and we will first review why this is so. Then we will 
meet the paraxial wave equation, which is the basis for most production 
migration. 

Philosophically, the paraxial wave equation is an intermediary between 
the simple concepts of rays and plane waves and deeper concepts embodied in 
the wave equation. (The paraxial wave equation is also called the single- 
square-root equation. In Chapter 2, a specialization of it is called the para- 
bolic wave equation). The derivation of the parabolic wave equation does not 
proceed from simple concepts of classical physics. Its development is more 
circuitous, like the Schroedinger equation of quantum physics. You must 
study i t  for a while t o  see why i t  is needed. When I introduced the parabolic 
wave equation t o  seismic calculations in 1970, it met with considerable suspi- 
cion. Fortunately for you, years of experience have enabled me t o  do a better 
job of explaining it, and fortunately for me, its dominance of the industrial 
scene will give you the interest t o  persevere. 

The paraxial equation will be introduced by means of Fourier methods. 
Fourier methods are incompatible with space-variable coefficients. Since we 
want t o  incorporate spatial variations in velocity, this limitation is ultimately 
t o  be avoided, so after getting the paraxial equation in the Fourier domain, 

ik, is replaced by d l d z ,  and ikz is replaced by a / d x .  Then, being in the 
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space domain, the velocity can be space-variable. The result is a partial 
differential equation often solved by the finite-differencing method. This pro- 
cedure turns out t o  be valid, but new students of migration understandably 
regard it with misgiving. Thus, the final part of this section is a derivation of 
the paraxial wave equation which makes no use of Fourier methods. 

Why the Scalar Wave Equation is Rarely Used for Migration 

Life would be simpler if migration could be done with the scalar wave 
equation instead of the paraxial equation. Indeed, migration can be done with 
the scalar wave equation, and there are some potential advantages (Kosloff 
and Baysal (19831). But more than 99% of current industrial migration is 
done with the paraxial equation. 

The main problem with the scalar wave equation is that  it will generate 
unwanted internal multiple reflections. The exploding-reflector concept can- 
not deal with multiple reflections. Primary reflections can be modeled with 
only upcoming waves, but multiple reflections involve both up and downgoing 
paths. The multiple reflections observed in real life are completely different 
from those predicted by the exploding-reflector concept. For the sea-floor 
multiple reflection, a sea-floor two-way travel-time depth of t o  yields sea- 

floor multiple reflections a t  times 2t0 ,  3t0,  4t0, . . . . In the exploding- 

reflector conceptual model, a sea-floor one-way travel-time depth of t o  yields 

sea-floor multiple reflections at  times 3t0,  s t 0 ,  7 t0 ,  . . - . In building a 

telescope, microscope, or camera, the designer takes care t o  suppress back- 
ward reflected light because i t  creates background noise on the image. Like- 
wise, in building a migration program we do not want t o  have energy moving 
around that  does not contribute t o  the focused image. The scalar wave equa- 
tion with space-variable coefficients will generate such energy. This unwanted 
energy is especially troublesome if it is coherent and migrates t o  a time when 
primaries are weak. I t  is annoying, a s  the reflection of a bright window seen 
on a television screen is annoying. So if you were trying t o  migrate with the 
scalar wave equation, you would make the velocity as smooth as possible. 

Another difficulty of imaging with the scalar wave equation arises with 
evanescent waves. These are the waves that  are exponentially growing or 
decaying with depth. Nature extrapolates waves forward in time, but we are 
extrapolating them in depth. Growing exponentials can have tiny sources, 
even numerical round-off, and because they grow rapidly, some means must 
be found t o  suppress them. 

A third difficulty of imaging with the scalar wave equation derives from 
initial conditions. The scalar wave equation has a second depth z -derivative. 
This means that  two boundary conditions are required on the z-axis. Since 
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data  is recorded a t  z  =0, i t  seems natural that  these boundary conditions 
should be knowledge of P and a P  / d z  a t  z  =O. But d P / a z  isn't 
recorded. 

Luckily, in building an imaging device that  operates wholly within a 
computer, we have ideal materials t o  work with, i.e., reflectionless lenses. 
Instead of the scalar wave equation of the real world we have the paraxial 
wave equation. 

Fourier Derivation of the Paraxial Wave Equation 

Start from the dispersion relation of the scalar wave equation: 

Take a square root. 

The simple act of selecting the minus sign in ( 2 )  includes the upcoming waves 
and eliminates the downgoing waves. Equation (1) is the three-dimensional 
Fourier transform of the scalar wave equation. Inverse transforming ( 2 )  will 
give us an equation for upcoming (or downgoing) waves only, without the 
other. Inverse Fourier transformation over a dimension is just a matter of 
selecting one or more of the following substitutions: 

After inverse transformation over z  there is a differential equation in z  in 
which the velocity may be taken t o  be z-variable. Likewise for x . Any 
equation resulting from any of the substitutions of (3) into (2) is called a 
paraxial equation. Chapter 2 of this book goes into great detail about the 
meaning of these equations. Before beginning this interpretation the paraxial 
wave equation will be derived without the use of Fourier transformation. 
Besides giving a clear path t o  the basic migration equation, this derivation 
also gives a better understanding of what the equation really does, and how it 
differs from the scalar wave equation. 
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Snell Waves 

It is natural to  begin studies of waves with equations that  describe plane 
waves in a medium of constant velocity. However, in reflection seismic sur- 
veys the velocity contrast between shallowest and deepest reflectors ordinarily 
exceeds a factor of two. Thus depth variation of velocity is almost always 
included in the analysis of field data. Seismological theory needs t o  consider 
waves that  are just like plane waves except that  they bend t o  accommodate 
the velocity stratification v ( z  ). Figure 1 shows this in an idealized geometry: 
waves radiated from the horizontal flight of a supersonic airplane. 

P 

speed at depth z 

ed at depth z 

FIG. 1.5-1. Fast airplane radiating a sound wave into the earth. From the 
figure you can deduce that  d t  / a x  is the same at depth z as i t  is at depth 
z 2 .  This leads (in isotropic media) to  Snell's law. 

The airplane flies horizontally a t  a constant speed. It goes from 
x = -GO t o  x = +oo. Imagine an earth of horizontal plane layers. In this 
model there is nothing to distinguish any point on the x-axis from any other 
point on the x-axis. But the seismic velocity varies from layer t o  layer. 
There may be reflections, head waves, shear waves, and multiple reflections. 
Whatever the picture is, it moves along with the airplane. A picture of the 
wavefronts near the airplane moves along with the airplane. The top of the 
picture and the bottom of the picture both move laterally at the same speed 
even if the earth velocity increases with depth. If the top and bottom didn't 
go a t  the same speed, the picture would become distorted, contradicting the 
presumed symmetry of translation. This horizontal speed, or  rather its 
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inverse d t  / a x ,  has several names. In practical work it is called the stepout. 
In theoretical work i t  is called the ray parameter. I t  is very important t o  
note that  d t  / ax  does not change with depth, even though the seismic veloc- 
ity does change with depth. In a constant-velocity medium, the angle of a 
wave does not change with depth. In a stratified medium, d t  / ax  does not 
change with depth. 

FIG. 1.5-2. Downgoing fronts and rays in stratified medium v (z).  The 
wavefronts are horizont a1 translations of one another. 

Figure 2 illustrates the differential geometry of the wave. The diagram 
shows that  

d t  - - sin 0 - - 
dx v 
d t - - cos 0 - - 
d z v 

These two equations define two (inverse) speeds. The first is a horizontal 
speed, measured along the earth's surface, called the horizontal phase velocity. 
The second is a vertical speed, measurable in a borehole, called the vertical 
phase velocity. Notice that  both these speeds exceed the velocity v of wave 
propagation in the medium. Projection of wave fronts onto coordinate axes 
gives speeds larger than v ,  whereas projection of rays onto coordinate axes 
gives speeds smaller than v . The inverse of the phase velocities is called the 
stepout or the slowness. 

Snell's law relates the angle of a wave in one layer with the angle in 
another. The constancy of equation (4a) in depth is really just the statement 
of Snell's law. Indeed, we have just derived Snell's law. All waves in seismol- 
ogy propagate in a velocity-stratified medium. So they cannot be called plane 
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waves. But we need a name for waves that  are near t o  plane waves. A Snell 
wave will be defined t o  be the generalization of a plane wave t o  a stratified 
medium v ( 2 ) .  A plane wave that  happens t o  enter a medium of depth- 
variable velocity v ( z )  gets changed into a Snell wave. While a plane wave 
has an angle of propagation, a Snell wave has instead a Snell parameter 
p = d t / d x .  

I t  is noteworthy that  Snell's parameter p = d t  / d x  is directly observ- 
able at the surface, whereas neither v nor 0 is directly observable. Since 
p = d t  / d x  is not only observable, but constant in depth, it is customary to  
use i t  t o  eliminate 8 from equation (4): 

d  t  - - sin 0 - -  - 
d x  v P 

Taking the Snell wave t o  go through the origin a t  time zero, an expres- 
sion for the arrival time of the Snell wave a t  any other location is given by 

2 
sin 0 cos 8 

~ ( x , z )  = - x  +I -  dz 
v 0 

The validity of ( 6 b )  is readily checked by computing d t  / d x  and d t  / d z  , 
then comparing with (5) .  

An arbitrary waveform j ( t  ) may be carried by the Snell wave. Use ( 6 )  
t o  define a delay time t o  for a delayed wave j [ t  -t O ( x ,  z )] at the location 

( 2 ,  2 ). 

z 
1 S n e l l W a v e ( t , x , z )  = j p ) ' z  ( I )  

Time-Shifting Equations 

An important task is t o  predict the wavefield inside the earth given the 
waveform a t  the surface. For a downgoing plane wave this can be done by 
the time-shifting partial differential equation 
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as may be readily verified by substituting the trial solutions 

z for constant v (9) 

This also works for nonvertically incident waves with the partial 
differential equation 

which has the solution 

In interpreting (11) and (12) recall that  l / ( d t  / d z )  is the apparent velocity 
in a borehole. The partial derivative of wavefield P ( t  , x , z ) with respect t o  
depth z is taken a t  constant x ,  i.e., the wave is extrapolated down the 
borehole. The idea that  downward extrapolation can be achieved by merely 
time shifting holds only when a single Snell wave is present; that  is, the 
same arbitrary time function must be seen a t  all locations. 

Substitution from (5) also enables us t o  rewrite (11) in the various forms 

Equation (13) is a paraxial wave equation. Since d t  /dx = p  can be meas- 
ured along the surface of the earth, it seems that  equation (13c), along with 

an assumed velocity v ( z  ) and some observed data P ( t  , x , z =O), would 
enable us t o  determine d P  / d z ,  which is the necessary first step of downward 
continuation. But the presumption was that  there was only a single Snell 
wave and not a superposition of several Snell waves. Superposition of 
different waveforms on different Snell paths would cause different time func- 
tions t o  be seen a t  different places. Then a mere time shift would not achieve 
downward continuation. Luckily, a complicated wavefield that  is variable 
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from place t o  place may be decomposed into many Snell waves, each of which 
can be downward extrapolated with the differential equation (13) or  its solu- 
tion (12). One such decomposition technique is Fourier analysis. 

Fourier Decomposition 

Fourier analyzing the function f (x , t , z =O), seen on the earth's sur- 
face, requires the Fourier kernel exp(- iw t  + i Ic, x) .  Moving on the earth's 

surface at an inverse speed of d t / ax  = Ic, lw, the phase of the Fourier ker- 

nel, hence the kernel itself, remains constant. Only those sinusoidal com- 
ponents that  move a t  the same speed as the Snell wave can have a nonzero 
correlation with it. So if the  disturbance is a single Snell wave, then all 
Fourier components vanish except for those that  satisfy p = kz lw. You 

should memorize these basic relations: 

In theoretical seismology a square-root function often appears as a result of 
using (14) t o  make a cosine. 

Utilization of this Fourier domain interpretation of Snell's parameter p 
enables us t o  write the square-root equation (13) in an  even more useful form. 
But first the square-root equation must be reexpressed in the Fourier domain. 
This is done by replacing the d l d t  operator in (13) by -i w. The result is 

At present i t  is equivalent t o  specify either the differential equation (15) or its 
solution (12) with j as the complex exponential: 

Later, when we consider lateral velocity variation v (x ) ,  the solution (16) 
becomes wrong, whereas the differential equation (13c) is a valid description of 
any local plane-wave behavior. But before going t o  lateral velocity gradients 
we should look more carefully at vertical velocity gradients. 
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Velocity Gradients 

Inserting the Snell wavefield expression into the scalar wave equation, we 
discover that  our definition of a Snell wave does not satisfy the scalar wave 
equation. The discrepancy arises only in the presence of velocity gradients. 
In other words, if there is a shallow constant velocity v l  and a deep con- 

stant  velocity v 2 ,  the equation is satisfied everywhere except where v l  
changes t o  v2. Solutions t o  the scalar wave equation must show amplitude 

changes across an interface, because of transmission coefficients. Our 
definition of a Snell wave is a wave of constant amplitude with depth. The 
paraxial wave equation could be modified t o  incorporate a transmission 
coefficient effect. The reason i t  rarely is modified may be the same reason 
that  density gradients are often ignored. They add clutter t o  equations while 
their contribution t o  better results - namely, more correct amplitudes and 
possible tiny phase shifts - has marginal utility. Indeed, if they are included, 
then other deeper questions should also be included, such as the question, why 
use the acoustic equation instead of various other forms of scalar elastic equa- 
tions? 

Even if the paraxial wave equation were modified t o  incorporate a 
transmission coefficient effect, its solution would still fail t o  satisfy the scalar 
wave equation because of the absence of the reflected wave. But that  is just 
fine, because i t  is the paraxial equation, with its reflection-free lenses, that  is 
desired for data processing. 

EXERCISES 

1. Devise a mathematical expression for a plane wave that  is an impulse 
function of time with a propagation angle of 15 " from the vertical z-axis 
in the plus z direction. Express the result in the domain of 

(8) ( t  , x , Z ) 

(b) (w, x , z ) 

( 4  (w, lc, 9 2 )  

(4 (w, P 7 2 ) 
2. Find an amplitude function A ( z )  which, when multiplied by j in 

equation (12), yields an approximate solution t o  the scalar wave equation 
for stratified media v (2) .  For p = 0, the solution should reduce t o  the 
solution of Exercise 2 in Section 1.4. 
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1.6 Mastery of 2-D Fourier Techniques 

Here is a collection of helpful tips for those of you who will be involved 
in implementations of migration methods. 

Signs and Scales in Fourier Transforms 

In Fourier transforming t -, x -, and z -coordinates, a sign convention 
must be chosen for each coordinate. Electrical engineers have chosen one con- 
vention and physicists another. While both have good reasons for their 
choices, our circumstances more closely resemble the circumstances of physi- 
cists, so their convention will be used. For the inverse Fourier transformation 
this is 

- i w t  + i  k,z + i  k , z  
p ( t , x , z )  = J J J e  P (0, k, , k, ) d 0 dk, dk, 

For the forward Fourier transform, the space variables carry a negative sign 
and time carries a positive sign. The limits on the integrations and the scale 
factor in the continuous case differ from the discrete case. We rarely do the 
transforms analytically in either case. Since the extra notation required for 
limits and scales usually clutters rather than clarifies a discussion, they will be 
omitted altogether except when they play a useful role. 

The sign convention is more important. Because there are so many space 
axes (later, midpoint and offset space axes are introduced and transformed as 
well), it is worthwhile t o  establish a good sign convention. Someone using the 
approach of "changing the signs around until i t  works" is likely t o  be per- 
plexed by the number of possible permutations. There are good reasons for 
the sign conventions chosen by physicists, and once the reasons are known, it 
is easy t o  remember the conventions. 

Waves should, by convention, move in the positive direction on the space 
axis. This is especially evident on work for which the space axis is a radius. 
Atoms, like geophysical sources, always radiate from a point t o  infinity, not 
the other way around. So our convention will be always t o  choose waves 
moving positively on any space axis. In equation (1) this means that  the sign 
on the spatial frequencies must be opposite t o  the sign on the temporal fre- 
quency. This statement applies t o  both the forward and the inverse 
transform. 

This leaves the choice of whether to  use the positive sign for the time 
axis or the space axes. There are many space axes but only one time axis. 
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There will be the fewest number of minus signs and the fewest sign changes if 
the spatial gradient a l a s ,  d / d z ,  etc. is chosen t o  be associated with the 

positive k -vector, i.e., with i , ikz , etc. Of course, this leaves the time 

derivative with - i w. 

This sign convention brings our practice into conflict with the practice of 
electrical engineers, who rarely work with space axes and naturally enough 
have chosen t o  associate d / d t  with +i w. The only good reason I know to  
adopt the engineering choice is that  we compute with an array processor built 
and microcoded by engineers who have of course used their own sign conven- 
tion. I t  doesn't matter for the programs that  transform complex-valued time 
functions to complex-valued frequency functions, because then the sign con- 
vention is under the user's control. But it does make a difference with the 
program that  converts real time functions t o  complex frequency functions. 
The way t o  live in both worlds is t o  imagine that  the frequencies produced by 
the program do not range from 0 to  +n as the description says, but from 
0 t o  -T. Alternately, you could always take the complex conjugate of the 
transform, which would swap the sign of the *axis. With the Stolt algorithm 
it is common to  transform space first. Then the array processor convention 
turns out t o  have our notation. 

How to Transpose a Big Matrix 

I t  is lucky that  very large matrices can easily be transposed. This is 
what makes wave-equation seismic data  processing reasonable on a small min- 
icomputer. By very large matrix, I mean one that  is too big t o  fit in a 
computer's random access memory (RAM). If two copies of the data  fit in the 

RAM, then transposition is simply the copy operation T (1, j) = M ( j ,  i). 

The transpose algorithm for very large matrices is simple but tricky. I 
shall begin, therefore, by describing a card trick. I have in my hands a deck 
of cards from which I have removed the nines, tens, and face cards. Let a ,  
b , c , and d  denote hearts, spades, clubs, and diamonds. Also, I have 
arranged these cards in the following order (let ace be denoted by one): 

Now I deal the cards face up alternately, one onto pile A and one onto pile 
B . You see 

Pile A :  l a  l c  2a 2c 3a 3c - . - 8a 8c 

Pile B: l b  I d  2b 2d 36 3d . - .  8b 8 d  

Next I place pile A on top of (in front of) pile B, and again deal the cards out 
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alternately onto pile A ' and pile B '. You see 

Pile A': l a  2a 3a . . . 8 a  l b  2b - . .  8b 

Pile B': l c  2c 3c - - -  8c  Id 2d - - . 8d 

Now I place pile A '  on top of pile B'. We started with all the aces 
together, the twos together, etc. Now all the hearts are together, the spades 
together, etc. So you see that  in just two deals of the cards, I have tran- 
sposed the deck. The cards were never spread out all over the table because 
they never had t o  be randomly accessed. Transposition was done by making 
sequential passes over the deck. In principle, this algorithm transposes a 
matrix requiring four magnetic tapes but almost no core memory. 

Now I will t ry the inverse transpose. Note that  i t  takes me three deals 
of the cards rather than the two deals it took for the original transpose. This 
is because the deck has 22 = 4 suits and 23 = 8 numbers. Actually, there 
is another algorithm which will allow me t o  do the inverse transpose in only 
two passes rather than three. I just do everything backwards. I s tart  with 
piles A ' and B'. Then I create pile A by alternately selecting cards one 
from pile A ' and one from pile B'. Likewise I create pile B. Then I 
repeat this procedure. The first algorithm is called the sort algorithm, and 
the second is called the merge algorithm. With these two algorithms, the 
matrix transpose of a matrix of size 2n X 2'" can be done by the lesser of 
n or m passes over the data. 

A variety of generalizations are possible. With four card piles, techniques 
could be developed for matrices of dimension 4 n .  This would decrease the 
number of passes but increase the required number of tape drives. Likewise, 
it turns out that  arbitrary order can be factored into primes, etc. But this 
takes us too far afield. 

Minimizing the number of passes over the data turns out t o  maximize the 
number of tapes. In reality you won't be using real tapes when you are tran- 
sposing. Instead you will be simulating tape operations on a large disk 
memory. Then the number of "tapes" you choose t o  use will be controlled by 
the ratio of the speed of random transfers to  the speed of sequential transfers. 

Rocca 's  2-D F o u r i e r  T r a n s f o r m  w i t h o u t  T r a n s p o s i n g  

The most direct method of two-dimensional Fourier transformation in a 
computer is the repetitive application of a one-dimensional Fourier transform 
method. The easiest part is the "fast" direction. That  is, if the data matrix 
is stored by columns - as in the Fortran language - then the column 
transforms are a trivial exercise in the repetitive use of a one-dimensional pro- 
gram. Now for the rows. If the matrix fits in the RAM, then everything is 
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easy: one row at a time can be copied into a vector; the vector can be Fourier 
transformed and then copied back into the matrix row. The more typical 
case is that  the data  doesn't fit in the RAM but does fit in the "virtual" 
memory. This means that  the programmer could write T (i , j ) = M ( j , i ) 
but the program would run prohibitively slowly because an entire page of vir- 
tual memory would be fetched from disk just t o  find a single number. 

Conceptually, an easy way t o  handle the transformation over the row 
direction is t o  transpose the matrix, transform each column, and transpose 
back. Fabio Rocca suggested a quicker and easier means of Fourier transfor- 
mation over the row index. The basic Fourier transform program has certain 
overhead calculations, such as computing or fetching sines and cosines. Ordi- 
narily, these overhead calculations are repeated each time a Fourier transfor- 
mation is performed. With Rocca's method the overhead calculations are 
done just once, and all the rows get Fourier transformed. So i t  is even 
quicker than the straightforward approach. The method follows. 

The data  matrix can be regarded as a row vector whose entries are 
columns. Taking the "fast" index t o  range down the column, the columns 
may be transformed by one-dimensional transforms either before or after the 
row operations are done. To  do the row operations, just modify an ordinary 
one-dimensional Fourier transform program by replacing each scalar add or 
multiply operation by the same operation on every element in the correspond- 
ing column. 

The order in which data  is accessed makes Rocca's row algorithm 
efficient in a virtual memory environment. Before the days of virtual 
memory, we implemented the Rocca row algorithm with reads and writes 
around the inner loops. 

T o  illustrate Rocca's method, a row Fourier transformation program was 
written based on the one-dimensional Fourier transformation program found 
in FGDP. It is included in the next section. That  program transforms com- 
plex time functions t o  complex frequency functions. If you should decide to  
write a real-to-complex Fourier transform, you should beware of the assump- 
tion that  real and imaginary parts are stored contiguously. This assumption 
is true for the column index, but not for the row index. 
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1.7 Sample Programs 

The programs in this section generated many of the examples given in 
this book. They were written for clarity and brevity, and they are excellent 
for experimental work. Good production programs will be faster (by factors 
of from 1.01 to  about 4). Speed can be gained by taking advantage of various 
special circumstances. For example, data is real, but these expository pro- 
grams assume i t  t o  be complex. 

RATional FORtran = Ratfor 

Bare bones Fortran is our most universal computer language. But it is 
hardly appropriate for expository discussion of algorithms. The ideal exposi- 
tory language is Ratfor. Ratfor is Rational For t ran ,  namely, Fortran 
without the blemishes. Ratfor programs (including the Ratfor preprocessor) 
are readily converted t o  Fortran by means of the Ratfor preprocessor. Since 
the preprocessor is publicly available Ratfor is practically as universal as For- 
tran.t 

You won't really need the preprocessor or any precise definitions if you 
already know Fortran or almost any other computer language, because then 
the Ratfor language will be easy t o  understand. Statements on a line may be 
separated by ";". Statements may be grouped together with { ). Do loops 
don't require statement numbers because { ) defines the range. Given that  
'Lif ( )" is true, the statements in the following { ) are done. "Else { )" does 
what you would expect it to. Indentation is used for readability. Choose 
your own style. I have overcondensed. Anything following # is a comment. 
You may omit the braces { ) when they contain only one statement. "Break" 
will cause premature termination of the enclosing { ). "Break 2" escapes 
from {{  )). "While ( ) { )" repeats the statements in { ) while the condition 
( ) is true. "Repeat { ) until ( )" is a loop that  tests a t  the bottom. A loop- 
ing statement more general than "do" is "for( initialize; condition; reinitialize) 

{ 1". "Next" causes skipping t o  the end of any loop and a retrial of the test 
condition. The Fortran relational operators .gt., .ge., .ne., etc. may be written 
>, >=, !=, etc. The logical operators .and. and .or. may be written & 
and I .  Anything that  doesn't make sense t o  the Ratfor preprocessor, such as 

t Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley Publishing 
Company. 
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Fortran input-output, is passed through without change. 

Two-Dimensional Fourier Transformation 

Two-dimensional Fourier transforms are based on the one-dimensional 
Fourier transform. An extremely rapid way t o  compute the one-dimensional 
Fourier transform exists and is called the Cooley-Tukey algorithm or the Fast 
Fourier Transform. Unfortunately it bears little resemblance t o  the Fourier 
integral. This method is so fast and effective that  you will hardly ever see the 
transform being done in the obvious way. All functions are taken t o  be 
periodic, so physically transient functions must be regarded as functions of 
very long period. Usually there is the further restriction that  the period must 
be exactly 2N points long, where N is an integer. To  understand this pro- 
gram, you should look a t  FGDP or any number of electrical engineering 
books. T o  write and use two-dimensional Fourier transform programs, it is 
only necessary t o  know the one-dimensional definition of inputs and outputs. 
Figure 1 shows that  humans like t o  have t =O in the middle of the time axis 
and ~3=0 in the middle of the frequency axis, whereas the standard one- 
dimensional Fourier transform programs place t =O and w=O a t  one end 
of a vector. 

Humans , 

Computers 

FIG. 1.7-1. Computer storage arrangement in one-dimensional Fourier 
transform programs. 

Take the one-dimensional Fourier transform of an eight-point time func- 
tion. The zero frequency is output in the first vector element. The Nyquist 
frequency T, which is the highest frequency representable on a mesh, namely 
the function +1, -1, +1, -1, - . . , is in the fifth element of the eight point 
function, after which follow the negative frequencies. The smallest nonzero 
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negative frequency is in the eighth vector element. If there were a ninth ele- 
ment, it would by periodicity be equal t o  the first element. I t  is a coinmon 
beginner's error t o  find that  the output of a migration is not real. The ima- 
ginary part should be about lo-' of the real part, as expected for single preci- 
sion arithmetic. A much larger imaginary part, proportional t o  1/N where 
N is the vector length, indicates a programming error. 

Below is the test program for the two-dimensional program. The "write" 
statement is local Fortran, not Ratfor. The function being transformed is 
something of a low-frequency function on the time axis, and very much a 
low-frequency function on the space axis. 

# Test case for two-dimensional Fourier Transformation 
integer it,nt,k,nx; complex cp(64,64), cwork(64) 
0~en(4,file=~~lotfile),status='new',access='direct',form='unformatted',recl=l) 
nx = 64; n t  = 64; 
do i t=l ,nt  

do ix=l,nx 
c p(it,ix)=O. 

cp(16,3)=1.; cp(16,4)=4.; cp(16,5)=6.; cp(16,6)=4.; cp(16,7)=1. 
cp(17,3)=1.; cp(17,4)=4.; cp(17,5)=6.; cp(17,6)=4.; cp(17,7)=1. 
call ft2d(ntlnx,cp,+l.,+l.,cwork) 
write(4,rec=l) ((real(cp(it,ix)),it=l,nt),ix=llnx) 
stop; end 

The most basic two-dimensional Fourier transform is shown below. 

# 2D Fourier transform by using 1D program 
subroutine ft2d (nl,n2,cplsignl,sign2,cwork) 
complex cp(nl1n2),cwork(n2) 
integer nl,n2 
real signl,sign2 
do i2 = l,n2 # transform over the fast dimension 

call fork (nl,cp(l1i2),signl) # one-dimensional Fourier transform 
do i l  = 1,n l  { # transform over the slow dimension 

do i2 = l ,n2  
cwork(i2) = cp(i1 ,i2) 

call fork (nZ,cwork,sign2) # one-dimensional Fourier transform 
do i2 = l ,n2 

cp(il,i2) = cwork(i2) 
1 

return; end 

Finally we have the one-dimensional fast Fourier transform program. 
This one is the Ratfor version of Fortran "fork" found in FGDP on p.12. As 
usual, lx is a power of 2, the output cx(1) is the zero frequency, cx(lx/2+1) is 
the secalled Nyquist frequency, and cx(1x) is the smallest negative frequency. 
The algorithm is short, but tricky, and you should not expect the program to  
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be readable unless you consult other references. 

# 1D fast Fourier transform 
subroutine fork(lx,cx,signi) 
complex cx(lx),carg,cexp,cw,ct 
j = l ; k =  1; sc = sqrt(l./lx) 
do i = 1,lx { 

if (i<=j) { ct=cx(j)*sc; cx(j)=cx(i)*sc; cx(i)=ct ) 
m = k / 2  
while (j  > m) { j=j-m; m=m/2; if (m< 1) break ) 
j = j+m 

repeat 1 
istep = 2*k 
do m = 1,k { 

carg = (0.,1.)*(3.14159265*signi*(m-l))/k; cw = cexp(carg) 
do i = m,lx,istep 

{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct ) 
1 

k = istep 
) until(k>=lx) 

return; end 

Fourier transforms have both real and imaginary parts. Sometimes both 
are displayed. Often the imaginary part is ignored. This is because most of 
our time functions vanish before t =O. Thus, their Fourier transforms must 
satisfy certain conditions, namely, real and imaginary parts must be related 
by Hilbert transform. Locally, one often looks like cosine, the other like sine. 
So, seeing the real part, it is often easy t o  imagine the imaginary part. Figure 
2 shows the output of the test program. 

Stolt Migration 

The Stolt migration program shown next uses linear interpolation to  con- 
vert the w-axis t o  the k,-axis. The scaling by dlc, / d  w has little effect, so it 

was omitted t o  shorten the program. (Something needed to  be saved for the 
exercises). The test case is t o  make semicircles from impulses. 
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W 

FIG. 1.7-2. Output of two-dimensional Fourier transformation test program. 

# Test case for Stolt migration. 
integer it,nt,k,nx; real vdtodx; complex cp(256,64) 
open(4,fi1e='p1otfi1e',status='new',access='direct1,form='unformatted',rec1=l) 
nx = 64; nt = 256; vdtodx = 1.14. # vdtodx = v dt / dx 
do it=l,nt 

do ix=l,nx 
cp(it,ix)=O. 

cP(32,9)=1.; cp(64,17)=1.; cp(128,33)=1. 
call stolt(nt,nx,cp,vdtodx) 
write(4,rec=l) ((real(cp(it,k)),it=l,nt),ix=l,nx) 
stop; end 
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# Stolt migration subroutine without cosine weight. 
subroutine stolt~(nt,nx,cp,vdtodx) 
integer ikx,nx,nt,nth,iktau,iom 
real om,vkx,wl,wh,aktau,pi,pionth,vdtodx 
complex cp(nt,nx),cbf(1025) 
pi = 3.14159265; nth=nt/2; pionth = pi/nth; 
call ft32d(nt,nx,cp,l.,-l.,cbf) 
do ikx = 1,nx { 

vkx = (ikx-1)*2.*pi*vdtodx/nx 
if ( ikx > nx/2 ) vkx = 2.*pi*vdtodx-vkx # negative kz 
cbf(1) = 0.; cbf(nt+l)=O. # cbf = working buffer 
do iom = 1,nt 

cbf(iom) = cp(iom,ikx) # Omit weighting 
cp(1 ,ikx)=O. # Ignore zero freq 
do iktau = 2,nth+l { # Stretch 

aktau = (iktau-l.Ol)*pionth 
om = sqrt(aktau*aktau+vkx*vkx); iom = l+om/pionth 
if(iom<nth) { 

wl = iom-om/pionth; wh = 1.-wl 
iktau,ikx) = wl*cbf(iom) +wh*cbf(iom+l) 
nbiktau+2,ikx) = wl*cbf(nt-iom+2)+wh*cbf(nbiom+l) 

} 
else 

cp(iktau,ikx) = 0. 

1 
1 

call ft2h(nt,nx,cp,-l.,l.,cbf) 
return; end 

The output of this test program was shown in Section 1.3. T o  better 
illustrate the periodic nature of the solution all but one semicircle was 

removed and the result plotted with a nonlinear gain. Four identical plots 
appear side-by-side in figure 3. 

Rocca's Row Fourier Transform 

Rocca's Fourier transform over rows is somewhat faster than the rudi- 
mentary program because the basic overhead is done once,  while every  row 
gets Fourier transformed. But the main advantage of the Rocca method over 
the rudimentary method is that  the data need not be transposed, and the pro- 
gram runs efficiently even in a paged environment. 
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FIG. 1.7-3. Periodicity of the output of the Stolt migration program. 

# Try Rocca's row Fourier transform. 
# sign2 should be + l .  or -1. it  is the sign of i. 
subroutine rowcc(nl,n2,cx,sign2,scale) 
complex cx(nl,n2),cmplx,cw,cdel 
do i l  = 1,nl 

do i2 = 1,112 
cx(il,i2) = cx(il,i2)*scale 

j = 1 

if (i<=j) call t~idl(nI,cx(i,i),cx(i,j)) 
m = n2/2 
while (j > m) { j = j-m; m = m/2; if (m < 1) break ) 
j = j + m )  

lstep = 1 
repeat { 

istep = 2*lstep; cw = 1. 
arg = sign2*3.14159265/lstep; cdel = cmplx(cos(arg),sin(arg)) 
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do m = 1,lstep { 
do i = m,n2,istep 

call twid2(nl,cw,cx(l,i),cx(l,i+Istep)) 
cw = cw*cdel 
1 

]step = istep 
) until(1step > =n2) 

return; end 

subroutine twidl(n,cx,cy) 
complex cx(n),cy(n),ct 
do i = 1,n { ct  = cx(i); cx(i) = cy(i); cy(i) = ct ) 
return; end 

# If you feel like optimizing, this is the place. 
subroutine twid2(n,cw,cx,cy) 
complex cx(n),cy(n),ctemp,cw 
do i = 1,n { ctemp = cw*cy(i); cy(i) = cx(i)-ctemp; cx(i) = cx(i)+ctemp ) 
return; end 

EXERCISES 

1. Most time functions are real. Their imaginary part is zero. Show that  
this means that F (w,  k ) can be determined from F (-w, -k ). 

2. Verify by using your computer and plotter that  figure 2 is produced by 
the program given. 

3. The real part of the F T  plotted in the previous exercise is somewhat 
difficult t o  interpret because of the awkward placement of the negative 
frequencies and wavenumbers. Modify the program so that  F (w, k )  has 
its origin a t  the center (33,33) of the plotted grid. Hint: a simple 
modification of j ( t ,  x )  before Fourier transforming is sufficient; recall 
the "shift theorem." Write j ( t  , x ) and the new, more easily inter- 
preted F (w, k ). Label axes. (Hale) 

4. A point explosion on the earth's surface a t  time t =O and location 
x =32 provides synthetic observations in the ( t  , x )-plane shown on the 
left. On the right is the magnitude of the two-dimensional Fourier 
transform, (w, k,)-plane. The origin is in the upper left corner of each 

plot. What would these plots look like on an earth of half the velocity? 
(Toldi) 
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5. Insert the appropriate cosine obliquity function into the Stolt migration 
program. Test, and verify little difference but some angle-dependent 
scaling. 

6. Write a program for diffraction by the Stolt method. That  is, given 
point scatterers inside the earth, generate the appropriate hyperbolas. 

7. If you include the inverse cosine weighting function in a Stolt diffraction 
program, beware of the pole a t  the evanescent edge. Is it better t o  
stretch before weighting or after? Why? 

8. Interpolation error in the Stolt program may be reduced by reducing the 
speed of oscillation of P(w) with w. To do this note that  p ( t  ) van- 
ishes for negative t . So multiply P (w)  by e wT before interpolation, 
and then divide it out after. What is an appropriate value of the con- 
stant T to  use in the program? 



Why Space and Time? 

In the previous chapter we learned how to  extrapolate wavefields down 
into the earth. The process proceeded simply, since it is just a multiplication 
in the frequency domain by exp[ik,(w, k , ) ~ ] .  Finite-difference techniques 

will be seen to  be complicated. They will involve new approximations and 
new pitfalls. Why should we trouble ourselves t o  learn them? To  begin with, 
many people find finite-difference methods more comprehensible. In 
( t  , x ,  2)-space, there are no complex numbers, no complex exponentials, and 
no "magic" box called FFT. 

The situation is analogous to  the one encountered in ordinary frequency 
filtering. Frequency filtering can be done as a product in the frequency 
domain or a convolution in the time domain. With wave extrapolation there 
are products in both the temporal frequency w-domain and the spatial fre- 
quency &-domain. The new ingredient is the two-dimensional (w, kx)-space, 

which replaces the old one-dimensional uspace.  Our question, why bother 
with finite differences?, is a two-dimensional form of an  old question: After the 
discovery of the fast Fourier transform, why should anyone bother with time- 
domain filtering operations? 

Our question will be asked many times and under many circumstances. 
Later ure will have the axis of offset between the shot and geophone and the 
axis of midpoints between them. There again we will need t o  choose whether 
t o  work on these axes with finite differences or to  use Fourier transformation. 
It is not an all-or-nothing proposition: for each axis separately either Fourier 
transform or convolution (finite difference) must be chosen. 

The answer to  our question is many-sided, just as geophysical objectives 
are many-sided. Most of the criteria for answering the question are already 
familiar from ordinary filter theory. Those electrical engineers and old-time 
deconvolution experts who have pushed themselves into wave processing have 
turned out t o  be delighted by it. They hadn't realized their knowledge had so 
many applications! 
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Figure 1 illustrates the differences between Fourier domain calculations 
and time domain calculations. The figure was calculated on a 2 5 6 x 6 4  mesh 
t o  exacerbate for display the difficulties in either domain. Generally, you 
notice wraparound noise in the Fourier calculation, and frequency dispersion 
(Section 4.3) in the time domain calculation. (The "time domain" hyperbola 
in figure 1 is actually a frequency domain simulation - t o  wrap the entire 
hyperbola into view). In this Chapter we will see how t o  do the time domain 
calculations. A more detailed comparison of the domains is in Chapter 4. 

FIG. 2.0-1. Frequency domain hyperbola (top) and time domain hyperbola 
(bottom). 

Even if you always migrate in the frequency domain, it is worth studying 
time domain methods to  help you choose parameters to  get a good time 
domain response. For example both parts of figure 1 were done in the fre- 
quency domain, but one simulated the time domain calculation t o  get a more 
causal response. 

Lateral Variation 

In ordinary linear filter theory, a filter can be made time-variable. This 
is useful in reflection seismology because the frequency content of echoes 
changes with time. An annoying aspect of time-variable filters is that  they 
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cannot be described by a simple product in the frequency domain. So when 
an application of time-variable filters comes along, the frequency domain is 
abandoned, or all kinds of contortions are made (stretching the time axis, for 
example) t o  try t o  make things appear time-invariant. 

All the same considerations apply to  the horizontal space axis x .  On 
space axes, a new concern is the seismic velocity v . If it is space-variable, 

say v (x) ,  then the operation of extrapolating wavefields upward and down- 
ward can no longer be expressed as a product in the k ,  -domain. Wave-ex- 

trapolation procedures must abandon the spatial frequency domain and go to  
finite differences. The alternative again is all kinds of contortions (such as 

stretching the x-axis) to  t ry  t o  make things appear t o  be space-invariant. 

In two or more dimensions, stretching tends t o  become more difficult and 
less satisfactory. 

A less compelling circumstance of the same type that  suggests finite 
differences rather than Fourier methods is lateral variation in channel loca- 
tion. If geophones somehow have become unevenly separated so that  the Ax 
between channels is not independent of x ,  then there is a choice of (1) resam- 
piing the data a t  uniform intervals before Fourier analysis, or (2) processing 
the data  directly with finite differences. 

Stepout 

Much of seismology amounts t o  measuring time shifts. The word 
stepout denotes a change of travel time with a change in location. 
Frequency-domain calculations usually conclude with a transform to  the time 
domain t o  let us see the shifts. An advantage of time-domain computations is 
that  time shifts of wave packets can be measured as the computation 
proceeds. In the frequency domain it is not difficult to  reference one single 
time point, or t o  prescribe a shift of the whole time function. But it is not 
easy t o  access separate wavelets or wave packets without returning t o  the 
time domain. 

The upward and downward wavefield extrapolation filter 

exp[i kz (w, k z ) z ]  is basically a causal all-pass filter. (Under some cir- 

cumstances it is anticausal). It moves energy around without amplification or 
attenuation. I suppose this is why migration filtering is more fun than 
minimum-phase filtering. Migration filters gather energy from all over and 
drop it in a good place, whereas minimum-phase filters hardly move things a t  
all - they just scale some frequencies up and others down. Any filter of the 
form exp[i $(w)] is an all-pass filter. What are the constraints on the func- 
tion d(w) which make the time-domain representation of exp(i 4) causal? 
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Causal all-pass filters turn out t o  have an attractive representation, with 
2-transforms as z ( ~ / z ) / A  (Z  ). Those who are familiar with filter 

theory will realize that  the division by A ( Z )  raises a whole range of new 
issues: feedback, economy of parameterization, and possible instability. (Sec- 
tion 4.6 covers Z-transforms). These issues will all arise in using finite 
differences t o  downward extrapolate wavefields. It is a feedback process. The 
economy of parameterization is attractive. Taking A ( 2 )  = 1 + a lZ  + 
a 2 ~ 2 ,  the two adjustable coefficients are sufficient to  select a frequency and 

a bandwidth for selective delay. Economy of parameterization also implies 
economy in application. That  is nice. It is also nice having the functional 
form itself imply causality. On the other hand, the advantages of economy 
are offset by some dangers. Now we must learn and use some stability theory. 
A (Z )  must be minimum phase. 

Being Too Clever in the Frequency Domain 

Fourier methods are global. That is, the entire dataset must be in hand 
before processing can begin. Remote errors and truncations can have serious 
local effects. On the other hand, finite-difference methods are local. Data 
points are directly related only to  their neighbors. Remote errors propagate 
slowly. Let me cite two examples of frequency-domain pitfalls in the field of 
one-dimensional time-series analysis. 

In the frequency domain it is easy t o  specify sharp cutoff filters, say, a 
perfectly flat passband between 8 Hz and 80 Hz, zero outside. But such filters 
cause problems in the time domain. They are necessarily noncausal, giving a 
response before energy enters the filter. Another ugly aspect is that  the time 
response drops off only inversely with t . Distant echoes that  have ampli- 
tudes weakened as inverse time squared would get lost in the long filter 
response of the early echoes. 

A more common problem arises with the 60 Hz powerline frequency rejec- 
tion filters found in much recording equipment. Notch filters are easy t o  con- 
struct in the 2-transform domain. Start with a zero on the unit circle at  
exactly 60 Hz. That  kills the noise but it distorts the passband a t  other fre- 
quencies. So, a tiny distance away, outside the unit circle, place a pole. The 
separation between the pole and the zero determines the bandwidth of the 
notch. The pole has the effect of nearly canceling the zero if the pair are seen 
from a distance. So there is an ideal flat spectrum away from the absorption 
zone. You record some data with this filter. Late echoes are weaker than 
early ones, so the plotting program increases the gain with time. After instal- 
ling your powerline reject filters you discover that  they have i nc reased  the 
powerline noise instead of decreasing it. Why? The reason is that  you tried 
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t o  be too clever when you put the pole too close to  the circle. The exponen- 
tial gain effectively moved the unit circle away from the zero towards the 
pole. The pole may end up on the circle! Putting the pole further from the 
zero gives a broader notch, which is less attractive in the frequency domain, 
but a t  least the filter will work sensibly when the gain varies with time. 

Zero Padding 

When fast Fourier transforms came into use, one of the first applications 
was convolution. If a filter has more than about fifty coefficients, it may be 
faster t o  apply it by multiplication in the frequency domain. The result will 
be identical to  convolution if care has been taken to  pad the ends of the data 
and the filter with enough zeroes. They make invisible the periodic behavior 
of the discrete Fourier transform. For filtering time functions whose length is 
typically about one thousand, this is a small price in added memory t o  pay 
for the time saved. Seismic sections are often thousands of channels long. 
For migration, zero padding must simultaneously be done on the space axis 
and the time axis. There are three places where zeroes may be required, as 
indicated below: 

Section 4.5 offers suggestions on how t o  alleviate the problems of Fourier 
domain migration techniques. 

Looking Ahead 

Some problems of the Fourier domain have just been summarized. The 
problems of the space domain will be shown in this chapter and Chapter 4. 

Seismic data  processing is a multidimensional task, and the different dimen- 
sions are often handled in different ways. But if you are sure you are content 
with the Fourier domain then you can skip much of this chapter and jump 
directly t o  Chapter 3, where you can learn about shot-to-geophone offset, 
stacking, and migration before stack. 
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2.1 Wave-Extrapolation Equations 

A wave-extrapolation equation is an expression for the derivative of a 

wavefield (usually in the depth z direction). When the wavefield and its 
derivative are known, extrapolation can proceed by various numerical 
representations of P (z + Az ) = P (z ) + Az d P  /dz . So what is really 
needed is an expression for d P  l d z .  Two theoretical methods for finding 
d P  /dx are the original transformation method and the newer dispe~sion- 
relation method. 

Meet the Parabolic Wave Equation 

At the time the parabolic equation was introduced to  petroleum pros- 
pecting (1969), it was well known that  "wave theory doesn't work." At  that 
time, petroleum prospectors analyzed seismic data with rays. The wave equa- 
tion was not relevant t o  practical work. Wave equations were for university 
theoreticians. (Actually, wave theory did work for the surface waves of mas- 
sive earthquakes, scales 1000 times greater than in exploration). Even for 
university workers, finite-difference solutions t o  the wave equation didn't work 
out very well. Computers being what they were, solutions looked more like 
"vibrations of a drum head" than like "seismic waves in the earth." The par- 
abolic wave equation was originally introduced t o  speed finite-difference wave 
modeling. The following introduction t o  the parabolic wave equation is via 
the original transformation method. 

The difficulty prior t o  1969 came from an inappropriate assumpt,ion cen- 
tral t o  all then-existing seismic wave theory, namely, the horizontal layering 
assumption. Ray tracing was the only way to  escape this assumption, but ray 
tracing seemed t o  ignore waveform modeling. In petroleum exploration 
almost all wave theory further limited itself to  vertical incidence. The road to  
success lay in expanding ambitions from vertical incidence t o  include a small 
angular bandwidth around vertical incidence. This was achieved by abandon- 
ing much known, but cumbersome, seismic theory. 

A vertically downgoing plane wave is represented mathematically by the 
equation 

In this expression, P o  is absolutely constant. A small departure from verti- 

cal incidence can be modeled by replacing the constant Po with something, 
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say, Q (x , z ), which is not strictly constant but varies slowly. 

P ( t , x , z )  = Q ( x , z )  e - i  w ( t  - z / v )  
(2) 

Inserting (2) into the scalar wave equation P,, + P,, = Ptt / v  yields 

The wave equation has been reexpressed in terms of Q ( x ,  z ) .  So far no 
approximations have been made. To  require the wavefield t o  be near t o  a 
plane wave, Q ( x ,  z )  must be near t o  a constant. The appropriate means 
(which caused some controversy when it was first introduced) is t o  drop the 
highest depth derivative of Q , namely, Q,, . This leaves us with the para- 

bolic wave equation 

At  the time it was first developed for use in seismology, the most impor- 
tant  property of (4) was thought t o  be this: For a wavefield close t o  a verti- 
cally propagating plane wave, the second x-derivative is small, hence the z -  
derivative is small. Thus, the finite-difference method should allow a very 
large Az  and thus be able to  treat models more like the earth, and less like 
a drumhead. 

It soon became apparent that  the parabolic wave equation was also just 
what was needed for seismic imaging: it was a wave-extrapolation equation. 

It is curious that  equation (4) is the Schroedinger equation of quantum 
mechanics. 

This approach, the transformation approach, was and is very useful. But 
it was soon replaced by the dispersion-equation approach - a way of getting 
equations to  extrapolate waves a t  wider angles. 

Muir Square-Root Expansion 

When we use the newer method of finding wave extrapolators, we seek 
various approximations t o  a square-root dispersion relation. Then the approx- 
imate dispersion relation is inverse transformed into a differential equation. 
Thanks largely t o  Francis Muir, the dispersion approach has evolved consider- 
ably since the writing of Fundamentals of Geophysical Data Processing. 
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Substitution of the plane wave exp(-iwt + ik,x + ik,z) into the 

two-dimensional scalar wave equation yields the dispersion relation 

Solve for k, selecting the positive square root (thus for the moment selecting 

downgoing waves). 

To  inverse transform the z-axis we only need t o  recognize that  ik, 
corresponds t o  a l d z .  The resulting expression is a wavefield extrapolator, 
namely, 

Bringing equation (6b) into the space domain is not simply a matter of 

substituting a second z derivative for kx2. The problem is the meaning of 

the square root of a differential operator. The square root of a differential 
operator is not defined in undergraduate calculus courses and there is no 
straightforward finite difference representation. The square root becomes 
meaningful only when the square root is regarded as some kind of truncated 
series expansion. It will be shown in Section 4.6 that  the Taylor series is a 
poor choice. Francis Muir showed that  the original 15" and 45" methods 
were just truncations of a continued fraction expansion. To  see this, let X 
and R be defined by writing (6a) as 

The desired polynomial ratio of order n will be denoted R, , and it will be 

determined by the recurrence 

To  see what this sequence converges to  (if it converges), set n = oo in (8) 
and solve 
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The square root of (9) gives the required expression (7). Geometrically, (9) 
says that  the cosine squared of the incident angle equals one minus the sine 
squared. Truncating the expansion leads t o  angle errors. Actually it is only 
the low-order terms in the expansion that  are ever used. Beginning from 
R = 1 the results in table 1 are found. 

TABLE 2.1-1. First four truncations of Muir's continued fraction expansion. 

For various historical reasons, the equations in table 1 are often referred 
t o  as the 5 " ,  15",  and 45" equations, respectively, the names giving a reason- 
able qualitative (but poor quantitative) guide t o  the range of angles that  are 
adequately handled. A trade-off between complexity and accuracy frequently 
dictates choice of the 45" equation. It then turns out that  a slightly wider 
range of angles can be accommodated if the recurrence is begun with some- 
thing like R (I = cos 45'. Accuracy enthusiasts might even have R a func- 

tion of velocity, space coordinates, or frequency. 
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Dispersion Relations 

Performing the substitutions of table 1 into equation (7) gives dispersion 
relationships for comparison t o  the exact expression (6a). These are shown in 
table 2. 

TABLE 2.1-2. As displayed in figure 1, the dispersion relations of table 2 
tend toward a semicircle. 

Depth-Variable Velocity 

Identification of 2 with d/dz  converts the dispersion relations of 

table 2 into the differential equations of table 3. 

The differential equations in table 3 were based on a dispersion relation 
that  in turn was based on an assumption of constant velocity. So you might 
not expect that  the equations have substantial validity or even great utility 
when the velocity is depth-variable, v = v ( z ) .  The actual limitations are 
better characterized by their inability, by themselves, t o  describe reflection. 

Migration methods based on equation (6b) or on table 3 are called 
phase-shift methods. 

Retardation (Frequency Domain) 

It is often convenient t o  arrange the calculation of a wave t o  remove the 
effect of overall translation, thereby making the wave appear to  ('stand still." 
This subject, wave retardation, will be examined more thoroughly in Section 
2.6. Meanwhile, it is easy enough to  introduce the time shift t of a verti- 

cally propagating wave in a hypothetical medium of velocity F ( z ) ,  namely, 
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TABLE 2.1-3. Extrapolation equations when velocity depends only on depth. 

FIG. 2.1-1. Dispersion relation of equations (6a) and table 2. The curve 
labeled 45 "+ was constructed with R = cos 45 ". It fits exactly at  0 "  
and 45 ". 
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A time delay t o  in the time domain corresponds to  multiplication by 

exp(iwto) in the w-domain. Thus, the actual wavefield P is related t o  the 

time-shifted wavefield Q by 

(Equation (11) applies in both x -  and k, -space). Differentiating with 

respect t o  z gives 

Next, substitute (11) into table 3 t o  obtain the retarded equations in table 4. 

Lateral Velocity Variation 

Having approximated the square root by a polynomial ratio, table 3 or 
table 4 can be inverse transformed from the horizontal wavenumber domain 

k, t o  the horizontal space domain x by substituting (ik, )2 = d2/dx2. As 

before, the result has a wide range of validity for v =v (x , z ) even though 
the derivation would not seem to  permit this. Ordinarily F ( z )  will be 
chosen t o  be some kind of horizontal average of v ( x ,  z ) .  Permitting G to 
become a function of z generates many new terms. The terms are awkward 
t o  implement and ignoring them introduces unknown hazards. So F is usu- 
ally taken t o  depend on z but not x . 

Splitting 

The customary numerical solution t o  the x-domain forms of the equa- 
tions in tables 3 and 4 is arrived at  by splitting. That  is, you march forward 
a small Az -step alternately with the two extrapolators 

aQ - - - lens term 
d z 

8Q - = diffraction term (1 2 b) 
a z 
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TABLE 2.1-4. Retarded form of phase-shift equations. 

5 "  

15"  

45 " 

general 

Justification of the splitting process is found in Section 2.4. The first equa- 
tion, called the lens equation, is solved analytically: 

- = zero 1 
a z ,u V ( Z )  

aQ - -  - . vkx2 
- 2  - Q 

a2 2w " V ( Z )  

aQ - = - Z 
kx2 

2 Q + i w [ L - -  a z  w vk, ,v T ( z )  2 - - -  
v 2w 

I Q  
aQ - = diffraction + thin lens 
a z  

Observe that  the diffraction parts of tables 3 and 4 are the same. Let us use 
them and equation (12b) t o  define a table of diffraction equations. Substitute 
alas for ik, and clear alax from the denominators t o  obtain table 5. 

Time Domain 

To put the above equations in the time domain, it is necessary only to  
get w into the numerator and then replace -i w by dlat. For example, 
the 15",  retarded, v = V  equation from table 5 becomes 

Interpretation of time t for a retarded-time variable Q  awaits further 
clarification in Section 2.6. 
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- 

TABLE 2.1-5. Diffraction equations for laterally variable media. 

5 "  

15 " 

Upcoming Waves 

- aQ - - zero a z 

8Q - -  - v ( x , z )  a 2 ~  
dz  -22W d,2 

All the above equations are for downgoing waves. T o  get equations for 
upcoming waves you need only change the signs of z and d l d z .  Letting 
D denote a downgoing wavefield and U an upcoming wavefield, equation 
(14), for example, takes the form 

d" v d2 D = + - -  
dz d t  2 d x 2  

a2 v a2 u = --- 
dz dt  2 d x 2  

v ( x , z )  a2& 
- 2  2 W  dz2 

TABLE 2.1-6. Time-domain equations for downgoing and upcoming wave 
diffraction with retardation and the 15" approximation. 

Using the exploding-reflector concept, it is the upcoming wave equation that  
is found in both migration and diffraction programs. The downgoing wave 
equation is useful for modeling and migration procedures that  are more ela- 
borate than those based on the exploding-reflector concept (see Section 5.7). 
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EXERCISE 

1. Consider a tilted straight line tangent t o  a circle. Use this line t o  initial- 
ize the Muir square-root expansion. State equations and plot them 
(-2 5 X 5 +2) for the next two Muir semicircle approxima,tions. 

2.2 Finite Differencing 

The basic method for solving differential equations in a computer is finite 
differencing. The nicest feature of the method is that  it allows analysis of 
objects of almost any shape, such as earth topography or geological structure. 
Ordinarily, finite differencing is a straightforward task. The main pitfall is 
instability. It often happens that  a seemingly reasonable approach t o  a reason- 
able physical problem leads t o  wildly oscillatory, divergent calculations. 
Luckily, there is a fairly small body of important and easily learned tricks 
that  should solve most stability problems. 

Of secondary concern are the matters of cost and accuracy. These must 
be considered together since improved accuracy can be achieved simply by 
paying the higher price of a more refined computational mesh. Although the 
methods of the next several pages have not been chosen for their accuracy or 
efficiency, it turns out that  in these areas they are excellent. Indeed, t o  my 
knowledge, some cannot be improved on a t  all, while others can be improved 
on only in small ways. By "small" I mean an improvement in efficiency of a 
factor of five or less. Such an improvement is rarely of consequence in 
research or experimental work; however, its importance in matters of 
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production will justify pursuit of the literature far beyond the succeeding 
pa.ges. 

The Lens Equation 

The various wave-extrapolation operators can be split into two parts, a 
complicated part called the diffraction or migration part, and an easy part 
called the lens part. The lens equation applies a time shift that  is a function 
of x .  The lens equation acquires its name because it acts just like a thin 
optical lens when a light beam enters on-axis (vertically). Corrections for 
nonvertical incidence and the thickness of the lens are buried somehow in the 
diffraction part. The lens equation has an analytical solution, namely, 
exp[i w t  O(x )]. I t  is better to  use this analytical solution than to use a finite- 

difference solution because there are no approximations in it t o  go bad. The 
only reason the lens equation is mentioned a t  all in a chapter on finite 
differencing is that  the companion diffraction equation must be marched for- 
ward along with the lens equation, so the analytic solutions are marched along 
in small steps. 

First Derivatives, Explicit Method 

The inflation of money q a t  a 10% rate can be described by the 
difference equation 

This one-dimensional calculation can be reexpressed as a differencing star  and 
a data table. As such i t  provides a prototype for the organization of calcula- 
tions with two-dimensional partial-differential equations. Consider 

DiJerencing Star Data Table 

time 

1 

Since the data in the data table satisfy the difference equation (I), the 
differencing star may be laid anywhere on top of the data table, the numbers 
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in the star  may be multiplied by those in the underlying table, and the result- 
ing cross products will sum to  zero. On the other hand, if all but one number 
(the initial condition) in the data table were missing then the rest of the 
numbers could be filled in, one a t  a time, by sliding the star along, taking the 
difference equation to  be true, and solving for the unknown data value at each 
stage. 

Less trivial examples utilizing the same differencing star  arise when the 
numerical constant .10 is replaced by a complex number. Such examples exhi- 
bit oscillation as well as growth and decay. 

First Derivatives, Implicit Method 

Let us solve the equation 

by numerical methods. Note that  the inflation-of-money equation (I),  where 
2 r =.I, provides an approximation. But then note that  in the inflation-of- 
money equation the expression of dq l d t  is centered a t  t +I/+?, whereas the 
expression of q by itself is a t  time t .  There is no reason the q on the 
right side of equation (3) cannot be averaged a t  time t with time t +l, thus 
centering the whole equation a t  t +I/+?. Specifically, a centered approxima- 
tion of (3) is 

Letting a=r A t ,  this becomes 

which is representable a s  the difference star 

C 

For a fixed A t  this star  gives a more accurate solution t o  the differential 
equation (3) than does the star  for the inflation of money. 

Explicit Heat-Flow Equation 

The heat-flow equation controls the diffusion of heat. This equation is a 
prototype for migration. The 15" migration equation is the same equation 
but  the heat conductivity constant is imaginary. (The migration equation is 
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really the Schroedinger equation, which controls the diffusion of probability of 
atomic particles). Taking a constant yields 

Implementing (5) in a computer requires some difference approximations for 
the partial differentials. The most obvious (but not the only) approach is the 
basic definition of elementary calculus. For the time derivative, this is 

It is convenient t o  use a subscript notation that  allows (6a) t o  be compacted 
into 

In this notation t + A t  is abbreviated by t +1, a convenience for more com- 
plicated equations. The second-derivative formula may be obtained by doing 
the first derivative twice. This leads t o  q, +2 - 2 qt + q, . The formula is 

usually treated more symmetrically by shifting it t o  q, +l - 2 q, + qt -l. 

These two versions are equivalent as A t  tends t o  zero, but the more sym- 
metrical arrangement will be more accurate when A t  is not zero. Using 
superscripts t o  describe x -dependence gives a finite-difference approximation 
t o  the second space derivative: 

Inserting the last two equations into the heat-flow equation (and using = to  
denote z) gives 

Letting a=a A t  / ( C  Ax2)  (8) can be arranged thus: 

Equation (9) can be interpreted geometrically as a computational star in 
the ( x ,  t )-plane, as depicted in figure 1. By moving the sta.r around in the 
dat'a table you will note that  it can be positioned so that  only one number at  
a time (the 1) lies over an unknown element in the data  table. This enables 
the computation of subsequent rows beginning from the top. By doing this 
you are solving the partial-differential equation by the finite-difference 
method. There are other possible arrangements of initial and side conditions, 
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Data Table 

2.2 Finite Differencing 

x --+ 

FIG. 2.2-1. Differencing star  and table for one-dimensional heat-flow equa- 
tion. 

such as zero-value side conditions. Next is a computer program and a test 
example. 

# Explicit heatcflow equation 
real q(12), ~ ( 1 2 )  
nx=12 
do ia=1,2 { # stable and unstable cases 

alpha = ia*.3333; write(6,'(/"alpha =",f4.2)') alpha 
do ix=1,6; q(ix) = 0. # Initial temperature step 
do ix=7,12; q(k)  = 1. 
do it=1,6 { 

write(6, '(20f5.2)') (q(ix),ix= 1 ,nx) 
do ix=2,nx-1 

= q(ix) + alpha*(q(ix-l)-2.*q(ix)+q(u+ 1)) 
w ( 1 )  = w(2) ;  w(nx)  = w(nx-1) 
do ix=l ,nx 

q(ix) = w ( k )  

1 
} 

stop; end 
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alpha = .33 

alpha = .67 

The Leapfrog Method 

The difficulty with the given program is that  it doesn't work for all possi- 
ble numerical values of a. You can see that  when a is too large (when Ax 
is too small) the solution in the interior region of the data  table contains 
growing oscillations. What is happening is that  the low-frequency part of the 
solution is OI< (for a while), but the high-frequency part is diverging. The 
precise reason the divergence occurs is the subject of some mathematical 
analysis that  will be done in Section 2.8. A t  wavelengths long compared to  
Ax  or A t ,  we expect the difference approximation t o  agree with the true 
heat-flow equation, smoothing out irregularities in temperature. At  short 
wavelengths the wild oscillation shows that  the difference equation can behave 
in a way almost opposite to  the way the differential equation behaves. The 
short wavelength discrepancy arises because difference operators become equal 
t o  differential operators only a t  long wavelengths. The divergence of the solu- 
tion is a fatal problem because the subsequent round-off error will eventually 
destroy the low frequencies too. 

By supposing that  the instability arises because the time derivative is 
centered a t  a slightly different time t + 11s than the second x -derivative at 
time t ,  we are led t o  the so-called leapfrog method, in which the time 
derivative is taken a s  a difference between t - 1 and t + I: 
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The resulting leapfrog differencing star is 

IX 

Here the result is even worse. A later analysis shows that  the solution is now 
divergent for all real numerical values of a. Although it was a good idea to  
center both derivatives in the same place, it turns out that  it was a bad idea 
t o  express a first derivative over a span of more mesh points. The enlarged 
operator has two solutions in time instead of just the familiar one. The 
numerical solution is the sum of the two theoretical solutions, one of which, 
unfortunately (in this case), grows and oscillates for all real values of a. 

To avoid all these problems (and get more accurate answers as well), w7e 
now turn t o  some slightly more complicated solution methods known as impli- 
cit methods. 

The Crank-Nicolson Method 

The Crank-Nicolson method solves both the accuracy and the stability 
problem. 

The heat-flow equation (6b) was represented as 

NOW, instead of expressing the right-hand side entirely a t  time t ,  it will be 
averaged a t  t and t +1, giving 

This is called the Crank-Nicolson method. Letting a=a 12, the difference 
star  is 
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x 

t (12'4 
When placing this star  over the data table, note that ,  typically, three ele- 
ments a t  a time cover unknowns. To  say the same thing with equations, 
move all the t +1 terms in (12a) to  the left and the t terms t o  the right, 
obtaining 

Taking all the t +1 values t o  be unknown, while all the t values are known 

the right side of (13a) is known, say, d t ,  and the left side is a set of simul- 
taneous equations for the unknown qt +l.  In other words, (13a) does not give 

us each qhl explicitly. They are given implicitly by the solution of simul- 

taneous equations. If the x-axis is limited to  five points, these equations are 

The values ell and ert are adjustable and have to  do with the side bound- 

ary conditions. The important thing to  notice is that  the matrix is tridiago- 
nal, tha t  is, except for three central diagonals all the elements of the matrix in 
(13b) are zero. The solution t o  such a set of simultaneous equations may be 
economically obtained. I t  turns out that  the cost is only about twice that  of 
the explicit method given by (9). In fact, this implicit method turns out t o  be 
cheaper, since the increased accuracy of (13a) over (9) allows the use of a 
much larger numerical choice of At . A program that  demonstrates the sta- 

bility of the method, even for large A t , is given next. 

A tridiagonal simultaneous equation solving subroutine is used. It is 
explained subsequently. 
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# Implicit heat-flow equation 
real q(12),d(12),e(12),f(12) 
nx=12; a = 8.; write(6,'(/"a =",f4.2)') a; alpha = .5*a 
do ix=1,6; q(ix) = 0. # Initial temperature step 
do ix=7,12; q(ix) = 1.  
do it=1,4 { 

write(6,'(20f5.2)') (q(ix),ix=l ,nx) 
d(1) = 0.; d(nx) = 0. 
do ix=2,nx-1 

d(ix) = q(ix) + al~ha*(~(ix-1)-2.*q(ix)+q(ix+ 1)) 
call rtris(nx,alpha,-alpha,(l.+2.*alpha),-alphalalphaldlq,elf) 
1 

stop; end 

# real tridiagonal equation solver 
subroutine rtri~(n,endl,a,b,c,endr,d,~,e,f) 
real q(n),d(n),f(n),e(n),a,b,c,den,endl,endr 
e(1) = -a/endl; f(1) = d(l)/endl 
do i = 2,n-1 { 

den = b+c*e(i-1); e(i) = -a/den; f(i) = (d(i)-c*f(i-l))/den j 
q(n) = (d(n)-c*f(n-l))/(endr+c*e(n-1)) 
do i = n-l,l,-1 

q(i) = e(i)*q(i+ 1 )+ f (i) 
return; end 

Solving Tridiagonal Simultaneous Equations 

Much of the world's computing power gets used up solving tridiagonal 
simultaneous equations. For reference and completeness the algorithm is 
included here. 

Let the simultaneous equations be written as a difference equation 

'"j P j + l  + b j  Y j  + 'j Y j - 1  = dj  

Introduce new unknowns e j  and j j ,  along with an equation 

- 
Y j  - e j  P j + l  f f j 

Write (15) with shifted index: 

- 
qj -1  - e j -1  P j  f j j-l 

Insert (16) into (14): 
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Now rearrange (17) t o  resemble (15): 

Compare (18) t o  (15) t o  see recursions for the new unknowns e j  and j j: 

First a boundary condition for the left-hand side must be given. This 
may involve one or two points. The most general possible end condition is a 
linear relation like equation (15) a t  j =0, namely, q = e oq l+ j 0. Thus, 

the boundary condition must give us both e and j o. With e and all 

the a j  , b j ,  c j ,  we can use (19a) to  compute all the e j. 

On the right-hand boundary we need a boundary condition. The general 
two-point boundary condition is 

Equation (20) includes as special cases the zero-value and zero-slope boundary 
conditions. Equation (20) can be compared to  equation (16) at  its end. 

- 
Qn-1 - en- l  qn  + f n-1  (21) 

Both q and q are unknown, but in equations (20) and (21) we have 

two equations, so the solution is easy. The final step is to  take the value of 

qn and use it in (16) t o  compute q,-l, Q , - ~ ,  qn-3, etc. 

If you wish to  squeeze every last ounce of power from your computer, 
note some facts about this algorithm. (1) The calculation of e depends on 

the medium through a j ,  b j ,  c j ,  but it does not depend on the solution q j  

(even through d j  ). This means that  it may be possible t o  save and reuse e j. 

(2) In many computers, division is much slower than multiplication. Thus, 
the divisor in (19a,b) can be inverted once (and perhaps stored for reuse). 

The d3/dx dz  -Derivative 

The 45" diffraction equation differs from the 15" equation by the inclu- 
sion of a d3/d2 2dz -derivative. Luckily this derivative fits on the six-point 
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differencing star 

2.2 Finite Diferencing 

So other than modifying the six coefficients on the star, it adds nothing t o  the 
computational cost. 

Difficulty in Higher Dimensions 

So far we have had no trouble obtaining cheap, safe, and accurate 
difference methods for solving partial-differential equations (PDEs). The 
implicit method has met all needs. But in space dimensions higher than one, 
the implicit method becomes prohibitively costly. For the common example 
of problems in which a2/ax becomes generalized to  a2 /az  + @ / a y  , we 
will learn the reason why. The simplest case is the heat-flow equation for 
which the Crank-Nicolson method gave us (13a). Introducing the abbrevia- 
tion b,, q  = q  "+'-2q +q  '-I, equation (13a) becomes 

The nested expression on the left represents a tridiagonal matrix. The critical 
stage is in solving the tridiagonal simultaneous equations for the vector of un- 
knowns Qt+l .  Fortunately there is a special algorithm for this solution, and 

the cost increases only linearly with the size of the matrix. Now turn from 
the one-dimensional physical space of x t o  two-dimensional ( x  , y )-space. 
Letting a denote the numerical constant in (23), the equation for stepping 
forward in time is 

(bXz + b y y ) I  Qt+ i  = I1 + 46,, + b y , ) ]  Qt (24 

The unknowns Qt +l are a two-dimensional function of x and y tha t  can 

be denoted by a matrix. Next we will interpret the bracketed expression on 
the left side. I t  turns out t o  be a four-dimensional matrix! 

T o  clarify the meaning of this matrix, a mapping from two dimensions to  
one will be illustrated. Take the temperature Q t o  be defined on a 4 x 4  
mesh. A natural way of numbering the points on the mesh is 

11 12 13 14 

41 42 43 44 

For algebraic purposes these sixteen numbers can be mapped into a vector. 
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There are many ways to  do this. A simple way would be t o  associate the 
locations in (25) with vector conlponents by the column arrangement 

1 5  9 1 3  
2 6 10 14 
3 7 11 15 
4 8 12 16 

The second difference operator has the following star  in the (x , y )-plane: 

Lay this star down in the (x , y )plane (26) and move i t  around. Unfor- 
tunately, with just sixteen points, much of what you see is dominated by 
edges and corners. Try every position of the star that  allows the center -4 to  
overlay one of the sixteen points. Never mind the 1's going off the sides. 
Start with the -4 in (27) over the 1 in the upper left corner of (26). Observe 
1's on the 2 and the 5. Copy the 1's into the top row of table 1 into the 
second and fifth columns. Then put the -4 in (27) over the 2 in (26). 
Observe 1's on the 1, 3, and 6. Copy the 1's into the next row of table 1. 
Then put the -4 over the 3. Observe 1's on the 2, 4, and 7. Continue like- 
wise. The 16 X 16 square matrix that  results is shown in table 1. 

Now that  table 1 has been constructed we can return t o  the interpreta- 
tion of equation (24). The matrix of unknowns Qt has been mapped into 

a sixteen-point column vector, and the bracketed expression multiplying 

Qt +l can be mapped into a 1 6 x 1 6  matrix. Clearly, the matrix contains 

zeroes everywhere that  table 1 contains dots. It seems fortunate that  the 
table contains many zeroes, and we are led t o  hope for a rapid solution 
xnethod for the simultaneous equations. The bad news is that  no good 
method has ever been found. The best methods seem to  require effort propor- 
tional t o  N3 ,  where in this case N=4.  Based on our experience in one 
dimension, those of us who worked on this problem hoped for a method pro- 
portional t o  N2, which is the cost of an explicit method - essentially the 
cost of computing the right side of (16). Even all the features of implicit 
methods do not justify an additional cost of a factor of N .  The next best 
thing is the splitting method. 
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TABLE 2.2-1. The two-dimensional matrix of coefficients for the Laplacian 
operator. 

EXERCISES 

1. Interpret the  inflation-of-money equation when the interest rate is the 
imaginary number a 110. 

2. Write the 45" diffraction equation in ( x ,  2)-space for fixed c~ in the 
form of (12b). 
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2.3 Monochromatic Wave Programs 

An old professor of education had a monochromatic theme. I t  was his 

only theme and the topic of his every lecture. I t  was this: 

People learn by solving problems. Solving problems i s  the only way  people 
learn, etc.,  etc., etc ...... 

All he ever did was lecture; he never assigned any problems. 

Your first problems relate t o  the computer program in figure 1. As it 

stands it will produce a movie (three-dimensional matrix) of waves propaga- 
ting through a focus. The whole process from compilation through computa- 
tion t o  finally viewing the film loop takes about a minute (when you are the 
only user on the computer). 

Analysis of Film Loop Program 

For a film loop to  make sense t o  a viewer, the subject of the movie must 
be periodic, and organized so that  the last frame leads naturally into the first. 
In the movie created by the program in figure 1, there is a parameter lambda 
tha t  controls the basic repetition rate of wave pulses fired onto the screen 
from the top. When a wavelet travels one-quarter of the way down the 
frame, another is sent in. This is defined by the line 

N, A2 
lambda = nz * dz /4 = 

4 

The pulses are a superposition of sinusoids of n w  frequencies, namely, Aw,  
2 Aw, ..., nw Aw. The lowest frequency dw = Aw has a wavelength inverse 
t o  lambda. Thus the definition 

2 7r v 
dw = v * pi2 / lambda = - 

X 

Finally, the time duration of the film loop must equal the period of the 
lowest-frequency sinusoid 

This latter equation defines the time interval on the line 

dt  = pi2 / ( nt  * dw ) 

The differential equation solved by the program is 
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For each A z-step the calculation is done in two stages. The first stage is to  

solve 

Using the Crank-Nicolson differencing method this becomes 

Absorb all the constants into one and define 

getting 

Bring the unknowns t o  the left: 

2-1 - z + l  -aq,;:' + (1+2a)q,Z,1 - aqz+l - aq, + (1-2a)qf + aqf-' (4) 

The second stage is t o  solve the equation 

analytically by 

The program closely follows the notation of equations (3), (4), and (6). 

T o  make a wave pulse, some frequency components are added together. 
In this program, only two frequencies nw=2 were used. If you try a single 
frequency nw=1 several things become less clear. Waves reflected a t  side 
boundaries (see especially exercise 2) look more like standing waves. If you 
try more frequencies, the program will take longer, but you might like the 
movie better, because the quiet zones between the pulses will get longer and 
quieter. Frequency components can be weighted differently. 
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# Wave field extrapolation program 
implicit undefined (a-z) 
complex ~d(48),ce(48),cf(48),~(48),aa,a,b,c,cshift 
real p(96,48,12),phase,pi2,dx,dz,v,z0,x0,dt,dw,lambda,w,wov,x 
int,eger ix,nx,iz,nz,iw ,nw ,it,nt 
open(3,file='plot30',status='new',access='direct',form='unformatted',recl=l) 

do iz=l,nz; do ix=l,nx; do i t=l ,nt  { p(iz,ix,it) = 0. ) 
do iw = 1,nw { # superimpose nw frequencies 

w = iw*dw; wov = w/v # frequency / velocity 
xO = nx*dx/3; z0 = nz*dz/3 
do ix = 1,nx { # initial conditions for a 

x = ix*dx-x0; # collapsing spherical wave 
phase = -wov*sqrt(z0**2+x**2) 
q(ix) = cexp(cmplx(O.,phase)) 
1 
I 

a a  = dz/(4.*(0.,-l.)*wov*dx**2) # tridiagonal matrix coefficients 
a = -aa; b = 1.+2.*aa; c = -aa 
do iz = 1,nz { # extrapolation in depth 

do ix = 2,nx-1 # diffraction term 
cd(ix) = aa*q(ix+ 1) + (1 .-2.*aa)*q(ix) + aa*q(ix-l) 

cd(1) = 0.; cd(nx) = 0. 
call ctris(nx,-a,a,b,c,-~,cd,~,ce,cf) 

# " ctrisn solves complex tridiagonal equations 
# i.e. "rtrisn with complex variables 

cshift = cexp(cmplx(0.,wov*dz)) 
do ix = 1,nx # shifting term 

q(ix) = q(ix) * cshift 
do i t=l ,nt  { # evolution in time 

cshift = cexp(cmplx(O.,-w*it*dt)) 
do ix = 1,nx 

p(iz,ix,it) = p(iz,ix,it)+q(ix)*cshift 
1 

1 
write(3,rec=l) (((p(iz,ix,it),iz=l ,nz),ix=l,nx),it=l,nt) 
stop; end 

FIG. 2.3-1. Computer program to  make a movie of a sum of monochromatic 
waves. (Lynn, Gonzalez, P C ,  Hale) 

Phase Shift 

Theory predicts that  in two dimensions waves going through a focus 
suffer a 90" phase shift. You should be able t o  notice that  a symmetrical 
waveform is incident on the focus, but an asymmetrical waveform emerges. 
(This is best seen in figure 6, but is clearer in a movie). In migrations, waves 
go just to a focus, not through it. So the migration impulse response in two 
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dimensions carries a 45" phase shift. Even though real life is three dimen- 
sional, the two dimensional response is appropriate for migrating seismic lines 
where focusing is presumed t o  arise from cylindrical, not spherical, reflectors. 

Lateral Velocity Variation 

Lateral velocity variation v = v ( x )  has not been included in the pro- 
gram, but  i t  is not difficult to  install. It enters in two places. I t  enters first in 
equation (6). If the data is such that  k, is small enough t o  be neglectable, 

then equation (6) is the only place it is needed. Second, it enters in the tridi- 
agonal coefficients. The so-called thin-lens approximation of optics seems to  
amount t o  including the equation (6) part only. 

Side-Boundary Analysis 

In geophysics, we usually wish the side-boundary question would go 
away. The only real reason for side boundaries is that  either our survey or 
our processing activity is necessarily limited in extent. Given that  side boun- 
daries are inevitable, we must think about them. The program of figure 1 
included zero-slope boundary conditions. This type of boundary treatment 
resulted from taking 

and in the call t o  "ctris" taking 

end1 = - a ; endr = - c 

A quick way t o  get zero-value side-boundary conditions is t o  take 

end1 = endr = 1030 e oo 

The above approach is slightly wasteful of computer memory, because 
the end zero is stored, and the zero slope is explicitly visible as two identical 
traces. This waste is avoided in Dave Hale's coding of the boundary condi- 
tions as given, but not derived, below: 

q0 = bl * q(1); qnxpl = br * q(nx) 

cd(1) = a a *  q(2) + ( 1 . - 2 .  * a a )  * q ( l ) +  a a *  qO 
cd(nx) = aa * q(nx-l) + ( 1 .  - 2. * a a )  * q(nx) + aa * qnxpl 

end1 = c * bl + b; 
endr = a * br + b 

call ctris(nx,endl,a,b,c,endr,cd,q,ce,cf) 

Note that  bl = br = 0 for zero-value boundaries, and bl = br = I for 
zero-slope boundaries. Absorbing side boundaries, derived in Section 4.4, are 
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obtained by letting bl and br be complex. 

Variations on the Film Loop Program 

Keep a record of your progress through these exercises. I t  will be helpful 
when preparing for the final exam. And several years hence you will be able 
t o  refresh your memory. 

Get a three-ring notebook. Cut all plots and program listings t o  8-112 by 
11 size and three-hole punch them. If algebraic analysis is required, do it on 
the same size paper. Avoid leaving important bits of analysis on scraps of 
paper. Either keep this material with your lecture notes or maintain it as a 
laboratory notebook, filing consistently by date. 

For each of these exercises, hand in a program listing and a pIot of the 
first frame. 

1. Specify program changes that  give an initial plane wave propagating 
downward a t  an angle of 15" to  the right of vertical. 

FIG. 2.3-2. Left, first frame of movie generated by figure 1. Right, solution 
t o  exercise 1. (Li Zhiming). 
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2. Given that  the domain of computation is 0 < x <= xmax and 
0 < z 5 zmax, how would you modify the initial conditions a t  z =O 

t o  simulate a point source a t  ( x ,  2 )  = (xmax/3, -zmax/2)? Try it. 

3. Modify the program so that  zero-slope side boundaries are replaced by 
zero-value side boundaries. 

FIG. 2.3-3. Left, exercise 2, expanding spherical wave. Right, exercise 3, 
zero-value side boundaries. (Li Zhiming). 

4. Incorporate the 45" term, d,,, , for the collapsing spherical wave. Use 

zero-slope sides. Compare your result with the 15" result obtained via 
the program in figure 1. Mark an X a t  the theoretical focus location. 

5 .  Make changes t o  the program to  include a thin-lens term with a lateral 
velocity change of 40% across the frame produced by a constant slowness 
gradient. Identify other parts of the program which are affected by 
lateral velocity variation. You need not make these other changes. Why 
are they expected t o  be small? 

6. Observe and describe various computational artifacts by testing the pro- 
gram using a point source a t  ( x ,  z )  = (xmax/2,0). Such a source is rich 
in the high spatial frequencies for which difference equations do not 
mimic their differential counterparts. 
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FIG. 2.3-4. Left, exercise 4, 45" term. Right, exercise 5 ,  lateral velocity vari- 
ation. (Li Zhiming). 

7. Section 4.4 explains how to  absorb energy a t  the side boundaries. Make 
the necessary changes to  the program. 

8. The accuracy of the x-derivative may be improved by a technique that  is 
analyzed later in Section 4.3. Briefly, instead of representing kZ2 Ax2 

by the tridiagonal matrix T with (-1, 2, -1) on the ma.in diagonal, you 
use T/(I-T/6). Modify the extrapolation analysis by multiplying 
through by the denominator. Make the necessary changes t o  the 45" col- 
lapsing wave program. 

Migration Program in the (w,x,z)-Domain (Kjartansson, Jacobs) 

The migration program is similar to  the film loop program. But there 
are some differences. The film loop program has "do loops" nested four deep. 
It produces results for many values of t . Migration requires a value only a t  
t = 0. So one loop is saved, which means that  for the same amount of com- 
puter time, the space volume can be increased. Unfortunately, loss of a loop 
seems also t o  mean loss of a movie. With w-domain migration, it seems that  
the only interesting thing t o  view is the input and the output. 

The input for this process will probably be field data, unlike for the film 
loop movie, so there will not be an analytic representation in the w-domain. 
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FIG. 2.3-5. Left, exercise 6, computational artifacts with point source. Right, 
exercise 7, absorbing side. (Li Zhiming). 

FIG. 2.3-6. Left, exercise 8, without 116 trick; right, with 116 trick. (Li 
Zhiming). 
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The input will be in the time domain and will have t o  be Fourier 
transformed. The beginning of the program in figure 6 defines some pulses to  
simulate field data. The pulses are broadened impulses and should migrate to  
approximate semicircles. Exact impulses were not used because the departure 
of difference operators from differential operators would make a noisy mess. 

Next the program Fourier transforms the pseudodata from the time 
domain into the w-frequency domain. 

Then comes the downward continuation of each frequency. This is a 
loop on depth x and on frequency w. Either of these loops may be on the 
inside. The choice can be made for machine-dependent efficiency. 

# Migration in the (omega,x,z)-domain 
real q(48,64),pi2,alpha,dt,dtau,dw 
complex cq(48,64),cd(48),ce(48),cf(48),aa,a,b,c,cshift 
integer ix,nx,iz,nz,iw,nw,it,nt 
o p e n ( 4 , f i l e = ' p l o t 3 6 ' , s t a t u s = ' n e w ' , a c c e ~ r m = ' u n f o r m a t t e d ' , r e c l = l )  

n t  = 64; nz = nt; nx = 48; pi2=2.*3.141592 
dt=l . ;  dtau=l.;  dw=pi2/(dt*nt); nw=nt/2; 
alpha = .25 # alpha = v*v*dtau/(4*dx*dx) 
do iz=l,nz; do ix=l,nx; { q(ix,iz) = 0.; cq(ix,iz)=O. ) 
do it=nt/3,nt,nt/4 

do ix=1,4 # Broadened impulse source 
{ cq(iu,it) = ( 5 . 4 ~ ) ;  cq(ix,it+l) = (5.-ix) ) 

call rowcc(nx,nt,cq,+l.,+l.) # F.T. over time. 
do iz = 1,nz { # iz and iw loops interchangeable 
do iw = 2,nw { # iz and iw loops interchangeable 

a a  = - alpha /( (O.,-l.)*(iw-l)*dw ) 
a = -aa; b = 1.+2.+aa; c = -aa 
do ix = 2,nx-1 

cd(ix) = aa*cq(ix+l,iw) + (1.-2.*aa)*cq(ix,iw) + aa*cq(ix-1,iw) 
cd(1) = 0.; cd(nx) = 0. 
call ctris(nx,-a,a7b,c,-c,cd,cq(l,iw),ce,cf) 
cshift = cexp(cmplx(O.,-(iw-l)*dw*dtau)) 
do ix=l,nx 

cq(ix,iw) = cq(ix,iw) * cshift 
do ix = 1,nx 

q(ix,iz) = q(ix,iz)+cq(ix,iw) # q(t=O) = C Q(w) 
11 
J J  

write(4,rec=l) ((q(ix,iz),iz=l,nz),ix=l,nx) 
stop; end 

FIG. 2.3-7. Migration program in the (w, x ,  2)-domain. 
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For migration an equation for upcoming waves is required, unlike the 
downgoing wave equation required for the film loop program. Change the 
sign of the z-axis in equation (1). This affects the sign of aa and the sign of 
the phase of cshijt. 

Another difference with the film loop program is that  the input now has 
a time axis whereas the output is still a depth axis. I t  is customary and con- 
venient t o  reorganize the calculation t o  plot travel-time depth, instead of 
depth, making the vertical axes on both input and output the same. Using 
T = z /v , equivalently d r/dz = l / v  , the chain rule gives 

Substitution into (1) gives 

In the program, the time sample size d t  = A t  and the travel-time 
depth sample dtau = AT are taken t o  be unity, so the maximum frequency 
is the Nyquist. Notice that  the frequency loop covers only the positive fre- 
quency axis. The negative frequencies serve only t o  keep the time function 
real, a task that  is more easily done by simply taking the real part. 

The output of the program is shown in figure 8. Mainly, you see semicir- 
cle approximations. There are also some artifacts a t  late time that  may be 
w-domain wraparounds. The input pulses were apparently sufficiently broad- 
banded in dip that  the figure provides a preview of the fact, t o  be proved 
later, tha t  the actual semicircle approximation is an ellipse going through the 
origin. 

Notice that  the waveform of the original pulses was a symmetric function 
of time, whereas the semicircles exhibit a waveform that  is neither symmetric 
nor antisymmetric, but is a 45" phase-shifted pulse. Waves from a point in a 
three-dimensional world would have a phase shift of 90". Waves from a two- 
dimensional exploding reflector in a three-dimensional world have the 45" 
phase shift. 
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FIG. 2.3-8. Output of figure 7 program: semicircle approximations. 

2.4 Splitting and Full Separation 

Two processes, A and B, which ordinarily act simultaneously, may or 
may not be interconnected. The case where they are independent is called full 
separation. In this case it is often useful, for thought and for computation, to  
imagine process A going t o  completion before process B is begun. Where 
the processes are interconnected it is possible t o  allow A t o  run for a short 
while, then switch t o  B, and continue in alternation. This alternation 
approach is called splitting. 

The Heat-Flow Equation 

The diffraction or migration equation could be called the "wavefront 
healing" equation. I t  smooths back together any lateral breaks in the wave- 
front that  may ha,ve been caused by initial conditions or by the lens term. 
The 15" migration equation has the same mathematical form as the heat-flow 
equation. But the heat-flow equation has all real numbers, and its physical 
behavior is more comprehensible. This makes it a worthwhile detour. A 
two-sentence derivation of i t  follows. (1) The heat flow Hz in the x- 
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direction equals the negative of the gradient -d/dx of temperature T 
times the heat conductivity a. (2) The decrease of temperature - dT  l d t  is 
proportional to the divergence of the heat flow dIT, l d x  divided by the heat 

storage capacity C of the material. Combining these, extending from one 
dimension t o  two, taking a constant and C =1, gives the equation 

Splitting 

The splitting method for numerically solving the heat-flow equation is to  
replace the two-dimensional heat-flow equation by two one-dimensional equa- 
tions, each of which is used on alternate time steps: 

In equation (2a) the heat conductivity a has been doubled for flow in the x -  
direction and zeroed for flow in the y-direction. The reverse applies in equa- 
tion (2b). At odd moments in time heat flows according t o  (2a) and at even 
moments in time it flows according t o  (2b). This solution by alternation 
between (2a) and (2b) can be proved mathematically t o  converge t o  the solu- 
tion t o  (1) with errors of the order of A t .  Hence the error goes t o  zero as 
At goes t o  zero. The motivation for splitting is the infeasibility of higher- 
dimensional implicit methods (end of Section 2.2). 

Full Separation 

Splitting can turn  out t o  be much more accurate than  might be ima- 
gined. In many cases there is no loss of accuracy. Then the method can be 
taken t o  an extreme limit. Think about a radical approach t o  equations (2a) 
and (2b) in which, instead of alternating back and forth between them a t  
alternate time steps, what is done is t o  march (2a) through all time steps. 
Then this intermediate result is used as  an initial condition for (2b), which is 
marched through all time steps t o  produce a final result. It might seem 
surprising that  this radical method can produce the correct solution t o  equa- 
tion (1). But if o is a constant function of x and y , it does. The process 
is depicted in figure 1 for an impulsive initial disturbance. A differential equa- 
tion like (1) is said t o  be fully separable when the correct solution is obtain- 
able by the radical method. It should not be too surprising that  full 
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separation works when o is a constant, because then Fourier transformation 
may be used, and the two-dimensional solution exp[-a (kX2 + ky2)t] equals 

the succession of one-dimensional solutions exp(-o kz2t ) cup(-o kg2t ). I t  

turns out, and will later be shown, that  the condition required for applicabil- 
ity of full separation is that  a d2/ax should commute with o a 2 / a y 2 ,  that  
is, the order of differentiation should be irrelevant. Technically there is also a 
boundary-condition requirement, but it creates no difficulty when the distur- 
bance dies out before reaching a boundary. 

FIG. 2.4-1. Temperature distribution in the (x , y )-plane beginning from a 
delta function (left). After heat is allowed t o  flow in the x -direction but not 
in the y -direction the heat is located in a "wall" (center). Finally allowing 
heat t o  flow for the same amount of time in the y-direction but not the x -  
direction gives the same symmetrical Gaussian result that  would have been 
found if the heat had moved in x - and y -directions simultaneously (right). 

Surprisingly, no notice is made of full separability in many textbooks on 
numerical solutions. Perhaps this is because the total number of additions 
and multiplications is the same whether a solution is found by splitting or by 
full separation. But as a practical matter, the cost of solving large problems 
does not mount up simply according t o  the number of multiplications. When 
the data  base does not fit entirely into the random-access memory, as is 
almost the definition of a large problem, then each step of the splitting 
method demands that  the data base be transposed, say, from ( x ,  y ) storage 
order t o  (y , x )  storage order. Transposing requires no multiplications, but 
in many environments transposing would be by far the most costly part of the 
whole computation. So if transposing cannot be avoided, a t  least i t  should be 
reduced t o  a practical minimum. 

There are circumstances which dictate a middle road between splitting 
and separation - for example, if a were a slowly variable function of x or 
y . Then you might find that  although o d2/dx2 does not strictly commute 
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with o a2/ay 2, i t  comes close enough that  a number of time steps may be 
made with (2a) before you transpose the data and switch over t o  (2b). Cir- 
cumstances like this one but with more geophysical interest arise with the 
wave-extrapolation equation that  is considered next. The significance in 
seismology of the splitting and full separation concepts was first recognized by 
Brown [1983]. 

Application to Lateral Velocity Variation 

A circumstance in which the degree of noncommutativity of two 
differential operators has a simple physical meaning and an obviously 
significant geophysical application is the so-called monochromatic 15" wave- 
extrapolation equation in inhomogeneous media. Taking v = T7 this equa- 
tion is 

- - (retardation + thin lens + difiaction) U 

Inspection of (3) shows that  the retardation term commutes with the thin-lens 
term and with the free-space diffraction term. But the thin-lens term and the 
diffraction term do not commute with one another. In practice it seems best 
t o  split, doing the thin-lens part analytically and the diffraction part by the 
Crank-Nicolson method. Then stability is assured because the stability of 
each separate problem is known. Also, the accuracy of the analytic solution is 
an attractive feature. Now the question is, t o  what degree do these two terms 
commute? 

The problem is just that  of focusing a slide projector. Adjusting the 
focus knob amounts to  repositioning the thin-lens term in comparison t o  the 
free-space diffraction term. There is a small range of knob positions over 
which no one can notice any difference, and a larger range over which the peo- 
ple in the back row are not disturbed by misfocus. Much geophysical data 
processing amounts t o  downward extrapolation of data. The lateral variation 
of velocity occurring in the lens term is known only t o  a limited accuracy. 
The application could be t o  determine v ( x )  by the extrapolation procedure. 

For long lateral spatial wavelengths the terms commute. Then 
diffraction may proceed in ignorance of the lateral variation in v . At shorter 
wavelengths the diffraction and lensing effects must be interspersed. So the 
real issue is not merely computational convenience but the interplay between 
data  accuracy and the possible range for velocity in the underlying model. 
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Application to 3-D Downward Continuation 

The operator for migration of zero-offset reflection seismic data  in three 
dimensions is expandable t o  second order by Taylor series expansion t o  the 
so-called 15" approximation 

The most common case is when v is slowly variable or independent of x 
and y . Then the conditions of full separation do apply. This is good news 
because it means that  we can use ordinary 2-D wave-extrapolation programs 
for 3-D, doing the in-line data  and the out-of-line data in either order. The 
bad news comes when we try for more accuracy. Keeping more terms in the 
Taylor series expansion soon brings in the cross term a4 /dx2ay2 .  Such a 
term allows neither full separation nor splitting. Fortunately, present-day 
marine data-acquisition techniques are sufficiently crude in the out-of-line 
direction that  there is little justification for out-of-line processing beyond the 
15" equation. Francis Muir had the good idea of representing the square root 
as 

There may be justification for better approximations with land data. 
Fourier transformation of a t  least one of the two space axes will solve the 
computational problem. This should be a good approach when the medium 
velocity does not vary laterally so rapidly as to  invalidate application of 
Fourier transformation. 

Separability of 3-D Migration (the Jakubowicz Justification) 

In an operations environment, 3-D is much harder t o  cope with than 2-D. 
Therefore, it may be expedient to  suppose that  3-D migration can be achieved 
merely by application of 2-D migration twice, once in the x-direction and 
once in the y -direction. The previous section would lead you t o  believe that  
such an expedient process would result in a significant degradation of accu- 
racy. In fact, the situation is nzuch better than might be supposed. It has 
been shown by Jakubowicz and Levin [I9831 that ,  wonder of wonders, for a 
constant-velocity medium, the expedient process is exact. 

The explanation is this: migration consists of more than downward con- 
tinuation. It also involves imaging, that  is, the selection of data  a t  t =O. In 
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principle, downward continuation is first completed, for both the x and the 
y directions. After that ,  the imaging condition is applied. In the expedient 
process there are four steps: downward continuation in x ,  imaging, down- 
ward continuation in y ,  and finally a second imaging. Why it is that  the 
expedient procedure gives the correct result seems something of a puzzle, but 
the validity of the result is easy to  demonstrate. 

First note tha t  substitution of (6) into (7) gives (8) where 

Equation (8) represents travel time to  an arbitrary point scatterer. For a 2-D 
survey recorded along the y-axis, i.e., a t  constant x ,  equation (7) is the 
travel-time curve. In-line hyperbolas cannot be distinguished from sideswipe 
hyperbolas. 2-D migration with equation (7) brings the energy up to  t 

Subsequently migrating the other direction with equation (6) brings the 
energy up the rest of the way to  to.  This is the same result as the one given 

by the more costly 3-D procedure migrating with (8). 

The Jakubowicz justification is somewhat more mathematical, but may 
be paraphrased as follows. First note that  substitution of (9) into (10) gives 
(11) where 

Twedimensional Stolt migration over x may be regarded as a transforma- 
tion from travel-time depth t t o  a pseudodepth T by use of equation (9). 
The second two-dimensional migration over y may be regarded as a 
transformation from pseudodepth T t o  true depth z by use of equation (10). 
The composite is the same as equation (11), which depicts 3-D migration. 

The validity of the Jakubowicz result goes somewhat beyond its proof. 
Our two-dimensional geophysicist may be migrating other offsets besides zero 
offset. (In Chapter 3 nonzereoffset data is migrated). If a good job is done, 
all the reflected energy moves up to  the apex of the zero-offset hyperbola. 
Then the cross-plane migration can handle it if it can handle zero offset. So 
offset is not a problem. But can a good job be done of bringing all the energy 
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up t o  the apex of the zero-offset hyperbola? 

Difficulty arises when the velocity of the earth is depth-dependent, as it 
usually is. Then the Jakubowicz proof fails, and so does the expedient 3-D 
method. With a 2-D survey you have the problem that  the sideswipe planes 
require a different migration velocity than the vertical plane. Rays propaga- 
ting t o  the side take longer t o  reach the high-velocity media deep in the earth. 
So sideswipes usually require a lower migration velocity. If you really want to  
do three-dimensional migration with v (z) ,  you should forget about separa- 
tion and do i t  the hard way. Since we know how t o  transpose (Section 1.6), 

the hard way really isn't much harder. 

Separability in Shot-Geophone Space 

Reflection seismic data gathering is done on the earth's surface. One can 
imagine the appearance of the data  that  would result if the data were gen- 
erated and recorded a t  depth, that  is, with deeply buried shots and geo- 
phones. Such buried data could be synthesized from surface data by first 
downward extrapolating the geophones, then using the reciprocal principle to  
interchange sources and receivers, and finally downward extrapolating the sur- 
face shots (now the receivers). A second, equivalent approach would be to  
march downward in steps, alternating between shots and geophones. This 
latter approach is developed in Chapter 3, but the result is simply stated by 
the equation 

The equivalence of the two approaches has a mathematical consequence. The 
shot coordinate s and the geophone coordinate g are independent vari- 
ables, so the two square-root operators commute. Thus the same solution is 
obtained by splitting as by full separation. 

Validity of the Splitting and Full-Separation Concepts 

When Fourier transformation is possible, extrapolation operators are 
ik,  r 

complex numbers like e . With complex numbers a and b there is 
never any question that  ab = b a .  Then both splitting and full separation 
are always valid, but the proof will be given only for a more general arrange- 
ment. 

Suppose Fourier transformation has not been done, or could not be done 
because of some spatial variation of material properties. Then extrapolation 
operators are built up by combinations of the finite-differencing operators 
described in previous sections. Let A and B denote two such operators. 
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For example, A could be a matrix containing the second x differencing 
operator. Seen as matrices, the boundary conditions of a differential operator 
are incorporated in the corners of the matrix. The bottom line is whether 
A B = B A ,  so the question clearly involves the boundary conditions as well 
as the differential operators. 

Extrapolation forward a short distance can be done with the operator 
(I+A Az) .  In two-dimensional problems A was seen t o  be a four- 
dimensional matrix. For  convenience the terms of the four-dimensional 
matrix can be arranged into a super-large, ordinary tw~dimensional  matrix. 
Implicit finite-differencing calculations gave extrapolation operators like 
(I+A A Z  )/(I-A AZ  ). Let p denote a vector where components of the vec- 
tor designate the wavefield a t  various locations. As has been seen, the loca- 
tions need not be constrained t o  the x-axis but could also be distributed 
throughout the ( x ,  y)-plane. Numerical analysis gives us a matrix operator, 
say A ,  which enables us to  project forward, say, 

The subscript on A denotes the fact that  the operator may change with z .  

To get a step further the operator is applied again, say, 

From an operational point of view the matrix A is never squared, but from 
an analytical point of view, it really is squared. 

To  march some distance down the z-axis we apply the operator many 
times. Take an interval z - zO, t o  be divided into N subintervals. Since 

there are N intervals, an error proportional to  l / N  in each subinterval 
would accumulate t o  an  unacceptable level by the time z was reached. On 

the other hand, an error proportional to  1 / ~ ~  could only accumulate t o  a 
total error proportional to  1 / N .  Such an error would disappear as the 
number of subintervals increased. 

To  prove the validity of splitting, we take Az = ( z  - z o ) / N .  Observe 

that  the operator I+(A+B)Az differs from the operator 
(I+A Az) ( I+B A z )  by something in proportion t o  a z 2  or 1 1 ~ ~ .  So in 
the limit of a very large number of subintervals, the error disappears. 

It is much easier t o  establish the validity of the full-separation concept. 
Commutativity is whether or not A B = B A. Commutativity is always 
true for scalars. With finite differencing the question is whether the two 
matrices commute. Taking A and B to  be differential operators, 
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commutativity is defined with the help of the family of all possible wavefields 
P  . Then A and B are commutative if A B P = B A P  . 

The operator representing 8P /8z will be taken t o  be A+B. The sim- 
plest numerical integration scheme using the splitting method is 

Applying (13) in many stages gives a product of many operators. The opera- 
tors A and B are subscripted with j t o  denote the possibility that  they 
change with z .  

As soon as A and B are assumed t o  be commutative, the factors in (14) 
may be rearranged a t  will. For example, the A operator could be applied in 
its entirety before the B operator is applied: 

Thus the full-separation concept is seen to  depend on the commutativity of 
operators. 

EXERCISES 

1. With a splitting method, Ma Zaitian (Ma [1981]) showed how very wide- 
angle representations may be implemented with successive applications of 
an equation like a 45" equation. This avoids the band matrix solving 
inherent in the high-order Muir expansion. Specifically, one chooses 
coefficients a and b j ,  in the square-root fitting function 

The general n th-order case is somewhat complicated, so your job is sim- 
ply t o  find a a 2 ,  b and b 2, t o  make the fitting function match the 

45" equation. 

2. Migrate a two dimensional data set with velocity v l. Then migrate the 

migrated data set with a velocity v2. Rocca pointed out that  this dou- 
ble migration simulates a migration with a third velocity v g .  Using a 

method of deduction similar t o  the Jakubowicz deduction equations (9), 
(lo), and (11) find v in terms of v and v2. 
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3. Consider migration of zero-offset data P (x , y , t ) recorded in an area of 
the earth's surface plane. Assume a computer with a random access 
memory (RAM) large enough t o  hold several planes (any orientation) 
from the data  volume. (The entire volume resides in slow memory dev- 
ices). Define a migration algorithm by means of a program sketch (such 
as in Section 1.3). Your method should allow velocity t o  vary with 
depth. 

2.5 Recursive Dip Filters 

Recursive filtering is a form of filtering where the output of the filter is 
fed back as an input. This can achieve a long impulse response for a tiny 
computational effort. It is particularly useful in computing a running mean. 
A running mean could be implemented as a low-pass filter in the frequency 
domain, but it is generally much better to  avoid transform space. Physical 
space is cheaper, it allows for variable coefficients, and it permits a more flexi- 
ble treatment of boundaries. Geophysical datasets are rarely stationary over 
long distances in either time or space, so recursive filtering is particularly 
helpful in statistical estimation. 

The purpose of most filters is t o  make possible the observation of impor- 
tant  weak events that  are obscured by strong events. One-dimensional filters 
can do this only by the selection or rejection of frequency components. In 
two dimensions, a different criterion is possible, namely, selection by dip. 

Dip filtering is a process of long-standing interest in geophysics (Embree, 
Burg, and Backus [1963]). Steep dips are often ground-roll noise. Horizontal 
dips can also be noise. For example, weak fault diffractions carry valuable 
information, but they may often be invisible because of the dominating pres- 
ence of flat layers. 

To  do an ordinary dip-filtering operation ("pie slice"), you simply 

transform data into (w, k)-space, multiply by any desired function of k /w ,  
and transform back. Pie-slice filters thus offer complete control over the filter 

response in k /w dip space. While the recursive dip filters are not controlled 
so easily, they do meet the same general needs as pie-slice filters and offer the 
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additional advantages of 

1. time- and space-variability 

2. causality 

3. ease of implementation 

4. orders of magnitude more economic than (w ,  k )-implementation 

The causality property offers an interesting opportunity during data 
recording. Water-velocity rejection filters could be built into the recording 
apparatus of a modern high-density marine cable. 

Definition of a Recursive Dip Filter 

Let P denote raw data  and Q denote filtered data. When seismic 
data  is quasimonochromatic, dip filtering can be achieved with spatial fre- 
quency filters. The table below shows filters with an adjustable cutoff param- 
eter a. 

T o  apply these filters in the space domain it is necessary only to  interpret 
k 2  as the tridiagonal matrix T with (-1 2, -1) on the main diagonal. 
Specifically, for the low-pass filter it is necessary t o  solve a tridiagonal set of 
simultaneous equations like 

Dip Filters for Monochromatic Data (w Const ) 

in which q and p are column vectors whose elements denote different 
places on the x-axis. Previously, this was done while solving the heat-flow 
equation. T o  make the filter space-variable, the parameter a can be taken 
t o  depend on x so that  a I is replaced by an arbitrary diagonal matrix. I t  
doesn't matter whether p and q are represented in the w-domain or the 
t -domain. 

Low Pass 

Q = a P  
a + k 2  

Turn your attention from narrow-band data t o  data with a somewhat 

High Pass 

Q = k 2  P 
a + k 2  
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broader spectrum and consider 

2.5 Recursive Dip Filters 

Naturally these filters can be applied t o  data of any bandwidth. However the 
filters are appropriately termed "dip filters" only over a modest bandwidth. 

To  understand these filters look in the (w, k )-plane at  contours of con- 
stant  k2/w, i.e. w = k2. Such contours, examples of which are shown in 
figure 1, are curves of constant attenuation and constant phase shift. The 
low-pass filter has no phase shift in the pass zone, but there is time 
differentiation in the attenuation zone. This is apparent from the defining 
equation. The high-pass filter has no phase shift in the flat pass zone, but 
there is time integration in the attenuating zone. 

D i p  F i l t e r s  f o r  Moderate B a n d w i d t h  D a t a  (Aw) 

An interesting feature of these dip filters is that  the low-pass and the 
high-pass filters constitute a pair of filters which sum t o  unity. So nothing is 
lost if a dataset is partitioned by them in two. The high-passed part could be 
added to  the low-passed part to  recover the original dataset. Alternately, 
once the low-pass output is computed, it is much easier t o  compute the high- 
pass output, because it is just the input minus the low-pass. 

Low Pass 

a  P Q = 
k 2  

a + -  
- i w  

Recursive-Dip-Fil ter  Imp lemen ta t i on  

High Pass 

k 
- i w  

Q = P 
k 

a + -  
- i w  

Implementation of the moderate bandwidth dip filters is, again, a 
straightforward matter. For example, clearing fractions, the low-pass filter 
becomes 

The main trick is t o  realize that  the differentiation implied by - i w is per- 
formed in a Crank-Nicolson sense. That  is, terms not differentiated are aver- 
aged over adjacent values. 

Gathering the unknowns to  the left gives 



FINITE DIFFERENCING 2.5 Recursive Dip Filters 

FIG. 2.5-1. Constant-attenuation contours of dip filters. Over the seismic 
frequency band these parabolas may be satisfactory approximations t o  the 
dashed straight line. Passlreject zones are indicated for the low-pass filter. 
(Hale) 

Equation (4) is a tridiagonal system of simultaneous equations for the un- 
knowns qt+l .  The system may be solved recursively for successive values of 

t .  

The parameter a determines the filter cutoff. I t  can be chosen t o  be 
any function of time and space. However, if the function is t o  vary extremely 
rapidly, then it may be necessary t o  incorporate some of the stability analysis 
that  is developed in a later chapter for use with wave equations. 

Side Boundaries 

Usually geophysicists wish that  there were no boundaries on the sides, or 
that  they were infinitely far away. There are two kinds of side conditions to 
think about, those in x , and those in k .  

Often the side conditions on x are best approximated by zero-slope side 
conditions. I t  is possible t o  use more general side conditions because we have 
previously learned t o  solve any tridiagonal system of equations. 

The side conditions in k-space relate t o  the steepest dips. A way to  han- 
dle these dips is t o  use T/(I-@T) to  represent k 2. This introduces another 
adjustable parameter P, which must be kept less than 114. Details are 
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studied in Section 4.3. 

Slicing Pies 

Naturally we may prefer true dip filters, that  is, functions of k /w 
instead of the functions of k2/w described above. But it can be shown that  

2 2 replacing k2/w in the above expressions by k /w gives recursions that  are 
unstable. 

Sharper pie slices (filters which are more strictly a rectangle function of 
k /w), may be defined through a variety of approximation methods described 
by Hale and Claerbout [1983]. Generally, I k I can be expanded in a power 
series in a2/ax2.  If the approximation t o  I k I is ensured positive, you can 
expect stability of the recursion that  represents 1 k 1 /2w. 

More simply, you might be willing to  Fourier transform time or space, 
but not both. In the remaining dimension (the one not transformed) the 
required operation is a highpass or lowpass filter. This is readily implemented 
by a variety of techniques, such as the Butterworth filter. 

Higher Dimensionality 

It is natural t o  think of a recursive three-dimensional low-pass dip filter 
as the functional form 

This, however, leads t o  an infeasible Crank-Nicolson situation. Multidimen- 
sional low-pass filtering is possible with 
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2.6 Retarded Coordinates 

To examine running horses it may be best t o  jump on a horse. Likewise, 
t o  examine moving waves, it may be better t o  move along with them. So to  
describe waves moving downward into the earth we might abandon ( x ,  2)-  

coordinates in favor of moving (x , z ')-coordinates, where z ' = z + t v . 
An alternative t o  the moving coordinate system is to  define retarded 

coordinates (x , z , t ') where t ' = t - z /v . The classical example of 
retarded coordinates is solar time. Time seems t o  stand still on an airplane 
that  moves westward a t  the speed of the sun. 

The migration process resembles the simulation of wave propagation in 
either a moving coordinate frame or a retarded coordinate frame. Retarded 
coordinates are much more popular than moving coordinates. Here is the rea- 
son: In solid-earth geophysics, velocity may depend on both x and z , but 
the earth doesn't change with time t during our seismic observations. In a 
moving coordinate system the velocity could depend on all three variables, 
thus unnecessarily increasing the complexity of the calculations. Fourier 
transformation is a popular means of solving the wave equation, but it loses 
most of its utility when the coefficients are nonconstant. 

Definition of Independent Variables 

The specific definition of retarded coordinates is a matter of convenience. 
Often the retardation is based on hypothetical rays moving straight down 
with velocity T ( z ) .  The definition of these coordinates has utility even in 
problems in which the earth velocity varies laterally, say v ( x ,  z ) ,  even 
though there may be no rays going exactly straight down. In principle, any 
coordinate system may be used t o  describe any circumstance, but the utility 
of the retarded coordinate system generally declines as the family of rays 
defining it departs more and more from the actual rays. 

Despite the simple case a t  hand it is worthwhile t o  be somewhat formal 
and precise. Define the retarded coordinate system ( t  ', x ', z ') in terms of 
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ordinary Cartesian coordinates ( t  , x ,  z )  by the set of equations 

The purpose of the integral is t o  accumulate the travel time from the surface 
t o  depth z .  The reasons to  define (a', 2') when it is just set equal to  
(x , z ) are, first, t o  avoid confusion during partial differentiation and, second, 
t o  prepare for later work in which the family of rays is more general. 

Definition of Dependent Variables 

There are two kinds of dependent variables, those that  characterize the 
medium and those that  characterize the waves. The medium is characterized 
by its velocity v and its reflectivity c . The waves are characterized by 
using U for an upcoming wave, D for a downgoing wave, P for the pres- 
sure, and Q for a modulated form of pressure. Let us say P ( t  , x , z ) is 
the mathematical function t o  find pressure, given ( t , x , z ) ;  and 
P '(t ', x ', z ')  is the mathematical function given ( t  ', x ', z I ) .  The statement 
that  the two mathematical functions P and P' both refer t o  the same 
physical variable is this: 

P ( t , x , z )  = P 1 [ t ' ( t , x , z ) ,  x l ( t , x , z ) ,  z 1 ( t , X , z ) l  (2) 

P ( t  , x ,  z )  = P ' ( t t ,  x', z ')  

Obviously there are analogous expressions for the other dependent variables 
and medium parameters like velocity v ( x ,  z ). 

The Chain Rule and the High Frequency Limit 

The familiar partial-differential equations of physics come t o  us in 
( t  , x , z )-space. The chain rule for partial differentiation will convert the par- 
tial derivatives t o  ( t  ', x ', z ')-space. For example, differentiating (2) with 
respect t o  z gives 

Using (1) t o  evaluate the coordinate derivatives gives 
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There is nothing special about the variable P in (3). We could as well write 

where the left side is for operation on functions that  depend on ( t  , x , z ) 
and the right side is for functions of ( t  ', x',  2'). Differentiating twice gives 

Using the fact that  the velocity is always time-independent results in 

Except for the rightmost term with the square brackets it could be said that  
i L squaring" the operator (4) gives the second derivative. This last term is 
almost always neglected in data  processing. The reason is that  its effect is 
similar t o  the effect of other first-derivative terms with material gradients for 
coefficients. Such terms, as described in Section 1.5, cause amplitudes t o  be 
more carefully computed. If the last term in (6) is t o  be included, then it 
would seem that  all such terms should be included, from the beginning. 

Fourier Transforms in Retarded Coordinates 

Given a pressure field P (t , x ,  z ) ,  we may Fourier transform it with 
respect to  any or all of its independent variables (t  , x ,  2). Likewise, if the 
pressure field is specified in retarded coordinates, we may Fourier transform 
with respect to  ( I ,  x 2 )  Since the Fourier dual of ( t  , x , z ) is 
(w, k , k ), it seems appropriate for the dual of ( t  I,  x ', z I )  to  be 

(J, k: , k: ). Now the question is, how are ( I ,  k , k ) related to  the famil- 

iar (cL), kZ,  kZ)?  The answer is contained in the chain rule for partial 
differentiation. Any expression like 

on Fourier transformation says 

Computing all the other derivatives, we have the transformation 
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Recall the dispersion relation for the scalar wave equation: 
n 

Performing the substitutions from (8) into (9) we have the expression of the 
scalar wave equation in retarded time, namely, 

FIG. 2.6-1. Dispersion relation of the wave equation in usual coordinates 
(left) and retarded time coordinates (right). 

These two dispersion relations are plotted in figure 1 for the retardation veloc- 
ity chosen equal t o  the medium velocity. 

Figure 1 graphically illustrates that  retardation can reduce the cost of 
finite-difference calculations. Waves going straight down are near the top of 
the dispersion curve (circle). The effect of retardation is to  shift the circle's 
top down to  the origin. Discretizing the x -  and z-axes will cause spatial 
frequency aliasing on them. The larger the frequency w, the larger the circle. 
Clearly the top of the shifted circle is further from folding. Alternately, Az 
may be increased (for the sake of economy) before k: exceeds the Nyquist 

frequency x / A z .  
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Interpretation of the Modulated Pressure Variable Q 

Earlier a variable Q w7as defined from the pressure P by the equation 

The right side is a product of two functions of w. At  constant velocity ( 1 1 )  is 
expressed as 

i w t  
In the time domain e  O becomes a delta function S( t  - t o ) .  Equation ( 1 2 )  

is a product in the frequency domain, so in the time domain i t  is the convolu- 
tion 

~ ( t )  = q ( t ) * S ( t  - 2 1 ~ )  

= q( t  - z / v )  

= q ( t ' )  ( 1 3 )  

This confirms that  the definition of a dependent variable Q is equivalent to  
introducing retarded time t '. 

Einstein's Special Relativity Theory 

There is no known application of Einstein's theory of special relativity t o  
seismic imaging. But some of the mathematical methods are related, and now 
is the appropriate time to  take a peek a t  this famous theory. 

In 1887 the Michelson-Morley interferometer experiment established with 
high accuracy that  light travels in all directions a t  t,he same speed, day and 
night, winter and summer. We have seen that  the dispersion relation of the 
scalar wave equation is a circle centered a t  the origin, meaning that  waves go 
the same speed in all directions. But if the coordinate system is moving with 
respect to  the medium, then the dispersion relation loses directional sym- 
metry. For light propagating in the vacuum of outer space, there seems to  be 
no natural reference coordinate system. If the earth is presumed to  be a t  rest 
in the summer, then by winter, the earth is moving around the sun in the 
opposite direction. The summer coordinates relate t o  the winter coordinates 
by something like x ' = x - 2 vearth t  . While analysis of the Michelson- 

Morley experiment shows that  such motion should have a measurable asym- 
metry, measurements show that  the predicted asymmetry is absent. Why? 
One theory is the "ether" theory. Ether is a presumed substance that  
explains the paradox of the Michelson-Morley experiment. It is presumed to  
be of minuscule density and viscosity, allowing us t o  imagine that  it is 
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somehow dragged around the earth in such a way that  earthbound experi- 
menters are always moving a t  the same speed as it is. Other measurements, 
however, also contradict the presumption of ether. Just as  wind refracts 
atmospheric sound waves, ether should cause a measurable refraction of star- 
light, but this is not observed. 

Einstein's explanation of the experiments is based on a mathematical fact 
that  you can easily verify. Let a coordinate frame be defined by 

The amazing thing about this transformation, which you can easily prove, is 
that  it converts the equation P,, + P,, = c - 2 ~ t t  t o  the equation 

P, l+P, 1 = c P ~ P ,  ! , I .  The transformed wave equation is independent of 

velocity v which is what led Einstein t o  his surprising conclusions. 

2.7 Finite Differencing in (t, x, 2)-Space 

Much, if not most, production migration work is done in ( t ,  x ,  2 ) -  

space. T o  avoid being overwhelmed by the complexity of this three- 
dimensional space, we will first look a t  migration in (z , t )-space for fixed kz . 

Migration in ( 2 ,  t)-Space 

Migration and data synthesis may be envisioned in (z' ,  t  ')-space on the 
following table, which contains the upcoming wave U :  
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In this table the observed upcoming wave a t  the earth's surface 2 '  = 0 is 
denoted by ut . The migrated section, denoted by ct  , is depicted along the 

diagonal because the imaging condition of exploding reflectors a t  time t =O 

is represented in retarded space as 

t 1  = t + z / v  (+ for up) (2b) 

The best-focused migration need not fall on the 45" line a s  depicted in 
(1); it might be on any line or curve as  determined by the earth velocity. 
This curve forms the basis for velocity determination (Section 3.5). You 
couldn't determine velocity this way in the frequency-domain. 

From Section 2.1, the equation for upcoming waves U in retarded coor- 
dinates ( t  ', x ', z ') is 

Next, Fourier transform the x-axis. This assumes that  v is a constant func- 
tion of x and that  the x-dependence of U is the sinusoidal function 
exp(ik, x ). Thus, 

Now this partial-differential equation will be discretized with respect to  
t ' and z '. Matrix notation will be used, but the notation does not refer to  
matrix algebra. Instead the matrices refer t o  differencing stars that  may be 
placed on the ( t  ', z ')-plane of (I). Let * denote convolution in ( 2 ,  t )- 
space. A succession of derivatives is really a convolution, so the concept of 
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8/82 8 / a t  = a2 /az  a t  is expressed by is expressed by 

Thus, the differenced form of (5) is 

The 114 enters in because the average of U is taken over four places on 
the mesh. 

The sum of the two operators always has I b I > I s I in the form 

Now the differencing star in (8) will be used t o  fill table (1) with values for 
U .  

Given the three values of U in the boxes, a missing one, A4, may be 
determined by either of the implied two operations 

or 

(9a,b) 

It turns out that  because I b I > I s I , the implied filling operations by 

are unstable. I t  is obvious that  there would be a zero-divide problem if s 
were equal to  0, and it is not difficult t o  do the stability analysis that  shows 
that  (10) causes exponential growth of small disturbances. 

It is a worthwhile exercise t o  make the zero-dip assumption (k, = 0) 
and use the numerical values in the operator of (8) t o  fill in the elements of 
table (I). It will be found that  the values of ut move laterally in z across 

the table with no change, predicting, as the table should, that  ct = u t .  

Slow change in z suggests that  we have oversampled the z-axis. In prac- 
tice, effort is saved by sampling the z-axis with fewer points than are used to 
sample the t -axis. 
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( t  , x , z )-Space, 15" Diffraction Program 

The easiest way t o  understand 15" migration in ( t  , x ,  z)-space is t o  
refer t o  the (z , t )-space migration. Instead of a scalar function U (lc, ), we 
use u, a vector whose components u j  measure pressure a t  x = j A x .  

Think of kz2 as a tridiagonal matrix, call it T, with (-1, 2, -1) on the 

main diagonal. Note that  kZ2 is positive, and that  T is a positive definite 

matrix with a positive element on its main diagonal. Take equation (7) and 
use a t o  denote the left constant. This gives 

Consider a modeling program. It begins down inside the earth with the 
differencing star  (9b). Solving (11) for the unknown u t  , r and dropping 

all primes yields 

First, evaluate the expression on the right. The left side is a tridiagonal sys- 
tem t o  be solved for the unknown u t  + 1 , ,  . Allowable sequences in which 

(12) may be applied are dictated by the differencing star  (9b). 

Heeding the earlier remark that  with waves of modest dip, the zl-axis 
need not be sampled so densely as the t'-axis, we do a computation that  
skips alternate levels of z'. The specific order chosen in the computer pro- 
gram in figure 1 is indicated by the numbers in the following table: 

An inescapable practical problem shown in the table when the number of 
points in t '-space is not exactly equal that  in z '-space is that  the earth image 
must be interpolated along a diagonal on the mesh. The crude interpolation 
in (13) illustrates the assumption that  the wave field changes rapidly in t ' 
but slowly in z ' ,  i.e. the small-angle assumption. 



FII\'I TE DIFFER EICTCIATG 2.7 (t, x, 2)-Space 

# Time Domain 15-degree Diffraction Movie 
# Star: w=p(t ,z) y=p(t ,z+l)  
# Star: u = ~ ( t + l , z )  v=p(t+l ,z+l)  
real p(36,96),u(36),w(36),v(36),y(36),e(36),f(36),d(36),2(96),alfa,beta 
integer ix,nx,iz,nz,it,nt,kbyte 
nx = 36; nz = 96; n t  = 96; kbyte=l  
alfa = ,125 # v*dz*dt/(8*dx*dx) 
beta = ,140 # accurate x derivative parameter; simplest case b=O. 
open(3,file='plot40',status='new',access='direct',form='unformatted',recl=l) 
d o  iz=l,nz; do ix=l,nx; p(ix,iz) = 0 .  # clear space 
d o  iz=nz/5,nz,nz/4 # Set up initial model 

do it=1,15 # of 4 band limited 
do ix=1,4 # "point" scatterers. 

p(ix,it+iz) = (5.-ix)*(&it)*exp(-.l*(it-8)**2) 
apb = alfa+beta; amb = alfa-beta # tridiagonal coefficients 
diag = l .+2.*amb; offdi = -amb 
do iz=nz,2,-2 { # Climb up in steps of 2 z-levels 

do i=l,nz; z(i)=O.; z(iz)=l. # Pointer t o  current z-level 
write(3,rec=kbyte) (z(i),i=l,nz),((p(ix,i),i=l,nz),ix=l,nx) 
kbyte = kbyte + nx*nz*4 + nz*4 
do ix=l,nx 

{ u(ix) = p(ix,iz-1); v(ix) = u(ix) ) 
do it=iz,nt { 

do ix=l,nx #update the differencing star 
{ w(ix) = u(ix); y(ix) = v(ix); v(ix) = p(ix,it) ) 

dd = (1.-apb)*(v(l)+w(l))+apb*(v(2)+~(2)) 
d(1) = dd-diag*y(l)-offdi*(y(l)+y(2)) 
do ix=2,nx-1 { 

dd = (1.-2.*apb)*(v(ix)+w(ix)) 
dd  = dd + apb*(v(ix-l)+w(ix-l)+v(~x+l)+w(ix+l)) 
d(ix) = dd-diag*y(ix)-offdi*(y(ix-l)+y(ix+l)) } 

dd = (1.-apb)*(v(nx)+w(nx))+apb*(v(nx-l)+w(nx-1)) 
d(nx) = dd-diag*y(nx)-offdi*(y(nx)+y(nx-1)) 
call rtris(nx,diag+offdi,offdi,diag,offdi,diag+offdi,d,u,e,f) 
do ix=l,nx 

p(ix,it) = u(ix) 

1 
1 

I 

do i=l,nz; z(i)=0.; z(l)=l.  
write(3,rec=kbyte) (z(i),i=l,nz),((p(ix,i),i=l,nz),ix=l,nx) 
stop; end 

FIG. 2.7-1. Time-domain diffraction movie program. (Clayton, Gonzalez, 
P C ,  Hale) 

Figure 2 shows the last frame in the movie produced by the test pro- 

gram. Exercise 1 suggests minor changes t o  the program of figure 1 to  con- 
vert it from diffraction to  migration. As modified, the program is essentially 
the original wave equation migration program introduced by Johnson and 
Claerbout [I9711 and Doherty and Claerbout [1972]. 
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FIG. 2.7-2. Diffractions in the last frame of the downward-continuation 
movie. 

Y o u  Can't Time Shi f t  in  t h e  T i m e  Domain .  

You might wish t o  do migration in (x , x ,  t )-space with lateral velocity 
variation. Then the thin-lens stage would be implemented by time shifting 
instead of by multiplying by exp{i w [v (x , z )-I- B ( z  )-']Az }. Time shifting 
is a delightfully easy operation when what is needed is t o  shift data by an 
integral number of sample units. Repetitive time shifting by a fractional 
number of digital units, however, is a nightmare. Multipoint interpolation 
operators are required. Even then, pulses tend t o  disperse. So the lens term 
is probably best left in the frequency domain. 

( t  , x , z )-Space, 45" E q u a t i o n  

The 45" migration is a little harder than the 15" migration because the 
operator in the time domain is higher order, but the methods are similar to 
those of the 15" equation and the recursive dip filter. The straightforward 
approach is just t o  write down the differencing stars. When I did this kind of 
work I found it easiest to  use the Z-transform approach where I/(- iwAt  ) 
is represented by the bilinear transform t / q l+Z) / ( l - 2 ) .  There are various 
ways t o  keep the algebra bearable. One way is t o  bring all powers of Z t o  
the numerator and then collect powers of 2 .  Another way, called the 
integrated approach, is t o  keep 1/(1-Z) with some of the terms. Terms 
including l / ( l - Z )  are represented in the computer by buffers that  contain 
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the sum from infinite time t o  time t .  The 2-transform approach is developed 
in Section 4.6. Its real advantage is that  it systematizes the stability analysis. 

EXERCISES 

Alter the program given in figure 1 so that  it does migration. The delta- 
function inputs should turn into approximate semicircles. 

Perform major surgery on the program in figure 1 so that  it becomes a 
low-pass dip filter. 

Consider a 45" migration program in the space of ( 2 ,  t , Ic, ). Find the 

coefficients in a 6-point differencing star, three points in time and two 
points in depth. For simplicity, take v =1, A t  =1, and Az =l. Sup- 
pose this analysis were transformed into the x-domain ( A x = l )  by 
replacing kx2 with T. What set of tridiagonal equations would have t o  

be solved? 

2.8 Introduction to  Stability 

Experience shows that  as soon as you undertake an applicat,ion that  
departs significantly from textbook situations, stability becomes a greater con- 
cern than accuracy. Stability, or its absence, determines whether the goal is 
achievable a t  all, whereas accuracy merely determines the price of achieving 
it. Here we will look a t  the stability of the heat-flow equation with real and 
with imaginary heat conductivity. Since the latter case corresponds t o  seismic 
migration, these two cases provide a useful background for stability analysis. 

Most stability analysis is based on Fourier transformation. More simply, 
single sinusoidal or  complex exponential trial solutions are examined. If a 
method becomes unstable for any frequency, then i t  will be unstable for any 
realistic case, because realistic functions are just combinations of all frequen- 
cies. Begin with the sinusoidal function 



FINlTE DIFFERENCING 2.8 Inti-oduction to Stability 

The second derivative is 

An expression analogous t o  the second difference operator defines k : 

Ideally k should equal k .  Inserting the complex exponential (I) into (3a) 
gives an expression for k : 

I t  is a straightforward matter t o  make plots of (4b) or its square root. The 
square root of (4b), through the half-angle trig identity, is 

i a x  = 
k Ax 

2 sin- 
2 

Series expansion shows that  d matches k well at low spatial frequencies. 
At  the Nyquist frequency, defined by k Ax  = T, the value of d Ax = 2 is 
a poor approximation to  T. As with any Fourier transform on the discrete 
domain, is a periodic function of k above the Nyquist frequency. 

Although k ranges from minus infinity to  plus infinity, k 2  is compressed 
into the range zero to  four. The limits t o  the range are important since insta- 
bility often starts  a t  one end of the range. 

Explicit Heat-Flow Equation 

Begin with the heat-flow equation and Fourier transform over space. 

Thus d2/8x becomes simply -k 2, and 

Finite differencing explicitly over time gives an equation that  is identical in 
form to  the inflation-of-money equation: 
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For stability, the magnitude of q t + l  should be less than or equal to  the 

magnitude of q t .  This requires the factor in parentheses t o  have a magni- 

tude less than or equal t o  unity. The dangerous case is when the factor is 
more negative than -1. There is instability when k 2  > 2 c  / (a  A t  ). This 
means that  the high frequencies are diverging with time. The explicit finite 
differencing on the time axis has caused disaster for short wavelengths on the 
space axis. Surprisingly, this disaster can be recouped by differencing the 
space axis coarsely enough! The second space derivative in the Fourier 
transform domain is - k 2 .  When the x-axis is discretized it becomes -k 2 .  
So, t o  discretize (5) and (6), just replace k by 6 .  Equation (4c) shows that  
i 2  has an upper limit of k 2  = 4 / A x 2  a t  the Nyquist frequency 
k Ax = 7r . Finally, the factor in (6b) will be less than unity and there will 
be stability if 

Evidently instability can be averted by a sufficiently dense sampling of time 
compared t o  space. Such a solution becomes unbearably costly, however, 
when the heat conductivity a (x  ) takes on a wide range of values. For prob- 
lems in one space dimension, there is an easy escape in implicit methods. For 
problems in higher-dimensional spaces, explicit methods must be used. 

Explicit 15" Migration Equation 

We saw in Section 2.1 that  the retarded 15" wave-extrapolation equation 
is like the heat-flow equation with the exception that  the heat conductivity a 
must be replaced by the purely imaginary number i .  The amplification fac- 
tor (the magnitude of the factor in parentheses in equation (6b)) is now the 
square root of the sum squared of real and imaginary parts. Since the real 
part is already one, the amplification factor exceeds unity for all nonzero 
values of k 2 .  The resulting instability is manifested by the growth of dip- 
ping plane waves. The more dip, the faster the growth. Furthermore, discre- 
tizing the x-axis does not solve the problem. 

Implicit Equations 

Recall that  the inflation-of-money equation 

is a simple explicit finite differencing of the differential equation dq / d t  q. 
And recall that  a better approximation to  the differential equation is given by 
the Crank-Nicolson form 
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tha t  may be rearranged t o  

The amplification factor (9c) has magnitude less than unity for all negative r 
values, even r equal to  minus infinity. Recall that  the heat-flow equation 
corresponds to  

o a t  k2 
C 

where k is the spatial frequency. Since (9c) is good for all negative r  , the 
heat-flow equation, implicitly time-differenced, is good for all spatial frequen- 
cies k .  The heat-flow equation is stable whether or not the space axis is 
discretized (then k -+ ) and regardless of the sizes of A t  and A x .  
Furthermore, the 15" wave-extrapolation equation is also unconditionally 
stable. This follows from letting r in (9c) be purely imaginary: the 
amplification factor (9c) then takes the form of some complex number l + r  12 
divided by its complex conjugate. Expressing the complex number in polar 
form, it becomes clear that  such a number has a magnitude exactly equal to  
unity. Again there is unconditional stability. 

At  this point it seems right t o  add a historical footnote. When finite- 
difference migration was first introduced many objections were raised on the 
basis that  the theoretical assumptions were unfamiliar. Despite these objec- 
tions finite-difference migration quickly became popular. I think the reason 
for its popularity was that ,  compared t o  other methods of the time, it was a 
gentle operation on the data. More specifically, since (9c) is of exactly unit 
magnitude, the output has the same (w, k)-spectrum as the input. There 
may be a wider lesson to  be learned from this experience: any process acting 
on data  should do as little to  the data as possible. 

Leapfrog Equations 

The leapfrog method of finite differencing, it will be recalled, requires 
expressing the time derivative over two time steps. This keeps the centers of 
the differencing operators in the same place. For the heat-flow equation 
Fourier-transformed over space, 
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I t  is a bit of a nuisance to  analyze this equation because it covers times t -1, 
t , and t +l and requires slightly more difficult analytical techniques. 
Therefore, it seems worthwhile t o  state the results first. The result for the 
heat-flow equation is that  the solution always diverges. The result for the 
wave-extrapolation equation is much more useful: there is stability provided 
certain mesh-size restrictions are satisfied, namely, Az must be less than 
some factor times Ax2.  This result is not exciting in one space dimension 
(where implicit methods seem ideal), but in higher-dimensional space, such as 
in the so-called 3-D prospecting surveys, we may be thankful t o  have the leap- 
frog method. 

The best way to  analyze equations like (11) which range over three or 
more time levels is t o  use 2-transform filter analysis. Converted t o  a Z -  
transform filter problem, the question posed by (11) becomes whether the 
filter has zeroes inside (or outside) the unit, circle. 2-transform stability 
analysis is described in Section 4.6. Such analysis is necessary for all possible 
numerical values of k2 .  Its result is that  there is always trouble if k 2  
ranges from zero t o  infinity. But with the wave-extrapolation equation, insta- 
bility can be avoided with certain mesh-size restrictions, because ( I  A s ) ?  
lies between zero and four. 

Tridiagonal Equation Solver 

The tridiagonal algorithm is stable for all positive definite matrices. If 
you have any problems with the tridiagonal solver, you should question the 
validity of your problem formulation. What is there about your application 
that  seems t o  demand division by zero? 
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Earlier chapters have assumed that  the shot and the geophone are 
located in the same place. The reality is that  there is often as much as a 3- 
km horizontal separation between them. The 3-km offset is comparable t o  the 
depth of many petroleum reservoirs. 

Offset is another dimension in the analysis of data. At  the time of writ- 
ing, this dimension is often represented in field operations by about 48 chan- 
nels. No one seems t o  believe, however, that  48 channels is enough. Record- 
ing systems with as many as 1024 channels are coming into use. 

The offset dimension adds three important aspects t o  reflection seismol- 

ogy. First, it enables us t o  routinely measure the velocity of seismic waves in 
rocks. This velocity has been assumed t o  be known in the previous chapters 
of this book. Second, it gives us data redundancy: it gives independent meas- 
urements of quantities that  should be the same. Superposition of the meas- 
urements (stacking) offers the potential for signal enhancement by destructive 
interference of noise. Third (a disadvantage), since the offset is nonzero, pro- 
cedures for migration take on another element of complexity. By the end of 
this chapter we will be trying t o  deal with three confusing subjects a t  the 
same time - dip, offset, and lateral velocity variation. 

Theoretically it seems that  offset should offer us the possibility of identi- 
fying rocks by observing the reflection coefficient as a function of angle, both 
for P waves and for P-to-S converted waves. The reality seems to  be 
that  neither measurement can be made reliably, if a t  all. See Section 1.4 for a 
fuller discussion of converted waves, an interesting subject for research, with a 
large potential for practical rewards. See also Ostrander [1984] and Tatham 
and Stoffa [1976]. The reasons for the difficulty in measurement, and the 
resolution of the difficulty, are, however, not the goal of this book. This goal 
is instead t o  enable us t o  deal effectively with that  which is routinely observ- 
able. 
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Stacking Diagrams 

First, define the midpoint y between the shot and geophone, and define 
h t o  be half the horizontal offset between the shot and geophone: 

The reason for using half the offset in the equations is t o  simplify and sym- 
metrize many later equations. Offset is defined with g - s rather than with 
s - g so that  positive offset means waves moving in the positive x direc- 
tion. In the marine case, this means the ship is presumed t o  sail negatively 
along the x-axis. In reality the ship may go either way, and shot points may 
either increase or decrease as the survey proceeds. In some situations you can 
clarify matters by setting the field observer's shot-point numbers t o  negative 
values. 

Data is defined experimentally in the space of ( s ,  g ). Equation ( I )  
represents a change of coordinates t o  the space of (y  , h ) .  Midpoint-offset 
coordinates are especially useful for interpretation and data processing. Since 
the data  is also a function of the travel time t ,  the full dataset lies in a 
volume. Because i t  is so difficult to  make a satisfactory display of such a 
volume, what is customarily done is t o  display slices. The names of slices 
vary slightly from one company to  the next. The following names seem to  be 
well known and clearly understood: 

( Y  , h =O, t ) 
( Y ,  h =h min 7 ) 
( y ,  h=const ,  t )  

( Y ,  h = h m a x ,  t )  
(y =const ,  h ,  t )  
(s =const,  g ,  t )  
( s ,  g =const,  t )  
( s ,  g ,  t =const)  
( h ,  y ,  t=cons t )  

zero-offset section 
near-trace section 

constant-offset section 
far-trace section 

common-midpoint gather 
field profile (or common-shot gather) 
common-geop hone gat her 
time slice 
time slice 

A diagram of slice names is in figure 1. Figure 2 shows three slices from 
t,he data volume. The first mode of display is "engineering drawing mode." 
The second mode of display is on the faces of a cube. But notice that  
although the data is displayed on the surface of a cube, the slices themselves 
are taken from the interior of the cube. The intersections of slices across one 
another are shown by dark lines. 
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FIG. 3.0-1. Top shows field recording of marine seismograms from a shot a t  
location s t o  geophones a t  locations labeled g . There is a horizontal 
reflecting layer to  aid interpretation. The lower diagram is called a stacking 
diagram. (It is not a perspective drawing). Each dot in this plane depicts a 
possible seismogram. Think of time running out from the plane. The center 
geophone above (circled) records the seismogram (circled) that  may be found 
in various geophysical displays. Labels in the diagram below give common 
names for the displays. 

A common-depth-point (CDP) gather is defined by the industry and by 
common usage t o  be the same thing as a common-midpoint (CMP) gather. 
But in this book a distinction will be made. A CDP gather wiil be considered 
t o  be a CMP gather with its time axis stretched according t o  some velocity 
model, say, 

 co con st, h ,  d t 2 - 4 h 2 / v 2 )  common-depth-pointgather 
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FIG. 3.0-2. Slices 
"engineering drawi 
shown as faces on 
movie program). 

from a cube of data from the Grand Banks. Left is 
ng" mode. A t  the right slices from within the cube are 
the cube. (Data from Amoco. Display via Rick Ottolini's 

This offset-dependent stretching makes the time axis of the gather become 
more like a depth  axis, thus providing the D in CDP. The stretching is 
called normal  moveou t  correction (NMO). Notice that  as the velocity goes to  
infinity, the amount of stretching goes t o  zero. 

In industrial practice the data is not routinely displayed as a function of 
offset. Instead, each CDP gather is summed over offset. The resulting sum is 
a single trace. Such a trace can be constructed a t  each midpoint. The collec- 
tion of such traces, a function of midpoint and time, is called a CDP stack. 
Roughly speaking, a CDP stack is like a zero-offset section, but it has a less 
noisy appearance. 

The construction of a CDP stack requires that  a numerical choice be 
made for the moveout-correction velocity. This choice is called the stacking 
velocity. The stacking velocity may be simply someone's guess of the earth's 
velocity. Or  the guess may be improved by stacking with some trial velocities 
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t o  see which gives the strongest and least noisy CDP stack. More on stacking 
in Section 3.5. 

Figure 3 shows typical land and marine profiles (common-shot gathers). 
The land data has geophones on both sides of the source. The arrangement 
shown is called an uneven split spread. The energy source was a vibrator. 
The marine data  happens t o  nicely illustrate two or three head waves (see 
Sections 3.5 and 5.2). The marine energy source was an air gun. These field 
profiles were each recorded with about 120 geophones. 

Offset (km) 
3 2 1 

FIG. 3.0-3. Field profiles. Left is a land profile from West Texas. Right is a 
marine profile off the Aleutian Islands. (Western Geophysical). 

What is "Poor Quality" Data? 

Vast regions of the world have good petroleum potential but are hard t o  
explore because of the difficulty of obtaining good quality reflection seismic 
data. The reasons are often unknown. What  is "poor quality" data? From 
an experimental view, almost all seismic data is good in the sense that  it is 
repeatable. The real problem is that  the data  makes no sense. 

Take as an earth model a random arrangement of point reflectors. Its 
migrated zero-offset section should look random too. Given the repeatability 
that  is experienced in data collection, data with a random appearance implies 
a random jumble of reflectors. With only zero-offset data little else can be 
deduced. But with the full range of offsets a t  our disposal, a more thoughtful 
analysis can be tried. This chapter provides some of the required techniques. 
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An interesting model of the earth is a random jumble of point scatterers 
in a constant-velocity medium. The data would be a random function of time 
and a random function of the horizontal location of the shot-geophone mid- 
point. But after suitable processing, for each midpoint, the data should be a 
perfectly hyperbolic function of shot-geophone offset. This would determine 
the earth velocity exactly, even if the random scatterers were distributed in 
three dimensions, and the survey were only along a surface line. 

This particular model could fail t o  explain the "poor quality" data. In 
that  case other models could be tried. The effects of random velocity varia- 
tions in the near surface or the effects of multiple reflections could be 
analyzed. Noise in seismology can usually be regarded as a failure of analysis 
rather than as something polluting the data. It is the offset dimension that 
gives us the redundancy we need to  try to figure out what is really happening. 

Texture of Horizontal Bedding, Marine Data 

Gravity is a strong force for the stratification of rocks, and in many 
places in the world rocks are laid down in horizontal beds. Yet even in the 
most ideal environment the bedding is not mirror smooth; it has some tex- 
ture.  We begin the study of offset with synthetic data that mimics the most 
ideal environment. Such an environment is almost certainly marine, where 
sedimentary deposition can be slow and uniform. The wave velocity will be 
taken to  be constant, and all rays will reflect as from horizontally lying mir- 
rors. Mathematically, texture is introduced by allowing the reflection 
coefficients of the beds to be laterally variable. The lateral variation is 
presumed to  be a random function, though not necessarily with a white spec- 
trum. Let us examine the appearance of the resulting field data. 

Randomness is introduced into the earth with a random function of mid- 
point y and depth z .  This randomness is impressed on some geological 
"layer cake" function of depth z .  For every point in (y  , 2)-space, a hyper- 
bola of the appropriate random amplitude must be superposed in the space of 
offset h and travel time t . 

What does the final data space look like? This question has little mean- 
ing until we decide how the three-dimensional data volume will be presented 
to  the eye. Let us view the data much as it is recorded in the field. For each 
shot point we see a frame in which the vertical axis is the travel time and the 
horizontal axis is the distance from the ship down the towed hydrophone 
cable. The next shot point gives us another frame. Repetition gives us a 
movie. And what does the movie show? 

A single frame shows hyperbolas with imposed texture. The movie shows 
the texture moving along each hyperbola to  increasing offsets. (I find that no 
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# Synthetic marine data  tape movie generation 
integer kbyte,it,nt,ih,nh,is,ns,iz,nz,itO,iy 
real p(512),b(512),refl(25116),z(25),geo1(25),random 
open(3,file=*plotn ,status='new',acce~=1direct',form='unformatted',recl=l) 
n t  = 512; nh = 48; ns = 10; nz = 25;kbyte = 1 
do iz=l,nz # Reflector depth 

z(iz) = nt*random() # random() is on the interval (O.,l.) 
do iz=l,nz # Reflector strength with depth. 

geol(iz) = 2.*random()-1. 
do is = 1,ns # Give texture t o  the Geology 

do iz = 1,nz 
refl(iz,is) = (I.+rand~m())*~eol(iz) 

do i t  = 1,nt # Prepare a wavelet 
b(it) = exp(-it*.08)*sin(.5*it-.5) 

do is = ns,l,-1 { # Shots. Run backwards. 
do ih = 1,nh { # down cable h = (g-s)/2 

iy = (is-l)+(ih-1) # y = midpoint 
iy = 1 + (iy-ns*(iy/ns)) # periodic with midpoint 
do i t  = 1,nt 

p(it) = 0. 
do iz  = 1,nz { # Add in a hyperbola for each layer 

it0 = sqrt( z(iz)**2 + 100.*(ih-1)**2 ) 
do i t  = 1,nt-it0 { # Add in the wavelet 

~ ( i t+ i t 0 )  = p(it+itO) + refl(iz,iy)*b(it) 

1 
1 

write(3,&c=kbyte) (p(it),it=l,nt); kbyte = kbyte+nt*4 
1 

1 
Stop; end 

FIG. 3.0-4. Computer program t o  make synthetic field tapes in an ideal ma- 
rine environment. 

sequence of still pictures can give the impression that  the movie gives). 
Really the ship is moving; the texture of the earth is remaining stationary 
under it. This is truly what most marine data looks like, and the computer 
program of figure 4 simulates it. Comparing the simulated data to  real 
marine-data movies, I am impressed by the large amount of random lateral 
variation required in the simulated data to  achieve resemblance t o  field data. 
The randomness seems too great to  represent lithologic variation. Apparently 
i t  is the result of something not modeled. Perhaps i t  results from our incom- 
plete understanding of the mechaLism of reflection from the quasi-random 
earth. Or perhaps it is an effect of the partial focusing of waves sometime 
after they reflect from minor topographic irregularities. A full explanation 
awaits more research. 
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Texture of Land Data: Near-Surface Problems 

Reflection seismic data recorded on land frequently displays randomness 
because of the irregularity of the soil layer. Often it is so disruptive that  the 
seismic energy sources are deeply buried (at much cost). The geophones are 
too many for burial. For  most land reflection data, the texture caused by 
these near-surface irregularities exceeds the texture resulting from the 
reflecting layers. 

To  clarify our thinking, an ideal mathematical model will be proposed. 
Let the reflecting layers be flat with no texture. Let the geophones suffer ran- 
dom time delays of several time points. Time delays of this type are called 
statics. Let the shots have random strengths. For this movie, let the data 
frames be common-midpoint gathers, tha t  is, let each frame show data in 
( h  , t )-space a t  a fixed midpoint y . Successive frames will show successive 
midpoints. The study of figure 1 should convince you that  the travel-time 
irregularities associated with the geophones should move leftward, while the 
amplitude irregularities associated with the shots should move rightward. In 
real life, both amplitude and time anomalies are associated with both shots 
and geophones. 

EXERCISES 

1. Note that  figure 1 is drawn for a shot interval A s  equal t o  half the geo- 
phone interval Ag . Redraw figure 1 for A s  = Ag . Common- 
midpoint gathers now come in two types. Suggest two possible 
definitions for "near-offset section." 

2. Modify the program of figure 4 t o  produce a movie of synthetic midpoint 
gathers with random shot amplitudes and random geophone time delays. 
Observing this movie you will note the perceptual problem of being able 
t o  see the leftward motion along with the rightward motion. Try to  
adjust anomaly strengths so that  both left-moving and right-moving pat- 
terns are visible. 

Your mind will often see only one, 
blocking out the other, similar t o  
the way you perceive a 3-D cube, 
from a 2-D projection of its edges. 

3. Define recursive dip filters t o  pass and reject the various textures of shot, 
geophone, and midpoint. 
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3.1 Absorption and a Little Focusing 

Sometimes the earth strata lie horizontally with little irregularity. There 
we may hope to  ignore the effects of migration. Seismic rays should fit a sim- 
ple model with large reflection angles occurring a t  wide o e e t s .  Such data 
should be ideal for the measurement of reflection coefficient as a function of 
angle, or for the measurement of the earth acoustic absorptivity I / & .  In his 
doctoral dissertation, Einar Kjartansson reported such a study. The results 
were so instructive that  the study will be thoroughly reviewed here. I don't 
know to  what extent the Grand Isle gas field (Pan [1983]) typifies the rest of 
the earth, but i t  is an excellent place t o  begin learning about the meaning of 
shot-geophone offset. 

The Grand Isle Gas Field: A Classic Bright Spot 

The dataset Kjartansson studied was a seismic line across the Grand Isle 
gas field, off the shore of Louisiana, and was supplied by the Gulf Oil Com- 

pany. The data  contain several classic "bright spots" (strong reflections) on 
some rather flat undisturbed bedding. Of interest are the lateral variations in 
amplitude on reflections a t  a time depth of about 2.3 seconds. (See figure 3). 
I t  is widely believed that  such bright spots arise from shallow gas-bearing 
sands. 

Theory predicts that  reflection coefficient should be a function of angle. 
For an anomalous physical situation like gas-saturated sands, the function 
should be distinctive. Evidence should be found on common-midpoint gathers 
like those shown in figure 1. Looking a t  any one of these gathers you will 
note that  the reflection strength versus offset seems to  be a smooth, sensibly 
behaved function, apparently quite measurable. Using layered media theory, 
however, it was determined that  only the most improbably bizarre medium 
could exhibit such strong variation of reflection coefficient with angle, particu- 
larly a t  small angles of incidence. (The reflection angle of the energy arriving 
at wide offset a t  time 2.5 seconds is not a large angle. Assuming constant ve- 
locity, arccos(2.3/2.6) = 28"). Compounding the puzzle, each common- 
midpoint gather shows a diflerent smooth, sensibly behaved, measurable 
function. Furthermore, these midpoints are near one another, ten shot points 
spanning a horizontal distance of 820 feet. 
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FIG. 3.1-1. Top left is shot point 220; top right is shot point 230. No pro- 
cessing has been applied to  the data  except for a display gain proportional to  
time. Bottom shows shot points 305 and 315. (Kjartansson, Gulf) 
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Kjartansson's Model for Lateral Variation in Amplitude 

The Grand Isle data is incomprehensible in terms of the model based on 
layered media theory. Kjartansson proposed an  alternative model. Figure 2 
illustrates a geometry in which rays travel in straight lines from any source t o  
a flat horizontal reflector, and thence to  the receivers. The only complications 
are "pods" of some material that  is presumed t o  disturb seismic rays in some 
anomalous way. Initially you may imagine that  the pods absorb wave energy. 
(In the end it will be unclear whether the disturbance results from energy 
focusing or absorbing). 

The model above produces the disturbed data space sketched below. 

Yo 

FIG. 3.1-2. IC,jartansson's model. Anomalous material in pods A, B, and C 
may be detected by its effect on reflections from a deeper layer. 
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Pod A is near the surface. The seismic survey is affected by i t  twice - 
once when the pod is traversed by the shot and once when i t  is traversed by 
the geophone. Pod C is near the reflector and encompasses a small area of it. 
Pod C is seen a t  all offsets h but only a t  one midpoint, yo .  The raypath 

depicted on the top of figure 2 is one that  is affected by all pods. I t  is a t  mid- 
point y o  and a t  the widest offset h mm. Find the raypath on the lower 

diagram in figure 2. 

Pod B is part way between A and C. The slope of affected points in the 
( y  , h )-plane is part way between the slope of A and the slope of C. 

Figure 3 shows a common-offset section across the gas field. The offset 
shown is the fifth trace from the near offset, 1070 feet from the shot point. 
Don't be tricked into thinking the water was deep. The first break a t  about 
.33 seconds is wide-angle propagation. 

The power in each seismogram was computed in the interval from 1.5 t o  
3 seconds. The logarithm of the power is plotted in figure 4a as a function of 
midpoint and offset. Notice streaks of energy slicing across the ( y  , h )-plane 
a t  about a 45" angle. The strongest streak crosses a t  exactly 45" degrees 
through the near offset at  shot point 170. This is a missing shot, as is clearly 
visible in figure 3. Next, think about the gas sand described as pod C in the 
model. Any gas-sand effect in the data  should show up as a streak across all 
offsets a t  the midpoint of the gas sand - tha t  is, horizontally across the page. 
I don't see such streaks in figure 4a. Careful study of the figure shows that  
the rest of the many clearly visible streaks cut the plane a t  an angle notice- 
ably less than f 45". The explanation for the angle of the streaks in the 
figure is that  they are like pod B. They are part way between the surface and 
the reflector. The angle determines the depth. Being closer t o  45" than to  
On, the pods are closer t o  the surface than t o  the reflector. 

Figure 4b shows timing information in the same form that  figure 4a 
shows amplitude. A CDP stack was computed, and each field seismogram 
was compared to  it. A residual time shift for each trace was determined and 
plotted in figure 4b. The timing residuals on one of the common-midpoint 
gathers is shown in figure 5. 

The results resemble the amplitudes, except that  the results become noisy 
when the amplitude is low or where a "leg jump" has confounded the meas- 
urement. Figure 4b clearly shows that  the disturbing influence on timing 
occurs a t  the same depth as that  which disturbs amplitudes. 

The process of inverse slant stack, t o  be described in Section 5.2 enables 
us t o  determine the depth distribution of the pods. This distribution is 
displayed in figures 4c and 4d. 
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FIG. 3.1-5. Midpoint gather 220 (same as in figure l b )  after moveout. Shown 
is a one-second window centered a t  2.3 seconds, time shifted according t o  an 
NMO for an event a t  2.3 seconds, using a velocity of 7000 feet/sec. (Kjar- 
t ansson) 

Rotten Alligators 

The sediments carried by the Mississippi River are dropped a t  the delta. 
There are sand bars, point bars, old river bows now silted in, a crow's foot of 
sandy distributary channels, and between channels, swampy flood plains are 
filled with decaying organic material. The landscape is clearly laterally vari- 
able, and eventually it will all sink of its own weight, aided by growth faults 
and the weight of later sedimentation. After it is buried and out  of sight the 
lateral variations will remain as pods that  will be observable by the seismolo- 
gists of the future. These seismologists may see something like figure 6. Fig- 
ure 6 shows a three dimensional seismic survey, that  is, the ship sails many 
parallel lines about 70 meters apart. The top plane, a slice a t  constant time, 
shows buried river meanders. The data shown in figure 6 is described more 
fully by its donors, Dahm and Graebner 119821. 

Focusing or Absorption? 

Highly absorptive rocks usually have low velocity. Behind a low velocity 
pod, waves should be weakened by absorption. They should also be 
strengthened by focusing. Which effect dominates? How does the 
phenomenon depend on spatial wavelength? A full reconstruction of the phy- 
sical model remains to  be done. Maybe you can figure i t  out knowing that  
black on figure 4c denotes low amplitude or high absorption, and black on 
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FIG. 3.1-6. Three-dimensional seismic data (Geophysical Services Inc.) from 
the Gulf of Thailand. Data planes from within the cube are displayed on the 
faces of the cube. The top plane shows ancient river meanders now sub- 
merged. 

figure 4d denotes low velocities. 

EXERCISE 

1. Consider waves converted from pressure P waves t o  shear S waves. 
Assume an S-wave speed of about half the P-wave speed. What  would 
figure 2 look like for these waves? 
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3.2 Introduction to Dip 

The study of seismic travel-time dependence upon source-receiver offset 
begins by calculating the travel times for rays in some ideal environments. 

Sections and Gathers for Planar Reflectors 

The simplest environment for reflection data is a single horizontal 
reflection interface, which is shown in figure 1. As expected, the zero-offset 
section mimics the earth model. The common-midpoint gather is a hyperbola 
whose asymptotes are straight lines with slopes of the inverse of the velocity 

v l .  The most basic data processing is called common-depth-point stack: or 

CDP stack. In it, all the traces on the common-midpoint (CMP) gather are 
time shifted into alignment and then added together. The result mimics a 
zero-offset trace. The collection of all such traces is called the CDP-stacked 
section. In practice the CDP-stacked section is often interpreted and 
migrated as though it were a zero-offset section. In this chapter we will learn 
to  avoid this popular, oversimplified assumption. 

FIG. 3.2-1. Simplest earth model. 

C o n s t a n t - O f s e t  Sec t ion  
for  h 

=-- Y 
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t 
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The next simplest environment is t o  have a planar reflector that  is 
oriented vertically rather than horizontally. This is not typical, but is 
included here because the effect of earth dip is more comprehensible in an 
extreme case. Now the wave propagation is along the air-earth interface. T o  
avoid confusion the reflector may be inclined a t  a slight angle from the verti- 
cal, as in figure 2. 

FIG. 3.2-2. Near-vertical reflector, a gather, and a section. 

Model 
(almost vertical contact) 

Figure 2 shows that  the travel time does not change as the offset 
changes. I t  may seem paradoxical that  the travel time does not increase as 
the shot and geophone get further apart. The key t o  the paradox is that  mid- 
point is held constant, not shotpoint. As ofbet increases, the shot gets further 
from the reflector while the geophone gets closer. Time lost on one path is 
gained on the other. 

A planar reflector may have any dip between horizontal and vertical. 
Then the common-midpoint gather lies between the common-midpoint gather 
of figure 1 and that  of figure 2. The zero-offset section in figure 2 is a straight 
line, which turns out t o  be the asymptote of a family of hyperbolas. The 
slope of the asymptote is the inverse of velocity v 

- Y  
\ 
\ 
\ 

1 
2 

- s o  t t 

Common-Midpoint Gather 

at Y o  

The Dipping Bed 

Zero-Oflset Section 

While the travel-time curves resulting from a dipping bed are simple, 
they are not simple t o  derive. Before the derivation, the result will be stated: 
for a bed dipping a t  angle a from the horizontal, the travel-time curve is 
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For  a = 45", equation (I) is the familiar Pythagoras cone - it is just like 
2 t = z + x2. For other values of a, the equation is still a cone, but a less 

familiar one because of the stretched axes. 

For a common-midpoint gather a t  y = y in (h , t >space, equation (1) 

looks like t = t: + 4 h  2/v 2pparenl . Thus the common-midpoint gather 

contains an exact hyperbola, regardless of the earth dip angle a. The effect 
of dip is t o  change the asymptote of the hyperbola, thus changing the 
apparent velocity. The result has great significance in applied work and is 
known as Levin's dip correction (19711: 

- " earth 
apparent - cos(a) 

(See also Slotnick [1959]). In summary, dip increases the stacking velocity. 

FIG. 3.2-3. Rays from a common-midpoint gather. 

Figure 3 depicts some rays from a common-midpoint gather. Notice that  
each ray strikes the dipping bed a t  a different place. So a common-midpoint 
gather is not a common-depth-point gather. To  realize why the reflection 
point moves on the reflector, recall the basic geometrical fact that  an angle 
bisector in a triangle generally doesn't bisect the opposite side. The reflection 
point moves up dip with increasing offset. 

Finally, equation (1) will be proved. Figure 4 shows the basic geometry 
along with an "image" source on another reflector of twice the dip. For con- 
venience, the bed intercepts the surface a t  y o  = 0. The length of the line 

s 'g in figure 4 is determined by the trigonometric Law of Cosines t o  be 

t 2 v 2  = ~ 2 + ~ 2 - 2 s  g cos2n 
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t 2 v 2  = (Y - h ) 2 + ( ~  + h ) 2 - 2 ( y  - h ) ( y  + h ) c o s 2 a  

t 2 v 2  = 2 ( y 2 + h 2 ) - 2 ( y 2 - h 2 ) ( c o s 2 a - s i n 2 a )  

t 2 v 2  = 4 y 2 s i n 2 a  + 4h'cos'a 

which is equation (1). 

FIG. 3.2-4. Travel time from image source a t  s ' to  g may be expressed by 
the law of cosines. 

Another facet of equation (1) is that  it describes the constant-offset sec- 
tion. Surprisingly, the travel time of a dipping planar bed becomes curved a t  
nonzero offset - it too becomes hyperbolic. 

The Point Response 

Another simple geometry is a reflecting point within the earth. A wave 
incident on the point from any direction reflects waves in all directions. This 
geometry is particularly important because any model is a superposition of 
such point scatterers. Figure 5 shows an example. The curves in figure 5 
include flat spots for the same reasons that  some of the curves in figures 1 and 
2 were straight lines. 

The point-scatterer geometry for a point located a t  (x , z ) is shown in 
figure 6. 

The equation for travel time t is the sum of the two travel paths 
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FIG. 3.2-5. Response of two point scatterers. Note the flat spots. 

Model 
( two point scat terers)  

5 .,o 

FIG. 3.2-6. Geometry of a point scatterer. 

Cheops' Pyramid 

Because of the importance of the point-scatterer model, we will go t o  
considerable lengths to  visualize the functional dependence among t ,  z ,  x ,  
s , and g  in equation (3) .  This picture is more difficult - by one dimension 
- than is the conic section of the exploding-reflector geometry. 

To  begin with, suppose that  the first square root in (3) is constant 
because everything in it is held constant. This leaves the familiar hyperbola 
in ( g  , t )-space, except that  a constant has been added t o  the time. Suppose 
instead that  the other square root is constant. This likewise leaves a hyper- 
bola in (s , t )-space. In (s , g )-space, travel time is a function of s plus a 
function of g  . I think of this as  one coat hanger, which is parallel to  the s - 

Common-Midpoint  Gather 
a t  Y o  

t 

Constant-Offset  Sect ion 
for  h ,  

A 
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Y o  
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axis, being hung from another coat hanger, which is parallel t o  the g -axis. 

FIG. 3.2-7. Left is a picture of the travel-time mountain of equation (3) for 
fixed x and z .  The darkened lines are constant-offset sections. Right is a 
cross section through the mountain for large t (or small x ). (Ottolini) 

A view of the travel-time mountain on the (s , g )-plane or the ( y  , h )- 
plane is shown in figure 7a. Notice that  a cut through the mountain a t  large 
t is a square, the corners of which have been smoothed. A constant value of 
t is the square contoured in (s , g )-space, as in figure 7b. Algebraically, the 
squareness becomes evident for a point reflector near the surface, say, z --to. 
Then (3) becomes 

v t = I s - x  I + J g - x  1 (4) 

The center of the square is located a t  (s , g )=(x, x) .  Taking travel time t 
t o  increase downward from the horizontal plane of (s , g )-space, the square 
contour is like a horizontal slice through the Egyptian pyramid of Cheops. 
T o  walk around the pyramid a t  a constant altitude is t o  walk around a 
square. Alternately, the altitude change of a traverse over g a t  constant s 
is simply a constant plus an absolute-value function, as  is a traverse of s at  
constant g .  
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More interesting and less obvious are the curves on common-midpoint 
gathers and constant-offset sections. Recall the definition that the midpoint 
between the shot and geophone is y . Also recall that h is half the horizon- 
tal offset from the shot to the geophone. 

9 - 6  h = -  
2 (5b) 

A traverse of y at constant h is shown in figure 7. At the highest eleva- 
tion on the traverse, you are walking along a flat horizontal step like the flat- 
topped hyperboloids of figure 5. Some erosion to smooth the top and edges of 
the pyramid gives a model for nonzero reflector depth. 

For rays that are near the vertical, the travel-time curves are far from 
the hyperbola asymptotes. Then the square roots in (3) may be expanded in 
Taylor series, giving a parabola of revolution. This describes the eroded peak 
of the pyramid. 

Random Point Scatterers 

Figure 8 shows a synthetic constant-offset section (COS) taken from an 
earth model containing about fifty randomly placed point scatterers. Late 
arrival times appear hyperbolic. Earlier arrivals have flattened tops. The ear- 
liest possible arrival corresponds to a ray going horizontally from the shot to 
the geophone. 

FIG. 3.2-8. Constant-offset section over random point scatterers. 
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Figure 9 shows a synthetic common-shot profile (CSP) from the same earth 
model of random point scatterers. Each scatterer produces a hyperbolic 
arrival. The hyperbolas are not symmetric around zero offset; their locations 
are random. They must, however, all lie under the lines I g-s I = v t .  
Hyperbolas with sharp tops can be found a t  late times as well as early times. 
However, the sharp tops, which are from shallow scatterers near the geo- 
phone, must lie near the lines I g -s I = vt . 

S 

FIG. 3.2-9. Common-shot profile 
over random point scatterers. 

Figure 1Oa shows a synthetic common-midpoint gather (CMP) from an 
earth model containing about fifty randomly placed point scatterers. Because 
this is a common-midpoint gather, the curves are symmetric through zero 
offset. (The negative offsets of field data are hardly ever plotted). Some of 
the arrivals have flattened tops, which indicate scatterers that  are not directly 
under the midpoint. 

Normal-moveout (NMO) correction is a stretching of the data  t o  t ry  t o  
flatten the hyperbolas. This correction assumes flat beds, but i t  also works 
for point scatterers that  are directly under the midpoint. Figure l ob  shows 
what happens when normal-moveout correction is applied on the random 
scatterer model. Some reflectors are flattened; others are "overcorrected." 

Forward and Backward Scattering: Larner's Streaks 

At  some locations, near-surface waves overwhelm the deep reflections of 
geologic interest. Compounding our difficulty, the near-surface waves are usu- 
ally irregular because the earth is comparatively more irregular a t  its surface 
than deeper down. On land, these interfering waves are called ground roll. 
At  sea, they are called water waves (not t o  be confused with surface waves on 
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h 

FIG. 3.2-10. Common-midpoint gather on earth of randomly located point 
scatterers (left). The same gathers after NMO correction (right). 

water). 

A model for such near-surface noises is suggested by the vertical 
reflecting wall in figure 2. In this model the waves remain close t o  the sur- 
face. Randomly placed vertical walls could result in a zero-offset section that  
resembles the field data of figure 11. Another less extreme model for the sur- 
face noises is the flat-topped curves in the random point-scatterer model. 

In the random point-reflector model the velocity was a constant. In real 
life the earth velocity is generally slower for the near-surface waves and faster 
for the deep reflections. This sets the stage for some unexpected noise 
amplification. 

CDP stacking enhances events with the stacking velocity and discrim- 
inates against events with other velocities. Thus you might expect that  stack- 
ing at deeper, higher velocity would discriminate against low-velocity, near- 
surface events. Near-surface noises, however, are not reflections from horizon- 
tal layers; they are more like reflections from vertical walls or steeply dipping 
layers. But equation (2) shows that  dip increases the apparent velocity. So it 
is not surprising that  stacking a t  deep-sediment, high velocities can enhance 
surface noises. Occurrence of this problem in practice was nicely explained 
and illustrated by Larner et  al. [I9831 

Velocity of Sideswipe 

Shallow-water noise can come from waves scattering from a sunken ship 
or from the side of an island or iceberg several kilometers t o  the side of the 
survey line. Think of boulders strewn all over a shallow sea floor, not only 
along the path of the ship, but also off t o  the sides. The travel-time curves 
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FIG. 3.2-11. CDP stack with water noise from the Shelikof Strait, Alaska. 
(by permission from Geophysics, Larner et al. [1983]) 

for reflections from the boulders nicely matches the random point-scatterer 
model. Because of the long wavelengths of seismic waves, our sending and 
receiving equipment does not enable us t o  distinguish waves going up and 
down from those going sideways. 

Imagine one of these shallow scatterers several kilometers t o  the side of ' 

the ship. More precisely, let the scatterer be on the earth's surface, perpen- 
dicular t o  the midpoint of the line connecting the shot point t o  the geophone. 
A common-midpoint gather for this scatterer is a perfect hyperbola, as from 
the deep reflector contributions on figure 9. Since it is a water-velocity hyper- 
bola, this scatterered noise should be nicely suppressed by CDP stacking with 
the higher, sediment velocity. So the "streaking" scatterers mentioned earlier 
are not sidescatter. The "streaking" scatterers are those along the survey 
line, not those perpendicular t o  it. 

The Migration Ellipse 

Another insight into equation (3) is to  rega.rd the offset h and the total 
travel time t as fixed constants. Then the locus of possible reflectors turns 

out t o  describe an ellipse in the plane of (y-yo, z ) .  The reason it is an 
ellipse follows from the geometric definition of an ellipse. To  draw an ellipse, 
place a nail or tack into s on figure 6 and another into g . Connect the 

tacks by a string that  is exactly long enough t o  go through (y o, z ). An 
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ellipse going through (yo, z )  may be constructed by sliding a pencil along 
the string, keeping the string tight. The string keeps the total distance tv 
constant. 

Recall (Section 1.3) that  one method for migrating zero-offset sections is 
t o  take every data  value in (y , t )-space and use i t  t o  superpose an appropri- 
ate semicircle in (y , z )-space. For nonzero offset the circle should be general- 
ized t o  an ellipse (figure 1.3-1). 

It is not easy t o  show that  equation (3) can be cast in the standard 
mathematical form of an ellipse, namely, a stretched circle. But the result is 
a simple one, and an important one for later analysis, so here we go. Equa- 
tion (3) in (y , h )-space is 

T o  help reduce algebraic verbosity, define a new y equal t o  the old one 
shifted by yo. Also make the definitions 

- 
'rock - 2 d  = ' half ( 7 4  

a = z 2  + (y + h )2  (7b) 

b = z 2  + (y - h )2  ( 7 4  

a - b  = 4 y h  ( 7 4  

With these definitions, (6) becomes 

2 d  = J a + &  (8) 

Square t o  get a new equation with only one square root. 

4 d 2  - (a + b )  = 2 6 6  (9) 

Square again t o  eliminate the square root. 

1 6 d 4  - 8 d 2 ( a  + b )  + (a + b ) 2  = 4 a  b (lea) 

1 6 d 4  - 8 d 2 ( a  + b )  + (a - b ) 2  = 0 (lob) 

Introduce definitions of a and 6 .  

1 6 d 4  - 8 d 2 [ 2 z 2 + 2 y 2 + 2 h 2 ]  + 1 6 y 2 h 2  = 0 (11) 

Bring y and z to  the right. 

2 2 d 4 -  d 2 h 2  = d 2 ( . z 2 + y 2 ) -  y h ( 1 2 4  

d 2 ( d 2 - h 2 )  = d 2 z 2 + ( d 2 - h 2 ) y 2  (12b) 
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Finally, recalling all earlier definitions, 

Fixing t ,  equation (13) is the equation for a circle with a stretched z-axis. 
Our algebra has confirmed that  the "string and tack" definition of an  ellipse 
matches the "stretched circle" definition. An ellipse in model space is the 
earth model given the observation of an impulse on a constant-offset section. 

FIG. 3.2-12. Migration ellipse. 
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3.3 Survey Sinking with 
the Double-Square-Root Equation 

Exploding-reflector imaging will be replaced by a broader imaging con- 
cept, survey sinking. A new equation called the double-square-root (DSR) 
equation will be developed t o  implement survey-sinking imaging. The function 
of the DSR equation is t o  downward continue an entire seismic survey, not 
just the geophones but also the shots. After deriving the DSR equation, the 
remainder of this chapter will be devoted to  explaining migration, stacking, 
migration before stack, velocity analysis, and corrections for lateral velocity 
variations in terms of the DSR equation. 

Peek ahead a t  equation (9) and you will see an equation with two square 
roots. One represents the cosine of the wave arrival angle. The other 
represents the take08 angle a t  the shot. One cosine is expressed in terms of 
k g ,  the Fourier component along the geophone axis of the data  volume in 

( s  , g , t )-space. The other cosine, with k, , is the Fourier component along 

the shot axis. 

Our field seismograms lie in the (s , g )-plane. To  move onto the ( y  , h )- 
plane inhabited by seismic interpreters requires only a simple rotation. The 
data  could be Fourier transformed with respect t o  y and h ,  for example. 
Then downward continuation would proceed with equation (17) instead of 
equation (9). 

The DSR equation depends upon the reciprocity principle which we will 
review first. 

Seismic Reciprocity in Principle and in Practice 

The principle of reciprocity says that  the same seismogram should be 
recorded if the locations of the source and geophone are exchanged. A physi- 
cal reason for the validity of reciprocity is that  no matter how complicated a 
geometrical arrangement, the speed of sound along a ray is the same in either 
direction. 
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Mathematically, the reciprocity principle arises because the physical 
equations of elasticity are self adjoint. The meaning of the term self adjoknt is 
illustrated in FGDP where it is shown that  discretized acoustic equations yield 
a symmetric matrix even where density and compressibility are space variable. 
The inverse of any such symmetric matrix is another symmetric matrix called 
the impulse-response matrix. Elements across the matrix diagonal are equal 
t o  one another. Each element of any pair is a response t o  an impulsive 
source. The opposite element of the pair refers t o  the interchanged source 
and receiver. 

FIG. 3.3-1. Constant-offset section from the Central Valley of California. 
(Chevron) 

A tricky thing about the reciprocity principle is the way antenna pat- 
terns must be handled. For example, a single vertical geophone has a natural 
antenna pattern. I t  cannot see horizontally propagating pressure waves nor 
vertically propagating shear waves. For reciprocity t o  be applicable, antenna 
patterns must not be interchanged when source and receiver are interchanged. 
The antenna pattern must be regarded as  attached t o  the medium. 



OFFSET 3.3 Survey Sinking with the DSR 

I searched our data library for split-spread land data  that  would illus- 
t rate reciprocity under field conditions. The constant-offset section in figure 1 
was recorded by vertical vibrators into vertical geophones. The survey was 
not intended t o  be a test of reciprocity, so there likely was a slight lateral 
offset of the source line from the receiver line. Likewise the sender and 
receiver arrays (clusters) may have a slightly different geometry. The earth 
dips in figure 1 happen t o  be quite small although lateral velocity variation is 
known t o  be a problem in this area. 

o 1.0 2.0 3.0 4.0 

FIG. 3.3-2. Overlain reciprocal seismograms. 

In figure 2, three seismograms were plotted on top of their reciprocals. 
Pairs were chosen a t  near o&et, a t  mid range, and a t  far offset. You can see 
that  reciprocal seismograms usually have the same polarity, and often have 
nearly equal amplitudes. (The figure shown is the best of three such figures I 
prepared). 

Each constant time slice in figure 3 shows the reciprocity of many 
seismogram pairs. Midpoint runs horizontally over the same range as in figure 
1. O&et is vertical. Data is not recorded near the vibrators leaving a gap in 
the middle. To  minimize irrelevant variations, moveout correction was done 
before making the time slices. (There is a missing source that  shows up on 
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the left side of the figure). A movie of panels like figure 3 shows that  the 
bilateral symmetry you see in the individual panels is characteristic of all 
times. Notice however that  there is a significant departure from reciprocity 
on the one-second time slice around midpoint 120. 

FIG. 3.3-3. Constant time slices a t  1 second and 2.5 seconds. 

In the laboratory, reciprocity can be established t o  within the accuracy of 
measurement. This can be excellent. (See White's example in FGDP). In the 
field, the validity of reciprocity will be dependent on the degree that  the 
required conditions are fulfilled. A marine air gun should be reciprocal to  a 
hydrophone. A land-surface weight-drop source should be reciprocal to  a 
vertical geophone. But a buried explosive shot need not be reciprocal t o  a 
surface vertical geophone because the radiation patterns are different and the 
positions are slightly different. Fenati and Rocca [I9841 studied reciprocity 
under varying field conditions. They reported that  small positioning errors in 
the placement of sources and receivers can easily create discrepancies larger 
than the apparent reciprocity discrepancy. They also reported that  theoreti- 
cally reciprocal experiments may actually be less reciprocal than presumably 
nonreciprocal experiments. 

Geometrical complexity within the earth does not diminish the applica- 
bility of the principle of linearity. Likewise, geometrical complexity does not 
reduce the applicability of reciprocity. Reciprocity does not apply t o  sound 
waves in the presence of wind. Sound goes slower upwind than downwind. 
But this effect of wind is much less than the mundane irregularities of field 
work. Just the weakening of echoes with time leaves noises that  are not 
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reciprocal. Henceforth we will presume that  reciprocity is generally applicable 
t o  the analysis of reflection seismic data. 

The Survey-Sinking Concept 

The exploding-reflector concept has great utility because it enables us to  
associate the seismic waves observed a t  zero offset in many experiments (say 
1000 shot points) with the wave of a single thought experiment, the 
exploding-reflector experiment. The exploding-reflector analogy has a few 
tolerable limitations connected with lateral velocity variations and multiple 
reflections, and one major limitation: it gives us no clue as to  how t o  migrate 
data  recorded a t  nonzero offset. A broader imaging concept is needed. 

Start from field data where a survey line has been run along the x-axis. 
Assume there has been an infinite number of experiments, a single experiment 
consisting of placing a point source or shot a t  s on the x-axis and record- 
ing echoes with geophones a t  each possible location g on the x-axis. So the 
observed data is an upcoming wave that  is a two-dimensional function of s 

and g , say P (s , g , t ). (Relevant practical questions about the actual 
spacing and extent of shots and geophones are deferred until Sections 3.6 and 
4.3). 

Previous chapters have shown how to  downward continue the upcoming 
wave. Downward continuation of the upcoming wave is really the same thing 
as downward continuation of the geophones. It is irrelevant for the continua- 
tion procedures where the wave originates. I t  could begin from an exploding 
reflector, or it could begin a t  the surface, go down, and then be reflected back 
upward. 

T o  apply the imaging concept of survey sinking, it is necessary t o  down- 
ward continue the sources as well as  the geophones. We already know how to  
downward continue geophones. Since reciprocity permits interchanging geo- 
phones with shots, we really know how to  downward continue shots too. 

Shots and geophones may be downward continued t o  different levels, and 
they may be at different levels during the process, but for the final result they 
are only required to  be a t  the same level. That  is, taking z, t o  be the depth 

of the shots and zg t o  be the depth of the geophones, the downward- 

continued survey will be required a t  all levels z =z, =zg . 
The image of a reflector a t  ( x ,  z )  is defined t o  be the strength and 

polarity of the echo seen by the closest possible source-geophone pair. Taking 
the mathematical limit, this closest pair is a source and geophone located 
together on the reflector. The travel time for the echo is zero. This survey- 
sinking concept of imaging is summarized by 
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Image (x , z ) = Wave ( s  =x , g =x , z , t =0) (1) 

For good quality data, i.e. data that  fits the assumptions of the downward- 
continuation method, energy should migrate t o  zero offset a t  zero travel time. 
Study of the energy that  doesn't do so should enable improvement of the 
model. Model improvement usually amounts t o  improving the spatial distri- 
bution of velocity. 

Review of the P araxial Wave Equation 

In Section 1.5 an equation was derived for paraxial waves. The assump- 
tion of a single plane wave means that  the arrival time of the wave is given 

by a single-valued t (x , z ). On a plane of constant z , such as the  earth's 
surface, Snell's parameter p is measurable. It is 

a t  - - sin 0 - - - - 
d x  v P 

In a borehole there is the constraint that  measurements must be made at  a 
constant x , where the relevant measurement from an upcoming wave would 
be 

Recall the time-shifting partial-differential equation and its solution U as 

some arbitrary functional form f : 

The partial derivatives in equation (3a) are taken t o  be a t  constant x ,  just as 
is equation (2b). After inserting (2b) into (3a) we have 

Fourier transforming the wavefield over (x , t ), we replace d l d t  by - i o. 
Likewise, for the traveling wave of the Fourier kernel exp(- i ot + ik, x ), 
constant phase means that  d t  / a x  = k, lw.  With this, (4a) becomes 

The solutions t o  (4b) agree with those t o  the scalar wave equation unless v 
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is a function of z ,  in which case the scalar wave equation has both upcom- 
ing and downgoing solutions, whereas (4b) has only upcoming solutions. 
Chapter 2 taught us how to  go into the lateral space domain by replacing ikz 
by d l d x .  The resulting equation is useful for superpositions of many local 
plane waves and for lateral velocity variations v (x ). 

The DSR Equation in Shot-Geophone Space 

Let the geophones descend a distance dzg into the earth. The change 

of the travel time of the observed upcoming wave will be 

Suppose the shots had been let off a t  depth dz, instead of a t  z =O. Like- 

wise then, 

Both (5a) and (5b) require minus signs because the travel time decreases as 
either geophones or shots move down. 

Simultaneously downward project both the shots and geophones by an 
identical vertical amount dz = dz = dz, . The travel-time change is the 

9 
sum of (5a) and (5b), namely, 

d t 
d t  = - a t  

dzg + - dz, = 
a t  

ja., +dl) dz 8% 82.9 

This expression for d t  / d z  may be substituted into equation (3a): 

Three-dimensional Fourier transformation converts upcoming wave data 
u ( t  , s , g ) t o  U (w, k, , kg ). Expressing equation (8) in Fourier space gives 

Recall the origin of the two square roots in equation (9). One is the cosine of 
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the arrival angle a t  the geophones divided by the velocity at the geophones. 
The other is the cosine of the takeoff angle a t  the shots divided by the veloci- 
t y  a t  the shots. With the wisdom of previous chapters we know how to  go 
into the lateral space domain by replacing ikg by d ldg  and ik, by alas. 
To  incorporate lateral velocity variation v (x ), the velocity a t  the shot loca- 
tion must be distinguished from the velocity a t  the geophone location. Thus, 

Equation (10) is known as the double-square-root (DSR) equation in 
shot-geophone space. I t  might be more descriptive t o  call it the survey- 
sinking equation since it pushes geophones and shots downward together. 
Recalling the section on splitting and full separation (Section 2.4) we realize 
that  the two square-root operators are commutative (v (s ) commutes with 
d l d g  ), so i t  is completely equivalent to  downward continue shots and g e e  
phones separately or together. This equation will produce waves for the rays 
that  are found on zero-offset sections but are absent (Section 1.1) from the 
exploding-reflector model. 

The DSR Equation in Midpoint-Offset Space 

By converting the DSR equation t o  midpoint-offset space we will be able 
t o  identify the familiar zero-offset migration part along with corrections for 
offset. The transformation between (g , s ) recording parameters and (y , h ) 
interpretation parameters is 

Travel time t may be parameterized in (g , s)-space or (y , h)-space. 
Differential relations for this conversion are given by the chain rule for deriva- 
tives: 

d t - - d t  dy d t  dh - -- + - -  = 
8 9  d y d g  dh dg (124  
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Having seen how stepouts transform from shot-geophone space to  
midpoint-offset space, let us next see that  spatial frequencies transform in 
much the same way. Clearly, data could be transformed from ( s ,  g >space t o  
(y , h )-space with (11) and then Fourier transformed t o  (kg, k )- s p ace. The 

question is then, what form would the double-square-root equation (9) take in 
terms of the spatial frequencies (ky , kh )? Define the seismic data  field in 

either coordinate system as 

This introduces a new mathematical function U 1  with the same physical 
meaning as U  but, like a computer subroutine or function call, with a 

different subscript look-up procedure for (y , h ) than for (s , g ). Applying 
the chain rule for partial differentiation t o  (13) gives 

and utilizing (11) gives 

In Fburier transform space where d / d x  transforms t o  ik,, equation (IS), 

when i and U = U 1  are cancelled, becomes 

Equation (16) is a Fourier representation of (15). Substituting (16) into (9) 
achieves the main purpose of this section, which is t o  get the double-square- 
root migration equation into midpoint-offset coordinates: 

Equation (17) is the takeoff point for many kinds of common-midpoint 
seismogram analyses. Some convenient definitions that simplify its 
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appearance are 

3.3 Survey Sinking with the DSR 

Chapter 1 showed that  the quantity v kz /w can be interpreted as the angle 

of a wave. Thus the new definitions S and G are the sines of the takeoff 
angle and of the arrival angle of a ray. When these sines are a t  their limits of 
f 1 they refer t o  the steepest possible slopes in (s , t > or (g , t )-space. Like- 
wise, Y may be interpreted a s  the dip of the data as seen on a seismic sec- 
tion. The quantity H refers t o  stepout observed on a common-midpoint 
gather. With these definitions (17) becomes slightly less cluttered: 

Most present-day before-stack migration procedures can be interpreted 
through equation (19). Further analysis of i t  will explain the limitations of 
conventional processing procedures as well as suggest improvements in the 
procedures. 

EXERCISE 

I. Adapt equation (17) t o  allow for a difference in velocity between the shot 
and the geophone. 



r 

OFFSET 3.4 Meaning of the DSR Equation 

3.4 The Meaning of the DSR Equation 

The double-square-root equation contains most nonstatistical aspects of 
seismic data processing for petroleum prospecting. This equation, which was 
derived in the previous section, is not easy to  understand because it is an 
operator in a four-dimensional space, namely, ( z  , s , g , t ). We will approach 
it through various applications, each of which is like a picture in a space of 
lower dimension. In this section lateral velocity variation will be neglected 
(things are bad enough already!). Begin with 

Zero-Offset Migration (H = 0) 

One way t o  reduce the dimensionality of ( lb )  is simply t o  set H=O. 
Then the two square roots become the same, so that  they can be combined t o  
give the familiar paraxial equation: 

In both places in equation ( 2 )  where the rock velocity occurs, the rock velocity 
is divided by 2. Recall that  the rock velocity needed t o  be halved in order for 
field data  t o  correspond t o  the exploding-reflector model. So whatever we did 
by setting H=O, gave us the same migration equation we used in Chapter 1. 
Setting H = 0 had the effect of making the survey-sinking concept function- 
ally equivalent t o  the exploding-reflector concept. 

Zero-Dip Stacking (Y = 0) 

When dealing with the offset h it is common to  assume tha t  the earth 
is horizontally layered so that  experimental results will be independent of the 
midpoint y . With such an earth the Fourier transform of all data over y 
will vanish except for ky = 0, or, in other words, for Y = 0. The two 
square roots in ( I )  again become identical, and the resulting equation is once 
more the paraxial equation: 
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Using this equation t o  downward continue hyperboloids from the earth's sur- 
face, we find the hyperboloids shrinking with depth, until the correct depth 
where best focus occurs is reached. This is shown in figure 1. 

FIG. 3.4-1. With an earth model of three layers, the common-midpoint gath- 
ers are three hyperboloids. Successive frames show downward continuation to  
successive depths where best focus occurs. 

The waves focus best a t  zero offset. The focus represents a downward- 
continued experiment, in which the downward continuation has gone just to  a 
reflector. The reflection is strongest a t  zero travel time for a coincident 
source-receiver pair just above the reflector. Extracting the zero-offset value 
a t  t = 0 and abandoning the other offsets is a way of eliminating noise. 
(Actually i t  is a way of defining noise). Roughly i t  amounts t o  the same 
thing as the conventional procedure of summation along a hyperbolic trajec- 
tory on the original data. Naturally the summation can be expected to  be 
best when the velocity used for downward continuation comes closest to  the 
velocity of the earth. Later, offset space will be used t o  determine velocity. 
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Conventional Processing - the Separable Approximation 

The DSR operator is now defined as the parenthesized operator in 
equation (I b): 

DSR(Y,H)  = d m +  J ~ - ( Y + H ) ~  (4) 

In Fourier space, downward continuation is done with the operator 
exp(i wv-I DSR z ). 

There is a serious problem with this operator: i t  is not separable into a 
sum of an offset operator and a midpoint operator. Nonseparable means that  
a Taylor series for (4) contains terms like y2 H ~ .  Such terms cannot be 
expressed as a function of Y plus a function of H. Nonseparability is a 
data-processing disaster. I t  implies that  migration and stacking must be done 
simultaneously, not sequentially. The only way t o  recover pure separability 
would be t o  return t o  the space of S and G .  (That is a drastic alternative, 
far from conventional processing. We will return t o  it later). 

Let us review the general issue of separability. The obvious way t o  get a 

separable approximation of the operator dl - x2 - y2 is t o  form a ~ a ~ l ' o r  
series expansion, and then drop all the cross terms. A more clever approxima- 

tion is d3 + 4 3  - 1, which fits all Y exactly when X = 0 
and all X exactly when Y = 0. Applying this idea (though not the same 
equation) to  the DSR operator gives 

Notice that  a t  H = 0 (5) becomes equal t o  the DSR operator. A t  Y=O 
(5) also becomes equal to  the DSR operator. Only when both H and Y 
are nonzero does SEP depart from DSR . 

The splitting of (5) into a sum of three operators offers an advantage like 
the one offered by the 2-D Fourier kernel exp(iky y + ikh h ) ,  which has a 

phase that  is the sum of two parts. It means that  Fourier integrals may have 
either y or h nested on the inside. So downward continuation with SEP 
could be done in (kh , ky )-space as implied by ( lb) ,  or we could choose to  

Fourier transform t o  (h , ky ), (kh , y ), or (y  , h ) by appropriate nesting 

operations. 

It is convenient t o  give familiar names to the three terms in (5b). The 
first is associated with time-tedepth conversion, the second with migration, 
and the third with normal moveout. 
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The approximation ( 5 )  can be interpreted a s  "standard processing." The 
first stage in standard processing is NMO correction. In (5) the NMO 
operator downward continues all offsets a t  the earth's surface, t o  all offsets a t  
depth. Selecting zero offset is no more than abandoning all other offsets. Like 
stacking over offset, selecting zero offset reduces the amount of data  under 
consideration. 

Ordinarily the abandoned offsets are not migrated. (Alternately, a clever 
procedure for changing stacking velocities after migration involves migrating 
several offsets near zero offset). 

Since all terms in the SEP operator are interchangeable, i t  would seem 
wasteful t o  use i t  t o  migrate all of&ets before stack. The result of doing so 
should be identical t o  after-stack migration. 

Various Meanings of H = 0 

Recall the various forms of the stepout operator: 

Reciprocity suggests that  travel time is a symmetrical function of offset; 
thus dt l d h  vanishes a t  h = 0. In that  sense it seems appropriate t o  apply 
equation (2) t o  zero-offset sections. More precisely, the ray-trace expression 
dt / d h  strictly applies only when a single plane wave is present. Spherical 
wavefronts are made from the superposition of plane waves. Then the 
Fourier interpretation of H is slightly different and more appropriate. To  
set w = 0 would be t o  select a zero frequency component, a simple integral 
of a seismic trace. T o  set kh = 0 would be t o  select a zero spatial- 

Forms of stepout operator 2H / v  

frequency component, that  is, an integration over offset. Conventional stack- 
ing may be defined as integration (or summation) over offset along a hyper- 
bolic trajectory. Simply setting kh = 0 is selecting a hyperbolic trajectory 

that  is flat, namely, the hyperbola of infinite velocity. Such an  integration 
will receive its major contribution from the top of the data hyperboloid, 
where the data events come tangent t o  the horizontal line of integration. (For 
some historical reason, such a data summation is often called vertical stack). 
Of the total contribution t o  the integral, most comes from a zone near the 
top, before the stepout equals a half-wavelength. The width of this zone, 

ray trace 

dt - 
dh 

Fourier 

kh - 
w 

PDE 

t 
d ad = J dt - 

-0 
d h  
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which is called a Fresnel zone, is the major factor contributing t o  the integral. 
The Fresnel zone concept was introduced in Section 1.2. The Fresnel zone 
has been extracted from a field profile in figure 2. 

Offset (km) 
-2 - 1 0 1 2 

FIG. 3.4-2. (left) A land profile from Denmark (Western Geophysical) with 
the Fresnel zone extracted and redisplayed (right). 

The definition of the Fresnel zone involves a frequency. For practical 
purposes we may just look a t  zero crossings. Examining figure 2 near one 
second we see a variety of frequencies. In the interval between t =1.0 and 
t =1.1 I see about two wavelengths of low frequencies and about 5 
wavelengths of high frequencies. The highest frequencies are the main con- 
cern, because they define the limit of seismic resolution. The higher frequency 
has about 100 half wavelengths between time zero and a time of one second. 
As a rough generality, this observed value of 100 applies t o  all travel times. 
That  is, a t  any travel time, the highest frequency that  has meaningful spatial 
correlations is often observed t o  have a half period of about 1/100 of the total 
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travel time. We may say that  the quality factor Q of the earth's sedimen- 
tary crust is often about 100. So the angle that  we are typically thinking 
about is cos 8" = .99. 

Theoretically, the main differences between a zero-offset section and a 
vertical stack are the amplitude and a small phase shift. In practical cases 
they are unlikely to  migrate in a significantly different way. I t  would be nice 
if we could find an equation to  downward continue data  that  is stacked a t  
velocities other than infinite velocity. 

The partial-differential-equation point of view of setting H = 0 is 
identical with the Fourier view when the velocity is a constant function of the 
horizontal coordinate; but otherwise the PDE viewpoint is a slightly more 
general one. T o  be specific, but not cluttered, equation (1) can be expressed 
in 15-degree, retarded, space-domain form. Thus, 

- - 

Integrate this equation over offset h . The integral commutes with the 
differential operators. Recall that  the integral of a derivative is the difference 
between the function evaluated a t  the upper limit and the function evaluated 
a t  the lower limit. Thus, 

The wave should vanish a t  infinite offset and so should its horizontal offset 
derivative. Thus the last term in (7a) should vanish. So, setting H = 0 has 
the meaning 

(Paraxial operator) (vertical stack) = 0 (7b) 

A problem in the development of (7b) was that ,  twice, it was assumed 
that  velocity is independent of offset: first, when the thin-lens term was omit- 
ted from (6), and second, when the offset integration operator was inter- 
changed with multiplication by velocity. If the velocity depends on the hor- 
izontal x-axis, then it certainly depends on both midpoint and offset. In con- 
clusion: If velocity changes slowly across a Fresnel zone, then setting H = 0 
provides a valid equation for downward continuation of vertically stacked 
data. 

C lay ton ' s  Cos ine  Cor r ec t i ons  

A tendency exists t o  associate the sine of the earth dip angle with Y 
and the sine of the shot-geophone offset angle with H. While this is roughly 
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valid, there is an important correction. Consider the dipping bed shown in 
figure 3. 

FIG. 3.4-3. Geometry of a dip- 
ping bed. Note that  the line 
bisecting the angle 2P does not 
pass through the midpoint 
between g and s . (Clayton) 

The dip angle of the reflector is a, and the offset is expressed as the 
offset angle ,f?. Clayton showed, and it will be verified, that  

Y = sin a cos p ( 8 4  

H = sin p cos a (gb) 

For small positive or negative angles the cosines can be ignored, and it is 
then correct t o  associate the sine of the earth dip angle with Y and the sine 
of the offset angle with H. At  moderate angles the cosine correction is 
required. A t  angles exceeding 45" the sensitivities reverse, and conventional 
wisdom is exactly opposite t o  the truth. The reader should be wary of infor- 
mal discussions that  simply associate Y with dip and H with velocity. 
"Larner's streaks" in Section 3.2 were an example of mixing the effects of dip 
and offset. Indeed, a t  steep dips the usual procedure of using H to  deter- 
mine velocity should be changed somehow to  use Y. 

Next, (8) will be proven. The source takeoff angle is y, ,  and the 

incident receiver angle is 7 g .  First, relate Î, and 7g t o  a and 8. 
Adding up the angles of the smaller constructed triangle gives 

Adding up the angles around the larger triangle gives 
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To associate the angles at  depth, a and P, with the stepouts d t  I d s  and 
dt  l d g  a t  the earth's surface requires taking care with the signs, noting that 
travel time increases as the geophone moves right and decreases as the shot 
moves right. Recall from Section 3.3 equations (16) and (18), the definitions 
of apparent angles Y and H,  

Y - H  = 
k8 s = - -  - d t 

2,- = - sin 7, = 
LJ d s  sin(a - p) 
v k 

Y + H  = G = 2 - - v -  = 
d t + sin yg = 

0 dg sin(a + p) 
Adding and subtracting this pair of equations and using the angle sum for- 
mula from trigonometry gives Clayton's cosine corrections (8): 

1 1 
Y = - sin(& + p) + - sin(a- p) = 

2 2 
sin a cos P 

1 1 H  = - sin(a + p) - - sin(a - p) = 
2 

sin p cos a 
2 

Snell-Wave Stacks and CMP Slant Stacks 

Setting the takeoff angle S to zero also reduces the double-square-root 
equation to  a single-square-root equation. The meaning of S = 0 is that 
k8 = 0 or equivalently that the data should undergo a summation (without 

time shifting) over shot s .  Such a summation simulates a downgoing plane 
wave. The imaging principle behind the summation would be to  look at  the 
upcoming wave a t  the arrival time of the downgoing wave (Section 5.7). As 
explained further in Sections 5.2 and 5.3, S could also be set equal a constant, 
t o  simulate a downgoing Snell wave. 

A Snell wave is a generalization of a downgoing plane wave a t  nonverti- 
cal incidence. The shots are not fired simultaneously, but sequentially at  an 
inverse rate of d t  / d s  = S /v. This could be simulated with field data by 
summing across the ( t  , s )plane along a line of slope d t  I d s .  Setting S to 
be some constant, say S = v d t  I d s ,  also reduces the double-square-root 
equation to  a paraxial wave equation, just the equation needed to  downward 
continue the downgoing Snell wave experiment. Snell waves could be con- 
structed for various p = d t  I d s  values. Each could be migrated and 
imaged, and the images stacked over p .  These ideas have been around 
longer than the DSR equation, yet they have gained no popularity. What 
could be the reason? 
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A problem with Snell wave simulation is that  the wavefield is usually 
sampled a t  coarse intervals along a geophone cable, which itself never seems 
t o  extend as far as the waves propagate. Crafty techniques t o  interpolate and 
extrapolate the data are frustrated by the fact that  on a common-geophone 
gather, the top of the hyperbola need not be a t  zero offset. For  dipping beds 
the earliest arrival is often off the end of the cable. So the data  processing 
depends strongly on the missing data. 

These difficulties provide an ecological niche for the common-midpoint 
slant stack, namely, H = p v . (A fuller explanation of slant stack is in Sec- 
tion 5.2). A t  common midpoint the hyperbolas go through zero offset with 
zero slope. The data  are thus more amenable t o  the interpolation and extrap- 
olation required for integration over a slanted line. Setting H = p v yields 

This has not reduced the DSR equation t o  a paraxial wave equation, but it 
has reduced the problem to  a form manageable with the available techniques, 
such as the Stolt or phase-shift methods. Details of this approach can be 
found in the dissertation of Richard Ottolini [1982]. 

Why Not Downward Continue in (S,G)-Space? 

If the velocity were known and the only task were t o  migrate, then there 
would be no fundamental reason why the downward continuation could not 
be done in (S, G )-space. But the velocity really isn't well known. The sensi- 
tivity of migration t o  velocity error increases rapidly with angle, and angle 
accuracy is the presumed advantage of (S  , G )-space. Furthermore, the finite 
extent of the recording cable and the tendency t o  spatial aliasing create the 
same problems with (S, G)-space migration as are experienced with Snell 
stacks. I see no fundamental reason why ( S ,  G )-space migration should be 
any better than CMP slant stacks, and the aliasing and truncation situations 
seem likely t o  be worse. Less ambitious and more practical approaches t o  the 
wide-angle migration problem are found later in this chapter. 

On the other hand, lateral velocity variation (if known) could demand 
that  migration be done in (s , g )-space. 

Still another reason t o  enter shot-geophone space would be that  the shots 
were far from one another. Then the data would be aliased in both midpoint 
space and offset space. See Section 5.7. 
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3.5 Stacking and Velocity Analysis 

Hyperbolic stacking over offset may be the most important computer pro- 
cess in the prospecting industry. It is more important than migration because 
it reduces the data base from a volume in (s , g , t >space to  a plane in 
( y  , t )-space. At the present time few people who interpret seismic data have 
computerized seismic data movies, so most interpreters must have their data 
stacked before they can even look at  it. Migration merely converts one plane 
t o  another plane. Furthermore, migration has the disadvantage that it some- 
times compounds the mess made by near-surface lateral velocity variation and 
multiple reflections. Stacking can compound the mess too, but in bad areas 
nothing can be seen until the data is stacked. In addition to  its other drawing 
points, stacking gives as a byproduct estimates of rock velocity. 

Historically, stacking has been done using ray methods, and it is still 
being done almost exclusively in this way. Migration, on the other hand, is 
more often done using wave-equation methods, that is to  say, by Fourier or 
finite-difference methods. Both migration and stacking are hyperbola- 
recognition processes. The advantages of wave-equation methods in migration 
have been many. Shouldn't these advantages apply equally t o  stacking? It  
would seem so, but current industrial practice does not bear this out. The 
reasons are not yet clear. So the latter part of this section really belongs to  a 
research monograph with the facetious title "Theory That Should Work Out 
Soon." More advanced ideas of velocity estimation are in Sections 5.0-5.4. 
Wave-equation stacking and velocity-determination methods are ingenious. 
Perhaps they have not yet been satisfactorily tested, or perhaps they are just 
imperfectly assembled. The reader can guess, and time will tell. 

One possible reason why much of this theory is not in routine industrial 
use is that the issue of stacking to  remove redundancy may be more appropri- 
ately a statistical problem than a physical one. To allow for this contingency 
I have included a bit on "wave-equation moveout," a way of deferring statisti- 
cal analysis until after downward continuation. Another possibility is that 
the problems of missing data off the ends of the recording cable and spatial 
aliasing within the cable may be more flexibly attacked by ray methods than 
by wave-equation methods. For this contingency I have included a brief sub- 
section on data restoration. Whatever the case, the data-manipulation pro- 
cedures in this chapter should be helpful. 
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Normal Moveout (NMO) 

Normal  moveout correction (NMO) is a stretching of the time axis t o  
make all seismograms look like zero-offset seismograms. NMO was first dis- 
cussed in Section 3.0. In its simplest form, NMO is based on the Pythagorean 

2 2 2 2  relation tNm = t - x /v . In a constant velocity earth, the NMO correc- 

tion would take the asymptote of the hyperbola family and move it up to  
t = 0. This abandons anything on the time axis before the first arrival, and 
stretches the remainder of the seismogram. The stretching is most severe 
near the first arrival, and diminishes at  later times. In the NMO example in 
figure 1 you will notice the low frequencies caused by the stretch. 

NMO correction may be done to common-shot field profiles or t o  CMF 
gathers. NMO applied to  a field profile makes it resemble a small portion of a 
zero-offset section. Then geologic structure is prominently exhibited. NMO 
on a CMP gather is the principal means of determining the earth's velocity- 
depth function. This is because CMP gathers are insensitive to  earth dip. 

Mathematically, the NMO transformation is a linear operation. It may 
seem paradoxical that  a non-uniform axis-stretching operation is a linear 
operation, but axis stretching does satisfy the mathematical conditions of 
linearity. Do not confuse the widespread linearity condition with the less 
common condition of time invariance. Linearity requires only that  for any 
decomposition of the original data P into parts (say P and P2) the sum 

of the NMOed parts is equal the NMO of the sum. Examples of decomposi- 
tions include: (1) separation into early times and late times, (2) separation 
into even and odd time points, (3) separation into high frequencies and low 
frequencies, and (4) separation into big signal values and small ones. 

To envision NMO as a linear operator, think of a seismogram as a vector. 
The NMO operator resembles a diagonal matrix, but the matrix contains 
interpolation filters along its diagonal, and the interpolation filters are shifted 
off from the diagonal t o  create the desired time delay. 

Conventional Velocity Analysis 

A conventional velocity analysis uses a collection of trial velocities. Each 
trial velocity is taken to  be a constant function of depth and is used to  
moveout correct the data. Figure 2 (left) exhibits the CMP gather of figure 1 
(left) after moveout correction by a constant velocity. Notice that the events 
in the middle of the gather are nearly flattened, whereas the early events are 
undercorrected and later events are overcorrected. This is typical because the 
amount of moveout correction varies inversely with velocity (by Pythagoras), 
and the earth's velocity normally increases with depth. A measure of the 
goodness of fit of the NMO velocity to  the earth velocity is found by summing 
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FIG. 3.5-1. CMP gather (Western Geophysical) from the Gulf coast shown at  
the left was NMO corrected and displayed a t  the right. 

the CDP gather over offset. Presumably, the better the velocities match, the 
better (bigger) will be the sum. The process is repeated for many velocities. 
The amplitude of the sum, contoured as a function of time and velocity, is 
shown in figure 2 (right). 

In practice additional steps may be taken before summing. The traces 
may be balanced (scaled t o  be equal) in their powers and in their spectra (see 
deconvolution in Section 5.5). Likewise the amplitude of the sum may be nor- 
malized and smoothed. (See Taner and Koehler (19691). Also the data may 
be edited and weighted as explained in the next subsection. 
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Kilometers Velocity (kmlsec) 

FIG. 3.5-2. NMO a t  constant velocity with velocity analysis. (Hale) 

The velocity giving the best stack is an average of the earth's velocity 
above the reflector. The precise definition of this average is deferred till Sec- 
tion 5.4. 

Mutes and Weights 

An important part of conventional processing is the definition of a mute. 
A mute is a weighting function used to  suppress some undesirable portions of 
the data. Figure 3 shows an example of a muted field profile. Weights and 
mutes have a substantial effect on the quality of a stack. So it is not surpris- 
ing that  in practice, they are the subject of much theorizing and experimenta- 
tion. 
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FIG. 3.5-3 
right it is 
arrivals). 

. Left is a land profile from Alberta (Western Geophysical). On the 
muted to  remove ground roll (at center) and head waves (the first 

Often the mute is a one-dimensional function of r = h I t .  Reasons can 
be given to  mute data at  both large and small values of r . 

At small values of r , energy is found that remains near the shot, such as  
falling dirt or water or slow ground roll. 

At large values of r , there are problems with the first arrival. Here the 
NMO stretch is largest and most sensitive to  the presumed velocity. The first 
arrival is often called a head wave or refraction. Experimentally, a head wave 
is a wave whose travel time appears to be a linear function of distance. 
Theoretically, a head wave is readily defined for layered media. The head 
wave has a ray that propagates horizontally along a layer boundary. In prac- 
tice, a head wave may be weaker or stronger than the reflections. A strong 
head wave may be explained by the fact that reflected waves spread in three 
dimensions, while head waves spread in only two dimensions. 

Muting may be regarded as weighting by zero. More general weights 
may be chosen to  produce the most favorable CDP stack. A sophisticated 
analysis would certainly include noise and truncation. Let us do a simplified 
analysis. It leads to  the most basic weighting function. 

Ordinarily we integrate over offset along a hyperbola. Instead, think of 
the three-dimensional problem. You really wish to  integrate over a hyperbola 
of revolution. Assume that  the hyperboloid is radially symmetric. Weighting 
the integrand by h allows the usual line integral to simulate integration over 
the hyperboloid of revolution. A second justification for scaling data by offset 
h before stacking is that there is less velocity information near zero offset, 
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where there is little moveout, and more velocity information at wider offset 
where A t  /Ah is larger. 

NMO Equations 

The earth's velocity typically ranges over a factor of two or more within 
the depth range of a given data set. Thus the Pythagorean analysis needs 
reexamination. In practice, depth variable velocity is often handled by insert- 
ing a time variable velocity into the Pythagorean relation. (The classic refer- 
ence, Taner and Koehler [1969], includes many helpful details). This approxi- 
mation is much used, although it is not difficult t o  compute the correct 
nonhyperbolic moveout. Let us see how the velocity function v (2) is 
mathematically related to  the NMO. Ignoring dip, NMO converts common- 
midpoint gathers, one of which, say, is denoted by P ( h ,  t ) ,  t o  an earth 
model, say, 

Q ( h , z )  = earth (z ) X const (h ) (1) 

Actually, Q (h , z ) doesn't turn out t o  be a constant function of h , but that  
is the goal. 

The NMO procedure can be regarded as a simple copying. Conceptually, 
it is easy t o  think of copying every point of the (h , t )-plane t o  its appropriate 
place in the (h , z )plane. Such a copying process could be denoted as 

Care must be taken t o  avoid leaving holes in the ( h ,  z)-plane. It is better to  
scan every point in the output ( h  , z)-plane and find its source in the (h , t )- 
plane. With a table t (h , z ) ,  data can be moveout corrected by the copying 
operation 

Using the terminology of this book, the input P (h , t ) t o  the moveout 
correction is called a CMP gather, and the output Q is called a CDP gather. 

In practice, the first step in generating the travel-time tables is t o  change 
the depth-variable z t o  a vertical travel-time-variable T. So the required 
table is t ( h ,  T). To  get the output data for location (h , T) you take the 

input data a t  location (h , t ). The most straightforward and reliable way to  
produce this table seems t o  be t o  march down in steps of z ,  really T ,  and 
trace rays. That  is, for various fixed values of Snell's parameter p , you 

compute t (p , T) and h (p , T) from v (7) by integrating the following equa- 
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tions over 7: 

d t dz dt - = -- = v 1 - 1 
d r d r  dz v cos 8 - 4- (4) 

dh dz dh - = -- = p v ( T ) ~  
v tan 9 = 

d r d r  dz d- 
(In equations (4) and (5) dt /dz and dh /dz are based on rays, not wave- 
fronts). Given t (p , r) and h ( p  , r), iteration and interpolation are required 
t o  eliminate p and find t (h , r). I t  sounds awkward - and i t  is - because 
at wide angles there usually are head waves arriving in the middle of the 
reflections. But once the job is done you can save the table and reuse it many 
times. The multibranching of the travel time curves at wide offset motivates 
a wave-equat ion based velocity analysis. The greatest velocity sensitivity 
occurs just where the classic hyperbolic assumption and the single-arrival 
assumption break down. 

Linearity Allows Postponing Statistical Estimation 

The linearity of wave-equation data processing allows us t o  decompose a 
dataset into parts, process the parts separately, then recombine them. The 
result is the same as if they were never separated. 

For example, suppose a CMP gather is divided into two parts, say, inner 
traces A and outer traces B . Let (A , 0) denote a CMP gather where the 
outer traces have been replaced by zeroes. Likewise, (0, B )  could be 
another copy of the gather where the inner traces have been replaced by 
zeroes. We could downward continue ( A  , 0 )  and separately downward con- 
tinue (0, B). After downward continuation, (A , 0 )  and (0, B )  could be 
added. Alternately, we could pause, do some thinking about statistics, and 
then choose t o  combine them with some weighting function. Figure 4 shows a 
dataset of three traces decomposed into three datasets, one for each trace. 
Semicircles depict the separate downward continuation of each trace. Each 
semicircle goes through zero ofbet, giving the appropriately stretched, NMOed 
trace. 

The idea of using a weighting function is a drastic departure from our 
previous style of analysis. It represents a disturbing recognition that  we have 
been neglecting something important in all scientific analysis, namely, statis- 
tics! What are the ingredients that  go into the choice of a weighting func- 
tion? They are many. Signal and noise variances play a role. Some channels 
may be noisy or absent. When final display is contemplated, it is necessary to  
consider human perception and the need t o  compress the dynamic range, so 
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FIG. 3.5-4. A three-trace CMP gather decomposed by traces. A t  the left, 
impulses on the data are interpolated, depicting a hyperbola. A t  the right, 
data  points are expanded into migration semicircles, each of which goes 
through zero offset a t  the apex of the hyperbola. 

that  small values can be perceived. Dynamic-range compression must be con- 
sidered not only in the obvious ( h  , t )-space, but also in frequency space, dip 
space, or any other space in which the wavefields may get too far out of bal- 
ance. 

There are many ways t o  decompose a dataset. The choice depends on 
your statistical model and your willingness t o  repeat the processing many 
times. Perhaps the parts of the data gather should be decomposed not by 
their h values but by their values of r = h / t  . Clearly, there is a lot t o  
think about. 

Lateral Interpolation and Extrapolation of a CMP Gather 

Practical problems dealing with common-midpoint gathers arise because 
of an insufficient number of traces. Truncation problems are those that  arise 
because the geophone cable has a fixed length that  is not as long as the dis- 
tance over which seismic energy propagates. Figure 5 shows why cable trun- 
cations are a problem for conventional, ray-trace, stacking methods as well as 

for wave-equation methods. Aliasing problems are those that  arise because 
shots and geophones are not close enough together. Spatial aliasing of data 
on the offset axis seems t o  be a more serious problem for wave-equation 
methods than it is for ray-trace methods. The reason is that  normal-moveout 
correction reduces the spatial frequencies. Gaps in the data, resulting from 
practical problems with the geophones, cable, and access t o  the terrain, are 
also frequently a snag. 

Here these problems will all be attacked together with a systematic 
approach t o  estimating missing traces. The technique t o  be described is the 
simplest member of a more general family of missing data estimation pro- 
cedures currently being developed a t  the Stanford Exploration Project. 
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FIG. 3.5-5. Normal moveout a t  the earth velocity brings the cable trunca- 
tions on good events t o  a good place, causing no problems. The cable trunca- 
tions of diffractions and multiples, however, move t o  a' and c I ,  where they 
could be objectionable. Such corruption could make folly of sophisticated 
time-series analysis of the waveform found on a CDP stack. 

First do normal-moveout correction, that  is, stretch the time axis to  
flatten hyperbolas. The initial question is what velocity t o  use for the 
normal-moveout correction. For trace interpolation the appropriate moveout 
velocity turns out t o  be that  of the dominating energy o n  the gather. On a 
given dataset this velocity could be primary velocity a t  some times and multi- 
ple velocity a t  other times. The reason for such a nonphysical velocity is this: 
the strong events must be handled well, in order t o  save the weak ones. 
Truncations of weak events can be ignored as a "second-order" problem. The 
practical problem is usually to  suppress strong water-velocity events in the 
presence of weak sedimentary reflections, particularly a t  high frequencies. In 
principle, we might be seeking weak P - S V  waves in the presence of strong 
P -P waves. 

After NMO, the residual energy should have little dip, except of course 
where missing data, now replaced by zeroes, forces the existing data  t o  be 
broad-banded in spatial frequency. In order t o  improve our view of this badly 
behaved energy, we pass the data through a "badpass" filter, such as the 
high-pass recursive dip filter discussed in Section 2.5. 
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Notice that  this filter greatly weakens the energy with small k ,  tha t  is, the 
energy that  was properly moveout corrected. On the other hand, near the 
missing traces, notice that  the spectrum should be broad-band with k and 
that  such energy passes through the filter with almost unit gain. 

The output from the "badpass" filter is now ready t o  be subtracted from 
the data. The subtraction is done selectively. Where recorded data exists, 
nothing is subtracted. This completes the first iteration. Next the steps are 
repeated, and iterated. Convergence is finally achieved when nothing comes 
out of the badpass filter a t  the locations where data  was not recorded. An 
example of this process can be found in figure 6. 

Offset (feet) 
-10000 -5000 0 5000 10000 

FIG. 3.5-6. Field profile from Alaska with missing channels on the left 
Western Geophysical), restored by iterative spatial filtering on the right. 

[Harlan) 
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The above procedure has ignored the possibility of dip in the midpoint 
direction. The effect of dip on moveout is taken up in Section 3.6. 

This procedure is also limited because i t  ignores the possibility that  
several velocities may be simultaneously present on a dataset. T o  really do a 
good job of extending such a dataset may require a parsimonious model and a 
velocity spectral concept such as the ones developed next and in Section 5.4. 

In and Out of Velocity Space 

Summing a common-midpoint gather on a hyperbolic trajectory over 
offset yields a stack called a constant-velocity or a C V  stack. A velocity 
space may be defined as a family of CV stacks, one stack for each of many 
velocities. CV stacking is a transformation from offset space t o  velocity 
space. CV stacking creates a ( t  , v >space velocity panel from a ( t  , h )-space 
common-midpoint gather. Conventional industrial velocity estimation 
amounts t o  CV stacking supplemented by squaring and normalizing. Linear 
transformations such as CV stack are generally invertible, but the transfor- 
mation t o  velocity space is of very high dimension. Forty-eight channels and 
1000 time points make the transformation 48,00@dimensional. With present 
computer technology, matrices this large cannot be inverted by algebraic 
means. However, there are some excellent approximate means of inversion. 

For unitary matrices, the transpose matrix equals the inverse matrix. In 
wave-propagation theory, a transpose operator is often a good approximation 
t o  an inverse operator. Thorson [I9841 pointed out that  the transpose opera- 
tion t o  CV stacking is just about the same thing as CV stacking itself. To  do 
the operation transposed t o  CV stacking, begin with a velocity panel, tha t  is, 
a panel in (t  , v)-space. T o  create some given offset h ,  each trace in the 
( t  , v)-panel must be first compressed t o  undo the original NMO stretch. 
That  is, events must be pushed from the zero-offset time that  they have in 
the ( t ,  v t pane l  t o  the time appropriate for the given h .  Then stack the 
( t  , v )-panel over v t o  produce the seismogram for the given h . Repeat the 
process for all desired values of h . The program for transpose CV stack is 
like the program for CV stack itself, except that  the stretch formula is 
changed t o  a compensating compression. 

The inversion of a CV stack is analogous t o  inversion of slant stack or 
Radon transformation (Section 5.2). That  is, the CV stack is almost its own 
inverse, but you need t o  change a sign, and a t  the end, a filtering operation, 
like rho filtering, is also needed to  touch up the spectrum, thereby finishing 
the job. I t  is the rho filtering that  distinguishes inverse CV stack from the 
transpose of CV stack. 
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The word transpose refers t o  matrix transpose. It is difficult to  visualize 
why the word transpose is appropriate in this case because we are discussing 
data spaces that are two-dimensional and operators that are four-dimensional. 
But if you will map these two- and four-dimensional objects t o  familiar one- 
and two-dimensional objects by a transformation, such as equations (25) and 
(26) in Section 2.2, then you will see that the word transpose is entirely 
appropriate. The rho-type filtering required for CV stacks is slightly more 
complicated than ordinary rho filtering - refer to Thorson's thesis. 

D LU U L TD 
offset (km)  offset (km)  velocity ( kml sec )  velocity ( kml sec )  

FIG. 3.5-7. Panel D a t  the left is a CMP gather from the Gulf of Mexico 
Western Geophysical . The second panel (LU) is reconstructed data obtained I rom the third panel 1 U) by inverse NMO and stack. The last panel (LTD) is 

a CV stack of the first panel. (Thorson) 

Figure 7 shows an example of Thorson's velocity space inversion. Panel 
D is the original common-midpoint gather. Next is panel LU, the approxi- 
mate reconstruction of D from velocity space. The hyperbolic events are 
reconstructed much better than the random noise. The random noise was not 
reconstructed so well because the range of velocities in the CV stack was lim- 
ited between water velocity and 3.5 km/sec. The next two panels (U) and 
(LTD) are theoretically related by the "rho" filtering. LTD is the CV stack of 
D. LU is the transpose CV stack of U. 
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It is worth noting that  there is a substantial amount of work in comput- 
ing a velocity panel. A stack must be computed for each velocity. Velocity 
discrimination by wave-equation methods will be described next and in Sec- 
tion 5.4. The wave-equation methods are generally cheaper, though not fully 
comparable in effect. 

The (z,t)-plane Method 

In the 15" continuation equation Uzt = - 1 / 2  v Uhh , scaling the depth 
z is indistinguishable from scaling the velocity. Thus, downward continua- 
tion with the wrong velocity is like downward continuation t o  the wrong 
depth. Stephen M. Doherty [I9751 used this idea in a velocity-estimation 
scheme - see figure 8. 

FIG. 3.5-8. Two displays of the ( z ,  t )-plane a t  zero offset. The earth model 
is eight uniformly spaced reflectors under a water layer (a family of hyper- 
boloids in (h , t ) a t  z =O). The left display is the zero-offset trace. The 
amplitude maximum a t  the focus is not visually striking, but the phase shift 
is apparent. The right display is the z-derivative of the envelope of the zero- 
offset trace.. A linear alignment along z l=vt '  is more apparent. (Doherty) 
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The idea is t o  downward continue with a preliminary velocity model and 
t o  display the zero-offset trace, a function of t ' ,  a t  all travel-time depths T. 

If the maximum amplitude occurs a t  t '  = T, then your preliminary model is 
good. If the maximum is shifted, then you have some analysis t o  do before 
you can say what velocity should be used on the next iteration. 

Splitting a Gather into High- and Low-Velocity Components 

A process will be defined that  can partition a CMP gather, both 
reflections and head waves, into one part with RMS velocity greater than that  
of some given model T ( z  ) and another part with velocity less than V ( z  ). 

After such a partitioning, the low-velocity noise could be abandoned. Or  
the earth velocity could be found through iteration, by making the usual 
assumption that  the velocity spectrum has a peak a t  earth velocity. As will 
be seen later, various data interpolation, lateral extrapolation, and other sta- 
tistical procedures are also made possible by the linearity and invertibility of 
the partitioning of the data  by velocity. 

The procedure is simple. Begin with a common-midpoint gather, zero 
the negative offsets, and then downward continue according t o  the velocity 
model V ( z  ). The components of the data with velocity less than V ( z  ) 
will overmigrate through zero offset t o  negative offsets. The components of 
the data with velocity greater than V ( z )  will undermigrate. They will 
move toward zero offset but they will not go through. So the low-velocity 
part is a t  negative offset and the high-velocity part is a t  positive offset. If you 
wish, the process can then be reversed t o  bring the two parts back t o  the 
space of the original data. 

Obviously, the process of multiplying data by a step function may create 
some undesirable diffractions, but then, you wouldn't expect t o  find an 
infinitely sharp velocity cutoff filter. Clearly, the false diffractions could be 
reduced by using a ramp instead of a step. An alternative t o  zeroing negative 
h would be to  go into (kh , w)-space and zero the two quadrants of sign 

disagreement between kh and w. 

This partitioning method unfortunately does not, by itself, provide a ve- 
locity spectrum. Energy away from h =O is unfocused and not obviously 
related t o  velocity. The need for a velocity spectrum motivates the develop- 
ment of other processes. 

Reflected Head Waves on Sections 

It is common for an interpreter looking a t  a stacked section to  identify a 
reflected head wave. Experimentally it is just a hyperbolic asymptote seen in 
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( 3 ,  t )-space. Theoretically, it is a ray that  moves away from a source along a 
horizontal interface until i t  encounters an irregularity, a fault perhaps, from 
which it reflects and returns toward the source. Reflected head waves are 
sometimes called reflected refractions. This event provides an easy velocity 
estimate, namely, v = 2 dy /dt . From a processing point of view, such a ve- 
locity measurement is unexpected, because automatic processing extracts all 
velocity information in offset space, a space which many interpreters prefer t o  
leave inside the computer. Of course, for a reflected head wave t o  be 
identified, a special geological circumstance must be present - a scatterer 
strong enough t o  have its hyperbolic asymptote visible. The point scatterer 
must also be strong enough t o  get through the typical suppression effects of 
shot and geophone patterns and CDP stacking. The most highly suppressed 
events, water velocity and ground roll, are just those whose velocities are 
most often apparent on stacked sections. (Recall Larner's streaks). Some 
strong reflected refraction energy was present on the common-shot profile 
shown in Section 3.2. 

Velocity estimates made from reflections are averages of all the layers 
above the reflection point. T o  get depth resolution, it is necessary t o  subtract 
velocity estimates of different depth levels (Section 5.4). Because of the sub- 
traction, accuracy is lost. So with reflected waves, there is naturally a trade- 
off between accuracy and depth resolution. On  the other hand, velocity esti- 
mates from head waves naturally have a high resolution in depth. 

Processing seems t o  ignore or discriminate against the backscattered head 
wave, yet i t  is often seen and used. There must be an explanation. Perhaps 
there is also a latent opportunity. From a theoretical point of view, Clayton's 
cosines showed that  a t  wide angles the velocity and dip sensitivity of mid- 
point and offset are exchanged. At  late times another factor becomes 
significant: the aperture of a cable length can be much less than the width of 
a migration hyperbola. So, although it is easy to  find an asymptote in mid- 
point space, there is little time shift a t  the end of the cable in offset space. 

What processing could take advantage of lateral reflectivity and could 
enhance, instead of suppress, our ability t o  determine velocity in this way? 
Start by stacking a t  a high velocity. Then use the idea tha t  a t  any depth z ,  
the power spectrum of the data  U(w, k,) should have a cutoff a t  the evanes- 

cent stepout p ( r  ) = ky /w = l / v  ( z  ). This would show up in a plot of the 

power spectrum U *  U ,  or better yet of the dip spectrum, as a function of 
depth. Perhaps it would be still better t o  visually inspect the seismic section 
itself after filtering in dip space about the expected velocity. 

The wave-extrapolation equation is an all-pass filter, so why does the 
power spectrum change with depth? It changes because a t  any depth z it is 
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FIG. 3.5-9. The dip-spectrum method of velocity determination. T o  find the 
velocity at any depth, seek the steepest dip on the section a t  tha t  depth. On 
the left, at the earth's surface, you see the surface ground roll. In frames B 
and C the slowest events are the asymptotes of successively faster hyperbolas. 

necessary t o  exclude all the seismic data before t =O. This data  should be 
zeroed before computing the dip spectrum. The procedure is depicted in 
figure 9. 

To  my knowledge this method has never been tried. I believe i t  is worth 
some serious testing. Even in the most layered of geological regions there are 
always faults and irregularities t o  illuminate the full available spectrum. 
Difficulty is unlikely t o  come from weak signals. More probably, the potential 
for difficulty lies in near-surface velocity irregularity. 

EXERCISES 

1. Assume that  the data P (y , h , t ) is constant with midpoint y . Given 
a common-midpoint gather P (h , t , z =O), define a Stolt-type integral 
transformation from P ( h  , t , z =0) t o  P (h =0, t , z ) based on the 
double-square-root equation: 

As with. Stolt migration, your answer should be expressed as a 2-D 
inverse Fourier transform. 

2. Start with a CDP gather u (h , t ) defined (by reciprocity) a t  both posi- 
tive and negative values of h . Describe the effect of the following opera- 
tions: Fourier transform t o  U (kh , w); multiply by 1 + sgn ( w )  sgn (kh  ); 
transform back t o  (h , t )-space. 
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FIG. 3.5-E2. What is this? 

3.6 Migration with Velocity Estimation 

We often face the three complications dip, offset, and unknown velocity 
at  the same time. The double-square-root equation provides an attractive 
avenue when the velocity is known, but when it isn't, we are left with veloci- 
ty-estimation procedures, such as that  in the previous section, which assume 
no dip. In this section a means will be developed of estimating velocity in the 
presence of dip. 

D ip  Moveout  - Sherwood's Devilish 

Recall (from Section 3.2) Levin's expression for the travel time of the 
reflection from a bed dipping at  angle cx from the horizontal: 

t 2 v 2  = 4 ( y - y o ) 2 s i n 2 a + 4 h 2 c o s 2 a  (1) 

In ( h  , t )-space this curve is a hyperbola. Scaling the velocity by cos a 
makes the travel-time curve identical to the travel-time curve of the dip-free 
case. This is the conventional approach to  stacking and velocity analysis. It 
is often satisfactory. Sometimes it is unsatisfactory because the dip angle is 
not a single-valued function of space. For example, near a fault plane there 
will be diffractions. They are a superposition of all dips, each usually being 
weaker than the reflections. Many dips are present in the same place. They 
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blur the velocity estimate and the stack. 

In principle, migration before stack - some kind of implementation of 
the full DSR equation - solves this general problem. But where do we get 
the velocity t o  use in the migration equations? Although migration is some- 
what insensitive t o  velocity when only small angles are involved, migration 
becomes sensitive to  velocity when wide angles are involved. 

The migration process should be thought of as being interwoven with the 
velocity estimation process. J.W.C. Sherwood [1976] showed how the two 
processes, migration and velocity estimation, should be interwoven. The 
moveout correction should be considered in two parts, one depending on 
offset, the NMO, and the other depending on dip. This latter process was 
conceptually new. Sherwood described the process as a kind of filtering, but 
he did not provide implementation details. He called his process Devilish, an 
acronym for "dipping-event velocity inequalities licked." The process was 
later described more functionally by Yilmaz as prestack partial migration, but 
the process has finally come t o  be called simply dip moveout (DMO). We will 
first see Sherwood's results, then Rocca's conceptual model of the D M 0  pro- 
cess, and finally two conceptually distinct, quantitative specifications of the 
process. 

Figure 1 contains a panel from a stacked section. The panel is shown 
several times; each time the stacking velocity is different. I t  should be noted 
that  a t  the low velocities, the horizontal events dominate, whereas a t  the high 
velocities, the steeply dipping events dominate. After the Devilish correction 
was applied, the data  was restacked as before. Figure 2 shows that  the stack- 
ing velocity no longer depends on the dip. This means that  after Devilish, 
the velocity may be determined without regard t o  dip. In other words, events 
with all dips contribute to  the same consistent velocity rather than each dip- 
ping event predicting a different velocity. So the Devilish process should pro- 
vide better velocities for data  with conflicting dips. And we can expect a 
better final stack as well. 

Rocca's Smear Operator 

Fabio Rocca developed a clear conceptual model for Sherwood's dip 
corrections. Figure 3 illustrates Rocca's concept of a prestack partial- 
migration operator. Imagine a constant-offset section P ( t  , y , h =h o) con- 

taining an impulse function a t  some particular ( to ,  yo). The earth model 
implied by this data is a reflector shaped like an ellipse, with the shot point a t  
one focus and the receiver a t  the other. Starting from this earth model, a 
zero-offset section is made by forward modeling - tha t  is, each point on the 
ellipse is expanded into a hyperbola. Combining the two operations - 
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stacking 
velocity 

high velocities junction low velocities 
f-------. * ___C 

FIG. 3.6-1. Conventional stacks with varying velocity. (distributed by Digi- 
con, Inc.) 

constant-offset migration and zero-offset diffraction - gives the Rocca opera- 
tor. 

The Rocca operator is the curve of osculation in figure 3, i.e., the smile- 
shaped curve where the hyperbolas reinforce one another. If the hyperbolas in 
figure 3 had been placed everywhere on the ellipse instead of a t  isolated 
points, then the osculation curve would be the only thing visible (and you 
wouldn't be able t o  see where it came from). 

The analytic expression for the travel time on the Rocca smile is the end 
of a narrow ellipse, shown in figure 4. We will omit the derivation of the 
equation for this curve which turns out t o  be 

The Rocca operator appears to  be velocity independent, but it is not com- 
pletely so because the curve cuts off at dt /dy = 2 / v .  
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stacking 
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high velocities function low velocities - * ___jC 
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FIG. 3.6-2. Devilish stacks with varying velocity. (distributed by Digicon, 
Inc.) 

The Rocca operator transforms a constant-offset section into a zero-offset 
section. This transformation achieves two objectives: first, i t  does normal- 
moveout correction; second, it does Sherwood's dip corrections. The operator 
of figure 3 is convolved across the midpoint axis of the constant-offset section, 
giving as output a zero-offset section a t  just one time, say, t o .  For each t o  

a different Rocca operator must be designed. The outputs for all t o  values 

must be superposed. Figure 5 shows a superposition of several Rocca smiles 
for several values of t o .  

This operator is particularly attractive from a practical point of view. 
Instead of using a big, wide ellipse and doing the big job of migrating each 
constant-offset section, only the narrow, little Rocca operator is needed. From 
figure 5 we see that  the energy in the dip moveout operator concentrates nar- 
rowly near the bottom. In the limiting case that  h / v t O  is small, the energy 

all goes to  the bottom. When all the energy is concentrated near the bottom 
point, the Rocca operator is effectively a delta function. After compensating 
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FIG. 3.6-3. Rocca's prestack partial-migration operator is a superposition of 
hyperbolas, each with its top on an ellipse. Convolving (over midpoint) 
Rocca's operator onto a constant-o&et section converts the constant-offset 
section into a zero-offset section. (Gonzalez) 

FIG. 3.6-4. Rocca's smile. (Ronen) 
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FIG. 3.6-5. Point response of dip moveout (left) compared t o  constant-offset 
migration (right). (Hale) 

each offset t o  zero offset, velocity is determined by the normal-moveout resi- 
dual; then data is stacked and migrated. 

The narrowness of the Rocca ellipsoid is an advantage in two senses. 
Practically, it means that  not many midpoints need to  be brought into the 
computer main memory before velocity estimation and stacking are done. 
More fundamentally, since the operator is so compact, i t  does not do a lot t o  
the data. This is important because the operation is done at an  early stage, 
before the velocity is well known. So it may be satisfactory t o  choose the ve- 
locity for the Rocca operator as a constant, regional value, say, 2.5 km/sec. 

An expression for the travel-time curve of the dip moveout operator 
might be helpful for Kirchhoff-style implementations. More t o  the point is a 
Fourier representation for the operator itself, which we will find next. 

Hale's Constant-Offse t  Dip M o v e o u t  

Hale [1983] found a Fourier representation of dip moveout. Refer to  the 
defining equations in table 1. 

T o  use the dip-dependent equations in table 1, i t  is necessary t o  know 
the earth dip a. The dip can be measured from a zero-offset section. On the 
zer+offset section in Fourier space, the sine of the dip is vk, j f w .  To stress 

that  this measurement applies only on the zero-offset section, we shall always 
write wo. 

kY sin cu = - 
2 wo 
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TABLE 3.6-1. Equations for normal moveout and dip moveout. Substituting 
the D M 0  equation into the NMO equation yields Levin's dip-corrected NMO. 

NMO 

Levin's NMO 

D M 0  

In the absence of dip, NMO should convert any trace into a replica of the 
zero-offset trace. Likewise, in the presence of dip, the combination of NMO 
and DM0 should convert any constant-offset section t o  a zero-offset section. 
Pseudo-zero-offset sections manufactured in this way from constant-offset sec- 
tions will be denoted by p O(t O, h , y ). First take the midpoint coordinate y 

over t o  its Fourier dual ky . Then take the Fourier transform over time let- 

ting wo be Fourier dual to  t 0. 

Change the variable of integration from t t o  t, . 

t - t t n  

t -t t 

tn -+ tO 

dto i w  t t 
pO(w0, h 7 ky ) = J dt, 7 e o O ( f l n ) ~ O ( t O ( t n ) r h , k y )  (5) 

t = ,/- 
t = Jt ,2 + 4h 2v -2cos2a 

t, = Jt - 4h 'v -2sin2a 

Express the integrand in terms of NMOed data  Pn . This is done by means 

of P n ( t f l , h ,  ky )  = Po(tO(tf l) ,  h ,  ky). 

As with Stolt migration, the Jacobian of the transformation, dto/dtn scales 
things but doesn't do time shifts. The D M 0  is really done by the exponential 
term. 

Omitting the Jacobian (which does little), the over-all process may be 
envisioned with the program outline: 
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CMP Stack without Dip Moveout 

Migrated Stack without Dip Moveout 

CMP Stack with Dip Moveout 

Migrated Stack with Dip Moveout 

FIG. 3.6-6. Processing with dip moveout. (Hale) 
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P (k, = FT [P (Y 11 
Pn (tn = NMO [P ( t )I 
for all k, { # three nested loops, interchangeable 
for all h { # three nested loops, interchangeable 
for all wo { # three nested loops, interchangeable 

sum = 0 
for all t, { 

sum = s u m  + exp 1 i w o  I 1 

Po(wo, h , k, ) = sum 

Notice that  the exponential in the inner loop in the program does not 
depend on velocity. The velocity in the D M 0  equation in table 1 disappears 
on substitution of sin a from equation (3). So dip moveout does not depend 
on velocity. 

The procedure outlined above requires NMO before DMO. T o  reverse 
the order would be an approximation. This is unfortunate because we would 
prefer t o  do the costly, velocity-independent D M 0  step once, before the itera- 
tive, velocity-estimating NMO step. 

Ottolini's Radial Traces 

Ordinarily we regard a common-midpoint gather as a collection of seismic 
traces, that  is, a collection of time functions, each one for some particular 
offset h . But this ( h  , t ) data  space could be represented in a different 
coordinate system. A system with some nice attributes is the radial-trace sys- 
tem introduced by Turhan Taner. In this system the traces are not taken a t  
constant h , but a t  constant angle. The idea is illustrated in figure 7. 

Besides having some theoretical advantages, which will become apparent, 
this system also has some practical advantages, notably: (1) the traces neatly 
fill the space where data is nonzero; (2) the traces are close together a t  early 
times where wavelengths are short, and wider apart where wavelengths are 
long; and (3) the energy on a given trace tends to  represent wave propagation 
at a fixed angle. The last characteristic is especially important with multiple 
reflections (Section 5.6). But for our purposes the best attribute of radial 
traces is still another one. 

Richard Ottolini noticed that  a point scatterer in the earth appears on a 
radial-trace section as an exact hyperbola, not a flat-topped hyperboioid. 
The travel-time curve for a point scatterer, Cheops' pyramid, can be written 
as a "string length" equation, or a stretched-circle equation (Section 3.2). 
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FIG. 3.6-7. Inside the data 
volume of a reflection seismic 
traverse are planes called radial- 
trace sections. A point scatterer 
inside the earth puts a hyperbola 
on a radial-trace section. 

Making the definition 

2 h 
sin + = - 

v t 

and substituting into equation (13) of Section 3.2, yields 

Scaling the z-axis by cos ll, gives the circle and hyperbola case all over 
again! Figure 8 shows a three-dimensional sketch of the hidden hyperbola. 

We will see that  the radial hyperbola of figure 8 is easier t o  handle than 
the flat-topped hyperboloid that  is seen a t  constant h .  Refer t o  the equa- 
tions in table 2. 

The second equation in table 2 is the usual exploding reflector equation 
for zero-ofket migration. I t  may also be obtained from the DSR by setting 
H = 0. As written it contains the earth velocity, not the half velocity. 
Equation (8) says that  hyperbolas of differing + values are related t o  one 
another by scaling the z-axis by cos +. According to  Fourier transform 
theory, scaling z by a cos 1C, divisor will scale Ic, by a cos + multiplier. 
This means the first equation in table 2 can be used for migrating and 
diffracting hyperbolas on radial-trace sections. Eliminating Ic, from the first 
and second equations yields the middle equation w+wo in table 2. This mid- 
dle equation combines the operation of migrating all offsets (really any radial 
angle) and then diffracting out t o  zero offset. Thus the total effect is that  of 
o$set continuation, i.e. NMO and DMO. The last two equations in table 2 
are a decomposition of the middle equation w+wo into two sequential 
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FIG. 3.6-8. An unexpected hyperbola in Cheops' pyramid is the diffraction 
hyperbola on a radial-trace section. (Harlan) 

TABLE 3.6-2. Equations defining dip moveout and ordinary moveout in 
radial trace coordinates. 

migration 

zero-offset diff. 

DMO+NMO 

radial D M 0  

radial NMO 

processes, w - w ,  and w, +wo. These two processes are like D M 0  and 

NMO, but the operations occur in radial space. Radial NMO is a simple 
time-invariant stretch; hence the notation w, . 

Unlike the constant-offset case, dip moveout is now done before the 
stretching, velocity-estimating step. Let us confirm that  the dip moveout is 
truly velocity-independent. Substitute (7) into the radial D M 0  transforma- 
tion in table 2 to  get the equation for transformation from time to  stretched 

w+kz 

k; -'ao 

w+w0 

w+w, 

WS +Wo 

k: + kZ2cos2$ = 4w2/v2 

ky2 + kz2 = 4w$/v2 

.25 v 2ky2sin2$ + w;cos2$ = w 2 

.25 v 2k,2sin2$ + W: = w2 

w0 cos $ = w, 
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We observe that  the velocity v has dropped out  of (9). Thus dip moveout 
in radial coordinates doesn't depend on velocity. Dip-moveout processing 
w+w, does not require velocity knowledge. Radial coordinates offer the 
advantage that  this comparatively costly process is done before the velocity is 
estimated us +wo. 

The dip-moveout process, u+ws, can be conveniently implemented with 
a Stolt-type algorithm using (9). 

The foregoing analysis has assumed a constant velocity. A useful practi- 
cal approximation might be to  revert t o  a v ( 2 )  analysis after the dip 
moveout, just before conventional velocity analysis, stack, and zero-offset 
migration. 

Both the radial-trace method and Hale's constant-offset method handle 
all angles exactly in a constant-velocity medium, But neither method treats 
velocity stratification exactly nor is i t  clear that  this can be done - since nei- 
ther method is rooted in the DSR. Yilmaz I19791 rooted his D M 0  work in the 
DSR, so his method can be expected t o  be exact for velocity stratification, but 
Yilmaz could not avoid angle-dependent approximations. So there remains 
theoretical work to  be done. 

Anti-Alias Characteristic of Dip Moveout 

You might think that  if (y , h , t )-space is sampled along the y-axis a t  a 
sample interval A y , then any final migrated section P (y , z ) would have a 

spatial resolution no better than Ay . This is not the case. 

The basic principle at work here has been known since the time of Shan- 
non. If a time function and its derivative are sampled a t  a time interval 2 A t ,  
they can both be fully reconstructed provided that  the original bandwidth of 
the signal is lower than 1/(2At ). More generally, if a signal is filtered with 
m independent filters, and these m signals are sampled a t  an interval 
m A t ,  then the signal can be recovered. 

Here is how this concept applies t o  seismic data. The basic signal is the 
earth model. The various filtered versions of it are the constant-offset sec- 
tions. Recall that  the CDP reflection point moves up dip as the offset is 
increased. Further details can be found in a paper by Bolondi, Loinger, and 
Rocca [1982], who first pointed out the anti-alias properties of dip moveout. 
A t  a time of increasing interest in 3-D seismic data, special attention should 
be paid t o  the anti-alias character of dip moveout. 



OFFSET 9.7 Lateral Velocity Variation 

EXERCISE 

1. Describe the effect of the Jacobian in Hale's dip moveout process. 

Lateral Velocity Variation in Bigger Doses 

To the interpreting geologist, lateral velocity variation produces a 
strange distortion in the seismic section. And the distortion is worse than it 
looks. The geophysicist is faced with the challenge of trying to deal with 
lateral velocity variation in a quantitative manner. First, how can reliable 
estimates of the amount of lateral velocity variation be arrived at? Then, do 
we dare use these estimates for reprocessing data? 

Our studies of dip and offset have resulted in straightforward p r e  
cedures to handle them, even when they are simultaneously present. Unfor- 
tunately, increasing lateral velocity variation leads to  increasing confusion - 
confusion we must try to  overcome. Strong lateral velocity variation overlies 
the largest oil field in North America, Prudhoe Bay. Luckily, however, we 
have many idealized examples that are easy t o  understand. Any "ultimate" 
theory would have to  explain these examples as limiting cases. 

Let us review. The double-square-root equation presumably works if the 
square roots are expanded and if we accept the usual limitation of accuracy 
with angle. Our problem with the DSR is that it merely tells us how to 
migrate and stack once the velocity is known. Kjartansson's method of deter- 
mining the distribution of (some function of) v (x , z ) assumes straight rays, 
no dip, and a single, planar reflector. On the other hand, stacking along with 
prestack partial migration allows any scattering geometry but enables deter- 
mination of v ( z )  only under the presumption that there is no lateral varia- 
tion of velocity. Clearly, there are many gaps. We begin with comprehensi- 
ble, special cases but ultimately sink into a sea of confusion. 

Replacement Velocity: Freezing the Water 

Sometimes you are lucky and you know the velocity. Maybe you know it 
because you are dealing with synthetic data. Maybe you know it because you 
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have already drilled 300 shallow holes. Or maybe you can make a good esti- 
mate because you have a profile of water depth and you are willing to  guess 
a t  the sediment velocity. Often the velocity problem is really a near-surface 
problem. Perhaps you have been dragging your seismic streamer over the 
occasional limestone reefs in the Red Sea. 

Assuming that  you know the velocity and that  the lateral variations are 
near the surface, then you should think about the idea of a replacement  veloc- 
i ty .  For  example, suppose you could freeze the water in the Red Sea, just 
until it is hard enough that  the ice velocity and the velocity of the limestone 
reefs are equal. That  would remove the unnecessary complexity of the 
reflections from deep targets. Of course you can't freeze the Red Sea, but you 
can reprocess the data t o  t ry  to  mimic what would be recorded if you could. 

First, downward continue the data t o  some datum beneath the lateral 
variations. Then upward continue i t  back t o  the surface through the homo- 
geneous replacement medium. 

While in principle the DSR could be used for this job, in practice it 
would be expensive and impractical. The best approach is t o  study the two 
operations - going down, then going up - in combination. Since the two 
operations are largely in opposition t o  each other, whatever is done t o  the 
data  should be just a function of the difference. For example, the equation 

combines the downward continuation with the upward continuation and 
makes little change t o  the wavefield P when the velocities are nearly the 
same. Equation (I) is basically a time-shifting equation. There is an industry 
process known as stat ic corrections. The word stat ic implies time-invariant 
- the amount of time shift does not depend on time. When the appropriate 
corrections are merely static shifts, then the earth model has lateral velocity 
variations in the near surface only. This is often the case. Equation ( I )  also 
has the ability t o  do time-variable time shifts because v ( s  ) and v (g ) can 
be any function of depth z . Because of the wide-offset angle normally used, 
i t  is desirable t o  extend (1) to  a wider angle. Such extensions are found in 
Lynn (19791. Lynn also shows how partial differential equations can be writ- 
ten t o  describe the influence of lateral velocity variation on stacking velocity. 
Berryhill [I9791 illustrated the use of the Kirchhoff method for an  irregular 
datum. 

In practice, the problem of estimating lateral velocity variations is usu- 
ally more troublesome than the application of these velocities during migra- 
tion. Static time shifts are estimated from a variety of measurements 
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including the elevation survey, travel times from the bottoms of shot holes t o  
the surface, and crosscorrelation of reflection seismograms. Wiggins et  al. 
(19761 provide an analysis t o  determine the static shifts from correlation meas- 
urements. 

FIG. 3.7-1. Data (left) from Philippines with dynamic corrections (right). (by 
permission from Geophysics, Dent [1983]) 

Where the lateral variation runs deeper the time shifts become time- 
dependent. This is called the dynamic time-shift problem. T o  compute 
dynamic time shifts, dip is assumed to  be zero. Rays are traced through a 
presumed model with laterally variable velocity. Rays are also traced through 
a reference model with laterally constant velocity. The difference of travel 
times of the two models defines the dynamic time shifts. See figure 1. Where 
the lateral variation runs deeper still, the problem looks more like a migration 
problem. Figure 2 illustrates a process called R E V E A L  by Digicon, Inc., who 
have not revealed whether a time-shift method or a wave-equation method 
was used. 

Lateral Shift of the Hyperbola Top 

Figure 3 shows a point scatterer below a dipping interface. As  usual 
there is a higher velocity below. This is a simple prototype for many lateral- 
velocity-variation problems. Surface arrival times will be roughly hyperbolic 
with distortion because of the velocity jump at the interface. The minimum 
travel time (hyperboloid top) has been displaced from its usual location 
directly above the point scatterer. Observe that  
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.o 

BEFORE REVEAL 

.o 

AFTER REVEAL 

FIG. 3.7-2. Example of processing with a replacement velocity. Observe that  
deeper bedding is now flatter and more continuous. (distributed by Digicon, 
Inc .) 

1. At  minimum time, the ray emerges going straight up. 

2. Minimum time is on the high-velocity side of the point scatterer. 

3. Minimum time is displaced further from the scatterer as offset 
increases. 

The travel-time curve is roughly hyperbolic, but the asymptote on the right 
side gives the velocity of the medium on the right side, and the asymptote on 
the left approximately gives the velocity on the left. 

Let T (x) denote the travel time from the point scatterer t o  the surface 
point x. The travel time for a constant-offset section is then t ( y  ) = 

T (y +h ) + T (y -h ). To find the earliest arrival, set dt ldy  = 0. This 
proves that  the slope a t  a on figure 3 is the negative of the slope a t  b . This 
shows why the displacement of the top of the hyperboloid from the scatterer 
increases with ofbet. 

Lateral velocity variation causes hyperbolas t o  lose their symmetry. 
Computationally, it is the lens term that  tilts hyperbolas, causing their tops 
t o  move laterally. 
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/ V  just 

FIG. 3.7-3. Rays emerging from a point scatterer beneath a velocity wedge 
ravel-time curve (right). The slope at  a is the negative of that  a t  

The midpoint between a and b is a t  the top of the h > O  curve. 

Phantom Diffractor 

A second example of lateral velocity variation is figure 4, also taken from 
Kjartansson's dissertation. The physical model shown on the inset in figure 4 
is three constant velocity wedges separated by broken line segments represent- 
ing reflectors. The bottom edge of the model also represents a reflector. The 
wavefield in figure 4 was made using the exploding-reflector calculation, which 
Kjartansson regarded as a reasonable approximation t o  a zero-offset section. 
Notice that  under the tip of the 4 km/sec wedge is a small diffraction on the 
bottom horizontal reflector. Because such a diffraction has nothing to  do with 
the flat reflector on which it is seen, it is termed a "phantom" diffraction. 
Phantom diffractions are not easy t o  recognize, but they do occur. In reality, 
the  "bright spots" in Section 3.1 were probably phantom diffractions. I t  has 
been reported tha t  phantom diffractions provide a means of prospecting for 
small, high-velocity, carbonate reefs. 

Wavefront Healing 

Figure 5 (also in FGDP) shows another example of ray bending. The 
first frame on the left shows a plane wave just after it has been distorted into 
a wavy shape by the thin-lens term. After this the thin-lens term vanishes. 
Later frames show the effect of increasing amounts of diffraction. 
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FIG. 3.7-4. The model in the upper panel was taken from Western 
Geophysical's Depth Migration brochure. The model is not physical because 
of the segmenting of the interface; however, the segments make i t  a good case 
for the study of lateral shifts. The synthetic data  is in the lower panel (from 
Kjartansson). The phantom diffraction is on the latest arrival just below the 
tip of the wedge. 
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S t a r t  

I-" Direct ion  of Propagation e 

FIG. 3.7-5. The first frame on the left shows a plane wave just after it has 
been distorted into a wavy shape by the thin-lens term. After this the thin- 
lens term vanishes. Subsequent frames show the effect of increasing amounts 
of diffraction. Notice the lengthening of the wave packet and the healing of 
the first arrival. (FGDP, p. 213, figure 10-22) 

Fault-Plane Reflection 

Across a single vertical fault in the earth the velocity will be a simple 
step function of the horizontal coordinate. Rays traveling across such a fault 
suffer in amplitude because of reflection and transmission coefficients, depend- 
ing on the angle. Since near-vertical rays are common, only small velocity 
contrasts are required t o  generate strong internal reflections. By this reason- 
ing, steep faults should be more distorted, and hence more recognizable, on 
small-offset sections than on wide-offset sections or stacks. 

This phenomenon is somewhat more confusing when seen in (x , t )-space. 
Figure 6 was computed by Kjartansson and used in a quiz. Study this figure 
and answer the questions in the caption. Here is a hint: A reflected ray 
beyond critical angle undergoes a phase shift. This will turn a pulse into a 
doublet that  might easily be mistaken for two rays. 

Figure 6 exhibits a geometry in which the exploding-reflector model fails 
t o  produce all the rays seen on a zero-offset section. The exploding-reflector 
model produces two types of rays: the ray that  goes directly t o  the surface, 
and the ray that  reflects from the fault plane before going t o  the surface. A 
zero-offset section has three rays: the two rays just mentioned, but moving a t  
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FIG. 3.7-6. Synthetic data from an exploding-reflector calculation for an 
earth model containing a point scatterer and a velocity jump v l / v z  = 1.2 
across a vertical contact. (Kjartansson) 

Is the point scatterer in the slow or the fast medium? 
b a\ Identify four arrivals and diagram their raypaths. 
c) Identify and explain two kinds of computational artifacts. 

Find an evanescent wave. 
Find phase shift on a beyond-critical-angle reflection. 
A zero-offset section has ray not shown above. Where? 

double travel time, once up, once down; and in addition the ray not present in 
figure 6, which hits the fault plane going one way but not the other way. 

There is a simple way to  make constant-offset sections in laterally vari- 
able media when the reflector is just a point. The exploding-reflector seismo- 
gram recorded a t  x =s is simply time convolved with the one recorded a t  
x =g . Convolution causes the travel times t o  add. Even the non-exploding- 
reflector rays are generated. Too bad this technique doesn't work for reflector 
models that  are more complicated than a simple reflecting point. 

Misuse of v (x ) for Depth Migration 

The program that  generated figure 6 could be run in reverse t o  do a 
migration. All the energy from all the interesting rays would march back to  
the impulsive source. Would this be an effective migration program in a field 
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environment? It is unlikely that  it would. The process is far too sensitive t o  
quantitative knowledge of the lateral velocity jump. I t  is the quantitative 
value that  determines the reflection coefficient and ultimately the correct 
recombination of all the wavefronts back t o  a pulse. To  see how an incorrect 
value can result in further error, imagine using the hyperbola-summation 
migration method. Applied t o  this geometry this method implies weighted 
summation over all the raypaths in the figure. The incorrect value would put 
erroneous amplitudes on various branches. An erroneous location for the fault 
would likewise mislocate several branches. 

The lesson t o  be learned from this example is clear. Unnecessary bumps 
in the velocity function can create imaginary fault-plane reflections. Con- 
sistent with known information, a presumed migration velocity should be as 

smooth as possible in the lateral direction. Unskilled and uninformed staff at  
a processing center remote from the decision making should not have the free- 
dom t o  introduce rapid lateral changes in the velocity model. 

First-Order Effects, the Lens Term 

Now let us be specific about what is meant by the lens term in the 
present context of before-stack migration in the presence of lateral velocity 
variation. Specializing the DSR equation t o  15" angles gives 

Rearranging the terms t o  group by behavior gives - - 

d U  - - - lens  t e r m  + di$raction t e r m  
dz 

So you see the familiar type of lens term, but it has two parts, one for shifting 
a t  the shot, and one for shifting at  the geophone. 
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The Migrated Time Section: An Industry Kludge 

As geology becomes increasingly dramatic, reflection data  gets more 
anomalous. The first thing noticeable is that  the stacking velocity becomes 
unreasonable. In practice the available computer processes - based on inap- 
propriate assumptions - will be tried anyway. 

A stacking velocity will be chosen and a stack formed. How should the 
migration be done? Most basic migration programs omit the lens term. 
Although it is easy t o  include the lens term, the term is sensitive t o  lateral 
variation in velocity. Since estimates of lateral variation in velocity always 
have questionable reliability, use of a migration program with a lens term is 
usually limited to  knowledgeable interpreters. The lens term is usually omit- 
ted from the basic migration utility program. Let us see what this means. 

The migration equation is valid in some "local plane wave" sense, i.e. 

A migrated t i m e  sec t ion  is defined by transforming the depth variable z in 
( 4 )  t o  a travel-time depth T. 

The implementation of equation (5) requires no lens terms, so no large 
sensitivity t o  lateral velocity variation is expected. Unfortunately, there is a 
pitfall. The ( y  , z )  coordinate system is an  orthogonal coordinate system, 

but the ( y  , T )  system is not orthogonal [unless v ( y  )=const 1. So equation 
( 4 ) ,  which says that  cos 0 = d-, is not correctly interpreted by (5). 
A hyperbola would migrate t o  its top when i t  should be migrating toward the 
low-velocity side. 

In summary: In a production environment a great deal of data gets pro- 
cessed before anyone has a clear idea of how much lateral velocity variation is 
present. So the lens term is omitted. The results are OIC if the lens term 
happens to  commute with the diffraction term. The terms do commute when 
the lateral velocity variation is slow enough. Otherwise, you should reprocess 
with the lens term. The reprocessing will be sensitive t o  errors in velocity. 
Be careful! 



The Craft of Wavefield Extrapolation 

This chapter attends t o  those details that  enable us t o  do a high-quality 
job of downward continuing wavefields. There will be few new seismic imag- 
ing concepts here. There will, however, be interesting examples of pitfalls. 
And in order t o  improve the quality of seismic images of the earth, several 
new and interesting mathematical concepts will be introduced. Toward the 
end of the chapter a program is prepared t o  simulate and compare various 
migration methods. 

The Magic of Color 

The first thing we will consider in this chapter is signal strength. Echoes 
get weaker with time. This affects the images, and requires compensation. 

Next, seismic data is colored by filtering. This filtering can be done in 
space as well as time. Time-series analysis involves the concept of enhancing 
the signal-to-noise ratio by filtering t o  suppress some spectral regions and 
enhance others. Spectral weighting can also be used on wavefields in the 
space of o and k . In the absence of noise, wave-equation theory tells us 
what filters t o  use. Loosely, the wave equation is a filter with a flat amplitude 
response in (o, k )-space and a phase response that  corresponds t o  the time 
delays of propagation. The different regions of (o, k)-space have different 
amounts of noise. But the different regions need not all be displayed a t  the 
strength proposed by the wave equation, any more than  data  must be 
displayed with Ax = A z .  

An example of the mixture of filter theory and migration theory is pro- 
vided by the behavior of the spatial Nyquist frequency. Because seismic data 
is often spatially aliased, this example is not without practical significance. 
Think of an  impulse function with its Nyquist frequency removed. The remo- 
val has little relative effect on the impulse, but a massive relative effect on the 
zeroes surrounding the impulse. When migrating an impulse by frequency 
domain methods, spatial frequencies just below the spatial Nyquist are treated 
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much differently from frequencies just above it. One is treated as left dip, the 
other as right dip. This discontinuity in the spatial frequency domain causes 
a spurious, spread-out response in the space domain shown in figure 1. 

The spurious Nyquist noise is readily suppressed, not by excluding the 
Nyquist frequency from the display, but by a narrow band filter such as used 
in the display, namely (1 + cos kz Ax )/(I + .85 cos k, Ax ) which goes 

smoothly to  zero at the spatial Nyquist frequency. This filter has a simple tri- 
diagonal representation in the x -domain. 

FIG. 4.G1. Hyperbola amplified to exhibit surrounding Nyquist noise (top) 
removed by filtering (bottom). 

Survey of Migration Technique Enhancements 

In our quest for quality, we will also recall various approximations as  we 
go. Now is the time to see how the use of approximations degrades results, 
and to  discover how to improve those results. Five specific problems will be 
considered: 

1 The frequency dispersion that results from the approximation of 
differential operators by difference operators 
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2 The anisotropy distortion of phase and group velocity that results from 
square-root approximations 

3 The effect of truncation at the end of the survey line 

4 Dips greater than ninety degrees 

5 Wraparound problems of Fourier transformation 

6 The effect of v ( z  ) upon the Stolt method and how to improve the result 
by stretching 

Following study of these approximations, Section 4.6 is a penetrating 
study of causality, which covers much ground including how Fourier domain 
migration can simulate the causality intrinsic to  time domain migrations. 
Section 4.7 is the grand summary of techniques. A single program is 
presented that can simulate diffraction hyperbolas from many different migra- 
tion methods. This facilitates comparison of techniques and optimization of 
parameters. Figure 1 and many of the other figures in this chapter were pr* 
duced with this program, so you should be able to  reproduce them. 

A Production Pitfall: Weak Instability from v(x) 

Some quality problems cannot be understood in the Fourier domain. 
Unless carefully handled, lateral velocity variation can create instability. 

The existence of lateral velocity jumps causes reflections from steep 
faults. A more serious problem is that the extrapolation equations themselves 
have not yet been carefully stated. The most accurate derivation of extrapo- 
lation equations included in this book so far was done from dispersion rela- 
tions, which themselves imply velocity constant in x .  The question of how a 
dispersion relation containing a v kZ2 term should be represented was never 

answered. It might be represented by v ( x  , z )azz , d, v (x , z )dz , d,, v ( x  , z ) 
or any combination of these. Each of these expressions, however, implies a 
different numerical value for the internal reflection coefficient. Worse still, by 
the time all the axes are discretized, it turns out that one of the most sensible 
representations leads to  reflection coefficients greater than unity and to 
numerical instability. 

A weak instability is worse than a strong one. A strong instability will 
be noticed immediately, but a weak instability might escape notice and later 
lead to  incorrect geophysical conclusions. Fortunately, a stability analysis 
leads t o  a bulletproof method in Section 4.8. 
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4.1 Physical and Cosmetic Aspects 
of Wave Extrapolation 

Frequency filtering, dip filtering, and gain control are three processes 
whose purposes seem to  be largely cosmetic: they are used t o  improve the 
appearance of data. The criteria used t o  choose the quantitative parameters 
of these and similar processes are often vague and relate t o  human experience 
or visual perception. In principle, it should be possible t o  choose the parame- 
ters by invoking information theory and using objective criteria such as signal 
and noise dip spectra. But  in routine practice this is not yet being done. 

The importance of cosmetic processes is not t o  be underestimated. On 
many occasions, for example, a comparison of processing techniques (in order 
t o  choose a contractor perhaps?) has been frustrated by an  accidental change 
in cosmetic parameters. These cosmetic processes arise naturally within 
wave-propagation theory. I t  seems best t o  first understand how they arise, 
and then t o  build them into the processing, rather than t ry  t o  append them in 
some artificial way after the processing. The individual parts of the wave-ex- 
trapolation equations will now be examined t o  show their cosmetic effects. 

t Squared 

Echos get weaker with time. T o  be able t o  see the data  at late times, we 
generally increase data  amplification with time. I have rarely been disap- 
pointed by my choice of the function t 2  for the scaling factor. The t 
scaling function cannot always be expected t o  work, because it is based on a 
very simple model. But I find t 2  t o  be more satisfactory than a popular 
alternative, the growing exponential. The function t has no parameters 
whereas the exponential function requires two parameters, one for the time 
constant, and one for the time a t  which you must stop the exponential 
because it gets too large. 

The first of the two powers of t arises because we are transforming 
three dimensions t o  one. The seismic waves are spreading out in three dimen- 
sions, and the surface area on the expanding spherical wave increases in pro- 
portion t o  the radius squared. Thus the area on which the energy is distri- 
buted is increasing in proportion t o  time squared. But seismic amplitudes are 
proportional t o  the square root of the energy. So the basic geometry of 
energy spreading predicts only a single power of time for the spherical 
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divergence correction. 

An additional power of t arises from a simple absorption calculation. 
Absorption requires a model. The model I'll propose is too simple t o  explain 
everything about seismic absorption, but it nicely predicts the extra power of 
t tha t  experience shows we need. For the model we assume: 

1 One dimensional propagation 
2 Constant velocity 
3 Constant absorption Q-' 
4 Reflection coefficients random in depth 
5 No multiple reflections 
6 White source 

These assumptions immediately tell us that  a monochromatic wave 
would decrease exponentially with depth, say, as exp(-a w t ) where t is 
travel-time depth and a is a decay constant which is inversely proportional 
t o  the wave quality factor Q .  Many people go astray when they model real 
seismic data  by such a monochromatic wave. A better model is that  the 
seismic source is broad band, for example an impulse function. Because of 
absorption, high frequencies decay rapidly, eventually leaving only low fre- 
quencies, hence a lower signal strength. At  propagation time t the original 
white (constant) spectrum is replaced by the forementioned function 
exp(-a w t )  which is a damped exponential function of frequency. The 
seismic energy available for the creation of an impulsive time function is just 
proportional to  the area under the damped exponential function of frequency. 
As for the phase, all frequencies will be in phase because the source is 
assumed impulsive and the velocity is assumed constant. (See Section 4.6 for 
a causality problem lurking here). Integrating the exponential from zero to  
infinite frequency provides us with an inverse power of t thus completing 
the justification of a t divergence correction. 

It is curious that  the shape of the expected seismogram envelope t-2 
does not depend on the dissipation constant a. But changing the spectrum 
of the seismic source does change the shape of the envelope. I t  is left for an 
exercise t o  show that  a seismic source with spectrum / w I b' implies a diver- 
gence correction t 2+p. 

The seismic velocity increases with depth, so sometimes people who know 
the velocity may improve the divergence correction by making it a function of 
velocity (and hence offset) as well as time. 

In reality it may be fortuitous that  t 2  fits data so well. Actually, Q 
generally increases with depth whereas reflection coefficients generally 
decrease with depth. 
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Noise, Surface Waves and Clip 

If seismic data contained nothing but reflections, then there would be lit- 
tle trouble plotting it. You would simply multiply by t and then scale so 
tha t  the largest data values stayed in the available plotting area. In reality 
there are two problems: 1) noisy traces and 2) noise propagation modes. We 
have noisy traces because the people in the world won't all be quiet while we 
listen for echoes. Noise propagation modes are waves trapped in surface 
layers. So their divergence is in a two-dimensional space rather than the 
three-dimensional space for reflections. Water noises are additionally strong 
because of the homogeneity and low absorption of water. 

Noises are handled by "clipping" data  values a t  some level lower than 
the maximum. Clipping means that  values larger than the clip value are 
replaced by the clip value. Since the size of the noise is generally unpredict- 
able, the most reliable method is t o  use quantiles. Imagine the data points 
sorted in numerical order by the size of their absolute values. The n th  quan- 
tile is defined as the absolute value that  is n 1100 of the way between the 
smallest and largest absolute value. So if data is clipped a t  the 9gth percen- 
tile, then up t o  one percent of the data can be infinitely strong noise. I find 
tha t  most field profiles have less than 10% noisy points. So I often clip a t  
twice the goth percentile. To  find the quantile, it is not necessary t o  fully sort 
the  data. Tha t  would be slow. Hoare's algorithm is much faster (see FGDP 
or Claerbout and Muir [I9731 for full reference and more geophysical context). 

Different plots have different purposes. I t  is often important t o  preserve 
linearity during processing, but a t  the last stage - plotting - linearity can 
be sacrificed t o  enable us t o  see all events, large and small. After all, human 
perceptions are generally logarithmic. In our lab we generally use power laws. 
I find tha t  replacing data  points by their signed square roots generally 
compresses all signals into a visible range. When plotting field profiles with a 
very close trace spacing, i t  may be better t o  use the signed cube roots. More 
generally, we do non-linear gain with 

Display = sgn(Data) I Data ( 7  (1) 

Gamma is a term in photography t o  describe nonlinearity of photographic 
film. Most of the data  plots in this book use y = 1, t gain, and clip a t  the 
9gth percentile. 

The industry standard approach seems t o  be AGC (Automatic Gain Con- 
trol). AGC means t o  average the data magnitude in some interval and then 
divide by the magnitude. Although AGC is nonlinear, it is more linear than 
using y so it is presumably better if you plan later processing. But with 
AGC, you lose reversibility and the sense of absolute gain. 
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FIG. 4.1-1. Arctic profile from Western Geophysical. Left, with t 2. Center 
with t and 7=0.4. Right, with Western's AGC. 

Figure 1 is an interesting example. Since it is a split spread, you assume 
i t  t o  be land data. Ships can't push cables in front of them. But the left 
panel clearly shows marine multiples. The reverberation period is uniform, 
and there are no reflections before the water bottom. I t  must be data col- 
lected on ice over deep water (375m). From the non-linear gain in the center 
panel we clearly see a water wave, and before it a fast wave in the ice. There 
is also weak low-velocity, low-frequency "ground roll" on the ice. There are 
also some good reflections. 

Complex Velocity in the 5" Equation 

The 5" equation, namely, 
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states tha t  a wavefront will take some time t o  get from one depth t o  another. 
With velocity v being a real constant, waves controlled by (2)  propagate 
without change in form. In practice waveform changes are observed. So v 
should not be a real constant. An imaginary part of the velocity would cause 
attenuation. A frequency-dependent velocity would cause frequency disper- 
sion. 

Absorption 

A basic model arises when v (w)  is defined by the equation 

For E = 0, equation (3)  gives a constant velocity. Equation (3)  models the 
so-called causal, constant Q attenuation where Q-' = t an  .rrc (see Section 
4.6). Figure 2 shows an example of a synthetic seismogram generated by the 
exploding-reflector model using equations (2)  and (3) .  

Equation (3)  creates attenuation by introducing an imaginary part into 
the velocity. The main effect of this attenuation is t o  weaken the arrivals a t  
late time. A secondary effect is t o  make the frequency content of late arrivals 
lower. A tertiary effect is this: I t  happens that  the requirement of causality 
forces the real part of the velocity t o  be slightly frequency-dependent. In the 
figure, this slight frequency-dependence is evidenced by the "rise time" on 
each pulse being faster than the "fall time." This means that  the high fre- 
quencies are traveling slightly faster than the low frequencies. In practice, 
this tertiary effect is rarely noticeable. 

In making earth images, earth dissipation might be compensated by 
amplifying high-frequency energy during downward continuation. This might 

be done just like migration, except that  k, = - 4- would be 

replaced by something like k = ( - i ~ ) ~ .  In practice, however, no one 

would really do this, since it would amplify high frequency noise. This raises 
the issue of signal-to-noise ratio. 

Noise isn't simply an ambient random fluctuation. It is mainly repeat- 
able if the data  is reshot. Noise is anything for which we have no satisfactory 
model. On  a practical level, time-variable filters are often used t o  select 
pleasing time-variable passbands. Equations (2)  and ( 3 )  could be used for this 
implementation of time-variable filters, but it would be an oversimplification 
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FIG. 4.1-2. Synthetic seismogram for an earth with Q 100. (Hale) 

t o  view their use as compensation for the earth Q . 

Dispersion 

The frequency-dependence of velocity in the case of surface waves is 
more dramatic. For example, a frequency-dependent velocity is given by the 
equation 

Figure 3a contains some frequency-dispersive ground roll. In figure 3b 
the dispersion has been backed out by a migration-like process. One 
difference between this process and migration is that  migration extrapolates 
down the z-axis whereas in figure 3b the extrapolation is along the x-axis. 
(The extrapolation direction is really just in the computer). Each trace in 
figure 3b is processed separately. In migration, data  p ( t  , z =o) is extrapo- 
lated t o  an image p ( t  =0, z )  using a dispersion relation k, = 

- ,/-. In this process, data p ( t  , z =0) is extrapolated t o  an 

image p ( t  =0, x ) using a dispersion relation like kZ = f ( w / v  ). After this 
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pseudomigration a pseudodiffraction is done with a constant velocity. The 
total effect is t o  undo the frequency dispersion. Finally, i t  is possible t o  see 
tha t  the noise consists of two separate events. Techniques resembling this one 
were first used t o  locate faults in coal seams (Beresford-Smith and Mason 
[1980]). 

FIG. 4.1-3. Dispersive surface wave (left), with the frequency dispersion 
backed out (right). Bottom shows two arrivals, the direct, straight-line 
arrival, and a hyperbola flank. The hyperbola represents sidescatter that  
must come from some object on the earth's surface off t o  the side of the sur- 
vey line. (Conoco, Sword) 
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False Semicircles in Migrated Data 

Dip filtering can be used t o  suppress multiples. Section 5.5 will show 
that  multiples are unlike primaries in one important respect: their strength 
may change rapidly in the horizontal direction. They need not be spread out 
into broad diffraction hyperbolas as primaries must. This difference arises 
because multiples often spend much time focusing themselves in the irregular, 
near-surface areas. Common evidence for this behavior is contained in the 
appearance of wide-angle migrated sections. Such sections often show semicir- 
cular arcs coming all the way up t o  the surface. These arcs warn that  some- 
thing is wrong. The arcs could result from multiples, statics, or unexplained 
impulsive noise. In any case, they could be partially suppressed without 
touching primaries. 

Zapping Multiples in Dip Space 

Think of the migration of a common-depth-point stack as downward con- 
tinuation in (w, I c , ,  2)-space. Ordinarily, velocity increases with depth. As 

the downward continuation proceeds, the velocity cutoff along the evanescent 
line bites out more and more area from the (w, kx)space (Section 1.4). 

Energy beyond this cutoff does not fit the primary wave-propagation model, 
and it should be suppressed as soon as it is encountered. Such noise suppres- 
sion can lead t o  a large drop in total power a t  late times. 

Mixed Appearance of DipFiltered Data 

An objection often raised against dip filtering is that  it can give data  a 

mixed appearance. Mixed means that  adjacent channels appear t o  have been 
averaged and that  they are no longer independent. This is indeed an effect of 
dip filtering, and it is inevitable a t  late times since the horizontal resolving 
power of reflection data decreases with time. There are two reasons for 
decreasing lateral resolution. First, dissipation causes high frequencies to  
disappear. Second, ray bending causes the angular aperture t o  decrease for 
deeper sources. (Section 1.2 and Section 1.5). It is unrealistic t o  ignore this 
fundamental limitation and imagine that  adjacent channels should have an 
appearance of independence. If a mixed appearance is t o  be avoided for 
display purposes, then I advocate removing the low-velocity, coherent, signal- 
generated noise and replacing it by low-velocity, incoherent, Gaussian, ran- 
dom noise. Many plotters lose dynamic range a t  close trace spacing, and ran- 
dom noise can tend t o  restore it. 
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Accentuating Faults 

It often happens that  the location of oil is controlled by faulting. But 
the dominating effect of stratified reflectors may overwhelm the weak 
diffraction evidence of faulting. A cosmetic process could weaken the zero 
and small dips, accentuating dips in the range of 10" t o  6 0 ° ,  and then 
suppress the wide angles and evanescent energy. As with frequency filtering, 
sharp cutoffs are not desirable because of the implied long (and in space, wide) 
impulse response. 

Dip Filtering 

Dip filtering is conveniently incorporated into the wave extrapolation 
equations. Instead of initializing the Muir expansion with ik, = -i w r  we 

use ik, = E - f'W r o .  (Recall Section 2.1 that r o  is the cosine of an exactly 
fitting angle). For the 15" equation we have 

For the 45" equation we have 

Figures 4 and 5 show hyperbolas of diffraction for the 15" and 45" equa- 
tions with and without the dip filtering parameter E. 

Gain Control Does Dip Filtering Too 

Echoes arriving late are weaker than echoes arriving early. Thus data is 
ordinarily scaled for plotting using some time-variable scale. Should migra- 
tion be done before or after this scaling? The results will differ in an interest- 
ing way. The top part of the hyperbola has flat dip, whereas the asymptotes, 
which come later, have steep dip. So, amplification of late information coin- 
cidentally amplifies the steep dips. I think the main effect of choosing to  do 
migration before or after scaling is selection of the dip spectrum in tbe final 
display. A pedantically correct approach is t o  migrate first and scale second, 
but the result will be weaker in dip and fault information than the answer 
obtained by scaling first and migrating second. A side benefit of the latter 
method is that you can save computer memory by storing scaled values as 
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FIG. 4.1-4. Diffraction hyperbolas of the 15" equation without dip filtering 
(left), and with dip filtering (right). 

short integers. I used 16 bit integer storage in my pioneering work. Compu- 
tations and local storage used 32 bit floating point arithmetic. I see little 
justification for 32 bit storage generally used today. We can't interpolate 
between channels t o  4 bits of accuracy. 

Rejection by Incoherence or Rejection by Filtering? 

It is a pitfall t o  judge a supposed noncosmetic process by a cosmetic 
effect. I once got caught. The process was migration before stack. The 
feature that  was deemed desirable was the relative strength of the steepest 
clear event on the record, a fault-plane reflection. But even gain control can 
affect dip spectra! I hoped the process was working by correctly eliminating 
some of the rejection of steep dips by CDP stack. Perhaps it was, but how 
could I know whether this was happening or whether dips were being acciden- 
tally enhanced by spatial filtering? 
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FIG. 4.1-5. Diffraction hyperbolas of the 45" equation without dip filtering 
(left), and with dip filtering (right). 

Spatial Scaling before Migration 

Scaling on the time axis before migration can be advantageous. What 
about scaling on the space axis? The traditional methods of scaling that  are 
called automatic gain control (AGC) deduce a scaling divisor by smoothing 
the data envelope (or its square or its absolute value) over some window. 
Such scaling can vary rapidly from trace to  trace, so concern is justified that  
diffractions might be caused by lateral jumps in the scaling function. On the 
other hand, there might be good reasons for the scale t o  jump rapidly from 
trace t o  trace. The shots and geophones used t o  collect land data  normally 
have variable strength and coupling, and these problems affect the entire 
trace. 

A model must be found that  respects both physics and statistics. I sug- 
gest allowing for gain that  is slowly time-variable and shots and geophones of 
arbitrarily variable strength, but I also prefer to  regard an impulse as evi- 
dence that  the earth really can focus. For example, data processing with this 
model can be implemented by smoothing the scaling envelope with the filter 
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Filter cutoff parameters are ar and P. When the scaling envelope has been 
smoothed with this filter, i t  no longer varies rapidly with both x and t ,  
although i t  can vary with either one or the other. This filter (6) can be 
economically implemented using the t ridiagonal algorithm. 

Exponential Scaling 

Exponential scaling functions have some ideal mathematical properties. 
(If you are not familiar with Z-transforms, you should read Section 4.6 or 
FGDP before proceeding.) Take the Z-transform of a time function at : 

The exponentially gained time function is defined by 

The symbol f denotes exponential gain. Mathematically, f means that  Z 
is replaced by e "2. Polynomial multiplication amounts t o  convolution of 
the coefficients: 

By direct substitution, 

This means that exponential gain can be done either before or after convolu- 
tion. You may recall from Fourier transform theory that multiplication of a 
time function by a decaying exponential exp(-at ) is the equivalent of replac- 
ing - i w  by -iw+cu in the transform domain. 

Specialize the downward-continuation operator exp(ik, z ) t o  some fixed 

z and some fixed I c , .  The operator has become a function of I*, that may 

be expressed in the time domain as a filter a t .  Hyperbola flanks move 
upward on migration. So the filter is anticausal. This is denoted by 

The large negative powers of Z are associated with the hyperbola flanks. 
Exponentially boosting the coefficients of positive powers of Z is associated 
with diminishing negative powers - so TA is A with a weakened tail - 
and tends to  attenuate flanks rather than move them. Thus t A  may be 
described as viscous. 
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From a purely physical point of view cosmetic functions like gain control 

and dip filtering should be done after processing, say, f (AB ). But f(AB ) is 
equivalent to  (fA )(fB) ,  and the latter operation amounts t o  using a viscous 
operator on exponentially gained data. In practice, it is common t o  forget the 

viscosity and create A ( fB) .  Perhaps this means that  dipping events carry 
more information than flat ones. 

The Substitution Operator 

The f operator has been defined as the substitution Z -r Z e ". The 
main property of this operator is that if C = A B ,  then f C = ( fA ) ( tB) .  
This property would be shared by any algebraic substitution for Z ,  not just 
the one for exponential gain. Another simple substitution can be used to  
achieve time-axis stretching or compression. For example, replacing Z by 
Z 2  stretches the time axis by two. Yet another substitution, which has a 
deeper meaning than either of the previous two, is the substitution of the con- 
stant Q dissipation operator (-& w)7. In summary: 

EXERCISES 

1. Use a table of integrals t o  show that a seismic source with spectrum 
1 w  I p implies a divergence correction t 2+8. 

2. Assuming that t 2  is a suitable divergence correction for field profiles, 
what divergence correction should be applied to  CDP stacks? 

3. How is the t correction altered for water of travel time depth to? 

Assume the Q of water is infinite. 

4. Consider a source spectrum e -p  I I . How is the t correction altered? 

Substitutions for Z -Transform Variable Z 
[ all preserve C (Z  )=A ( Z  )B (2 ) ] 

Exponential growth 

Time expansion (a  > 1) 

(Inverse) Constant Q dissipation 

Z -, Zea 
( i w - t  i w +  a )  

Z + Z a  

-i w -, (-2 w)T 
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5 .  The spectrum in figure 2 shows high frequencies smoother than low fre- 
quencies. Explain. 

6. State some criteria that  can be used in the selection of the cutoff parame- 
ters a and ,43 for the filter (6). 

4.2 Anisotropy Dispersion 
and Wave-Migration Accuracy 

Two distinct types of errors are made in wave migration. Of greater 
practical importance is jrequency dispersion, which occurs when different fre- 
quencies propagate a t  different speeds. This may be reduced by improving 
the accuracy of finite-difference approximations to  differentials. Its cure is 
refinement of the differencing mesh. See Section 4.3. 

Of secondary importance, and the subject of this section, is anisotropy 
dispersion. Anisotropic wave propagation is waves going different directions 
with different speeds. In principle, anisotropic dispersion is remedied by the 
Muir square-root expansion. In practice, the expansion is generally truncated 
a t  either the 15" or 45" term, creating anisotropy error in data processing. 
The reasons often given for truncating the series and causing the error are ( I )  
the cost of processing and (2) the larger size of other errors in the overall data 
collection and processing activity. Anisotropy error should be studied in order 
t o  (1) recognize the problem when it occurs and (2) understand the basic 
trade-off between cost and accuracy. 

Anisotropy is often associated with the propagation of light in crystals. 
In reflection seismology, anisotropy is occasionally invoked t o  explain small 
discrepancies between borehole velocity measurements (vertical propagation) 
and velocity determined by normal moveout (horizontal propagation). These 
fundamental, physical anisotropies and the subject of this section, anisotropy 
in data processing, share a common mathematical and conceptual basis. 
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FIG. 4.2-1. Wavefronts in an isotropic medium (left) and an anisotropic 
medium (right). Note that on the right, the rays are not perpendicular t o  the 
wavefronts. (Rothman) 

Rays not Perpendicular to Fronts 

Anisotropy means that waves propagating in different directions pro- 
pagate a t  different speeds. Anisotropy does not mean that velocity is a func- 
tion of spatial location, and thus anisotropy does not cause rays to  bend. The 
peculiar thing about anisotropy is that rays are not perpendicular to wave- 
fronts. Figure 1 illustrates this idea. The diagram on the left shows spherical 
wavefronts emanating from a point source at the origin. This is the usual, 
isotropic case. The diagram on the right shows the nonspherical wavefronts 
of the 15" migration equation. Note that near the z-axis they are nearly 
spherical, but further away they do a poor job of matching a sphere with its 
center a t  the origin. 

FIG. 4.2-2. Wavefronts of 15" (left) and 45" (right) extrapolation equations, 
inscribed within the exact semicircle. Waves with sin 9 = vkz /w = f 1 are 
marked with small dots. Evanescent energy lies beyond the dots. (Rothman) 
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The ideal wavefront from a Huygens secondary source is a semicircle. 
The secondary source that results from the 15" extrapolation equation is an 
ellipse. The secondary source that  results from the 45" extrapolation equation 
is an interesting, heartlike shape. These are drawn in figure 2. In practice, 
the top parts of the ellipse and the heart are rarely observed because they are 
in the evanescent zone, and the x-axis is seldom refined enough for them to 
be below the aliasing frequency. The center of the heart is sometimes seen in 
the (x , t >plane when the 45" program is used. I t  is shown by a line drawing 
in figure 3 and shown using a 45" diffraction program in figure 4. 

Wavefront Direction and Energy Velocity 

FIG. 4.2-3. 45" heart theory. 
The cusp arises in the evanescent 
region. (Rothman) 

In ordinary wave propagation, energy propagates perpendicular t o  the 
wavefront. When there is anisotropy dispersion, the angle won't be perpen- 
dicular. 

X 

The apparent horizontal velocity seen along the earth's surface is dx / dt . 
The apparent velocity along a vertical, e.g., as seen in a borehole, is dz / d t  . 
B y  geometry, both of these apparent speeds exceed the wave speed. The vec- 
tor perpendicular to  the wavefront with a magnitude inverse t o  the velocity is 
called the slowness vector: 

slowness vector = 
dt dt 

The phase velocity vector is defined to  go in the direction of the slowness 
vector, but have the speed of the wavefront normal. More precisely, the 
phase velocity vector is the slowness vector divided by its squared magnitude: 

phase velocity = 

IS)'+ [ % I '  
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FIG. 4.2-4. Impulse response of 
the 45" wave-extrapolation equa- 
tion. The arrival before t o  is a 
wraparound. 

kilometers 
0.5 1 1.5 

For a disturbance of sinusoidal form, namely, exp( i$ )=  
exp(-i w t  + ik, x + ikz z ) ,  the phase 4 may be set equal t o  a constant: 

Thus, in Fourier space the slowness vector is 

slowness vector = 

The direction of energy propagation is somewhat more difficult to  derive, 
but i t  comes from the so-called group velocity vector: 

group velocity = 
d 

For the scalar wave equation w2/v = kz2 + kz2, the group velocity vector 

and the phase velocity vector turn out t o  be the same, as can be verified by 
differentiation and substitution. The most familiar type of dispersion is fre- 
quency dispersion, i.e. different frequencies travel a t  different speeds. Later in 
this section it will be shown that  the familiar (15", 45", etc.) extrapolation 
equations do not exhibit frequency dispersion. That  is, as functions of w and 
angle kx /w, the velocities in these equations do not depend on w. In other 

words, the elliptical and heart shapes in figure 2 are not frequency-dependent. 
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An interesting aspect of anisotropy dispersion is that  energy appears t o  
be going in one direction when i t  is really going in another. An exaggerated 
instance of this occurs when the group velocity has a downward component 
and the phase velocity has an upward component. Figure 5, depicting the 
dispersion relation of the 45" extrapolation equation, shows an example. A 
slowness vector, which is in the direction of the wavefront normal, has been 
selected by drawing an arrow from the origin to  the dispersion curve. The 
corresponding direction of group velocity may now be determined graphically 
by noting that  group velocity is defined by the gradient operator in equation 
(lb). Think of w as the  height of a hill from which k, points south and 

k, points east. Then the dispersion relation is a contour of constant alti- 

tude. Different numerical values of frequency result from drawing figure 5 to  
different scales. The group velocity, in the direction of the gradient, is per- 
pendicular t o  the contours of constant w. 

FIG. 4.2-5. Dispersion relation for downgoing extrapolation equation showing 
group velocity vector and slowness vector. (Rothman) 

The anisotropy-dispersion phenomenon can be most clearly recognized in 
a movie, although it can be understood on a single frame, as in figure 6. The 
line drawing interprets energy flow from the top, through the prism, reflecting 
at the 45" angle, reflecting from the side of the frame, and finally entering an 
area of the figure that  is sufficiently large and uncluttered for the phase fronts 
t o  be recognizable as energy apparently propagating upward but really propa- 
gating downward. 
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FIG. 4.2-6 
right, 45" 
illustrates 

energy in 

I. Plane waves of four different frequencies propagating through a 
prism. Left is the wavefield. Right is a ray interpretation that  

different directions of energy and wavefront normal. (Estevez) 

That  neither energy nor information ,can propagate upward in figure 6 
should be obvious when you consider the program that  calculates the 
wavefield. The program does not have the entire frame in memory; i t  pro- 
duces one horizontal strip a t  a time from the strip just above. Thus the 
movie's phase fronts, which appear t o  be moving upward, seem curious. 
Theoretically, wave extrapolation using the 45" equation is not expected to  
handle angles t o  90". Yet the example in figure 6 shows that  these extreme 
cases are indeed handled, although in a somewhat perverted way. 

I once saw a similar circumstance on reflection seismic data  from a geo- 
logically overthrusted area. The data could not be made available to  me a t  
the time, and by now is probably long lost in the owner's files, so I can only 
offer the line drawing in figure 7, which is from memory. The increasing ve- 
locity with depth causes the ray to  bend upward and reflect from the under- 
side of the overthrust. T o  see what is happening in the wave equation, it is 
helpful t o  draw the dispersion curve a t  two different velocities, as in figure 8. 

Downward continuation of a bit of energy with sGme particular stepout 
dt /dx = kz / W  begins a t  an ordinary angle on the near-surface, slow-velocity 
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FIG. 4.2-7. Ray reflected from the underside of an overthrust. 

- - kx 
0 

slow 
fast - line of constant Snell parameter 

FIG. 4.2-8. Dispersion curve at two different velocities, Vfa , r  and v ,g,. 
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dispersion curve. But as deeper velocity material is encountered, that same 
stepout implies a negative phase velocity. Although the thrust angle is 
unlikely to be quantitatively correct, the general picture is appropriate. It is 
like figure 6. If you want a quantitatively correct migration, see Section 4.5, 
or for something completely different, see the method of Kosloff et al. [I9831 
and Baysal et al. [1983]. 

Analyzing Errors of Migration 

A dipping reflector that is flat and regular can be analyzed in its entirety 
using the phase velocity concept. The group velocity concept is required only 
when more than one angle is simultaneously present. This simultaneity 
occurs with the point scatterer response. It also occurs when there is variable 
reflection amplitude along a dipping bed. The group velocity is needed 
because representation of either a curved event or an amplitude anomaly 
requires a range of plane-wave angles. Analogously, in time-series analysis the 
Fourier representation of an amplitude-modulated sinusoid requires a 
bandwidth of sinusoids. 

Figure 9 depicts a smooth, flat, dipping bed that has been undermigrated 
because the I ,  defined by some rational square-root approximation or some 

numerical approximation did not match the correct square-root value of kz . 

FIG. 4.2-9. Undermigrated dipping reflector. 
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The error in figure 9 is entirely a time-shift error. Since the reflection 
coefficient is constant along the reflector, no lateral shift error can be recog- 
nized. The time error may be theoretically determined by 

For the so-called 15" equation, it turns out that about a half-percent phase 
error is made at  25". 

Next, the error in the collapse of a hyperbola will be determined. Figure 
10 depicts the downward continuation of a hyperbola. For clarity, the down- 
ward continuation was not taken all the way to  the focus. Select a ray of 
some Snell's parameter p =dt / d s  by choosing some slope p .  Imagine a 
tangent line segment of slope p t o  each of the hyperboloids. If there were a 
little amplitude anomaly where the slope is p , you would be able to  identify 
it on each of the hyperboloids. 

FIG. 4.2-10. Error of hyperbola collapse. Note that the actual curve is above 
the desired curve, but the actual point is below the desired point. 

In figure 10 the amount of time moved is too little; likewise, the lateral 
distance moved is too small. In practice, errors of the 15" equation with 
r = 1 are sometimes compensated by an increase in either z or v of 

about 6%. The amounts of the errors may be calculated from 
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where k, is taken to  be a function of w and k , .  It turns out that  for the 

15" equation, about a half-percent group velocity error occurs a t  2 0 " .  Thus 
the group velocity error is generally worse than the phase velocity error. 

Derivation of Group Velocity Equation 

An impulse function at the origin in ( x  , z >space is a superposition of 
Fourier components: 

JJ + i k , ,  + i k,, 
dk, dk, 

Physics (and perhaps numerical analysis) leads t o  a dispersion relation that is 
a functional relation between w, k, , and k, , say, w(k, , k, ). The most com- 

mon example of such a dispersion relation is the scalar wave equation 
2 -  2 k 2  w - v ( . + kZ2) .  The solution to  the equation is 

Integrating ( 5 )  over ( k , ,  k, ) produces a monochromatic time function that 

a t  t =O is an impulse at  ( x  , z )=(O, 0) .  This expression a t  some very large 
time t is 

JI - i t [ ~ ( k , ,  k , )  - k ,  ~ / t  - k,  zit] 
dk, dlc, 

At t very large, the integrand is a very rapidly oscillating function of unit 
magnitude. Thus the integral will be nearly zero unless the quantity in square 
brackets is found to  be nearly independent of kz and k, for some sizable 

area in ( k , ,  k, )space. Such a flat spot can be found in the same way that 

the maximum or minimum of any two dimensional function is found, by set- 
ting derivatives equal t o  zero. This analytical approach is known as the sta- 
tionary phase method. I t  gives 

So, in conclusion, a t  time t the disturbances will be located at  
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which justifies the definition of group velocity. 

Now let us see how figure 2a was calculated. The 15" dispersion relation 
was solved for w and inserted into (8). The resulting (x ,  z ) turned out to 
be a function of k, /w. Trying all possible values of k, /w gave the curve. 

Derivation of Energy Migration Equation 

Energy migration in (x ,  t )-space is analyzed in a fashion similar to  the 
way the group velocity was derived. Take depth to be large in the integral 

IS i .Z [kz (w ,  k z ) - w  t / z  + k,  z / z ]  dw dk, 

The result is that the energy goes to 

This justifies our previous assertion that (3) can be used to analyze energy 
propagation errors. Equation (10) was also used to calculate the curve in 
figure 3. The validity of the stationary phase concept is confirmed by figure 
4, which was produced using inverse Fourier transformation. 

Extrapolation Equations are not Frequency-Dispersive. 

To prove that the familiar 15",  45", etc. wave extrapolators are not 
frequency-dispersive, recall from Section 2.2 that the dispersion relations all 
have the form k, /w = f (k, lw), where f is a semicircle approximation, 

say, 15" or 45". No dispersion relation of this form can be frequency- 
dispersive. Performing the derivatives required by (lo), you see that while the 
( x ,  t )-coordinates of a wavefront depend on the dip angle through the param- 
eter vk, /w, they do not depend explicitly on w. So any frequency dispersion 

observed in practice does not arise from a 15" or 45" approximation. 
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4.3 Frequency Dispersion 
and Wave-Migration Accuracy 

Frequency dispersion results from different frequencies propagating at  
different speeds. The physical phenomenon of frequency dispersion is rarely 
heard in daily life, although many readers may have heard it while ice skating 
on lakes and rivers. Elastic waves caused by cracking ice propagate disper- 
sively, causing pops t o  change into percussive notes. Frequency dispersion is 
generally observable on seismic waves that propagate along the earth's surface 
but frequency dispersion is hardly ever perceptible on internally reflected 
waves. In seismic data processing, frequency dispersion is a nuisance and an 
embarrassment to process designers. It arises mainly with the finite 
differencing method because differential operators and difference operators do 
not coincide at  high frequencies. Frequency dispersion can always be 
suppressed by sampling more densely, and it is the job of the production 
analyst to see that this is done. Figure 1 depicts some dispersed pulses. 

FIG. 4.3-1. (a A pulse. (b) A d pulse slightly ispersed as by the a 
physical dissipation of high fre- 
quencies. (c) A pulse with a sub- t 

stantial amount of frequency b 
dispersion, such as could result 
from careless data processing. t 

Frequency dispersion caused by data processing can be a useful warning 
that the data is in danger of being aliased. Frequency-domain methods do 
not depend on difference operators, so they have the advantage of not show- 
ing dispersion. The penalties that go along with this advantage are (1) limita- 
tion t o  constant material properties, (2) wraparound, and (3) the occurrence of 
spatial aliasing without the warning of dispersion. 

Figure 2 shows an example of frequency dispersion in migrated data. At 
the top of the figure is a CDP stack. In the middle is the data after 
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4.0 
4 sec 

FIG. 4.3-2. Conquering frequency dispersion. (Taner and Koehler, distri- 
buted by Seiscom Delta Inc.) 
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processing with no attempt to control frequency dispersion. The worst disper- 
sion is near shot point 200 a t  4 seconds. The bottom shows the data after 
reprocessing with greater attention to  dispersion. 

Spatial Aliasing 

Aliasing can occur on the axes of time, depth, geophone, shot, midpoint, 
offset, or crossline. Aliasing is the worst on the horizontal space axes. Section 
1.3, figure 3 provides an illustration. Looking at  that  figure, you get confused 
about whether the dip is to  the left or right. Mathematical analysis has the 
same difficulty. The dispersion relation of the wave equation enables us to 
compute the vertical spatial frequency Ic, from the temporal frequency w, 

the velocity v , and the horizontal spatial frequency k, using the semicircle 

relation k, (w, kz ) = J-. Sampling on the x-axis sets an upper 

limit on kz equal t o  the Nyquist frequency .rr/Ax. Both frequency-domain 

methods and finite-difference methods treat higher frequencies as though they 
were folded back at  the Nyquist frequency. Thus the semicircle dispersion 
relation is replicated above the Nyquist frequency, as shown in figure 3. 

FIG. 4.3-3. The effective dispersion relation of the wave equation when the 
horizontal axis is sampled. Frequencies are given for typical zero-offset migra- 
tion. 

The problem of spatial aliasing begins when two circles touch each other, 
as shown a t  20 Hz in figure 3. This occurs when a half-wavelength v /2 f 
equals the spatial sample rate A x .  The exploding-reflector model implies 
that  the velocity t o  use is half the rock velocity. Thus the aliasing problem is 
avoided if 2 f Ax < 1/2 v,,,~. For a rock velocity equal to  2 km/sec, the 
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safe frequencies are listed in the table below: 

Another view of the spatial aliasing problem is that  steeply dipping waves are 
suppressed by the geophone group. (This disregards shot-space aliasing). 
From this standpoint the limit past which spatial aliasing begins should be 
thought of in terms'of angles a t  which energy is missing from the data. Tak- 
ing the ray angle t o  be 30" instead of 90" doubles horizontal wavelengths. 
Thus, for 30" and a rock velocity of 2 km/sec, t o  ensure safety from aliasing, 
frequencies should be in the ranges listed below: 

standard 

reconnaissance 

S-D cross line 

Because data  usually has good signal above 40 Hz, wide-angle processing 
is often frustrated by spatial aliasing. 

Ax 

25 m 

50 m 

100 m 

The problem of spatial aliasing usually overshadows the difference 
between the 15" and the 90" equations. Aliased energy does not move 
between hyperbola flanks and the apex. Aliased energy tends t o  stay in place. 
This is illustrated on figure 4 which shows a 90" hyperbola and a 15" hyper- 
boloid from a finite difference equation. Overall, there is little difference. 
Look a t  the amplitude of the hyperbolic arrival. It is dropping off faster than 
predicted by spherical spreading and the obliquity function. This is because 
the dispersion curve semicircles overlap one another. There can be no angles 
of propagation beyond that  which aliases x .  Since waves can't go so steeply, 
they don't. The pulse doesn't spread properly. 

safe frequency 

< 20 Hz 

< 10 Hz 

< 5 H z  

safe frequency 

< 40 HZ 

< 20 Hz 

< 10 Hz 

standard 

reconnaissance 

S-D cross line 

Second Space Derivatives 

The defining equation for a second digerence operator is 

Ax 

25 m 

50 m 

I00 m 

s2 - P = 
P ( x  + A x ) -  2 P ( x )  + P ( x  - A x )  

sx (Ax l2 
The second derivative operator is defined by taking the limit 



CRAFT 4.9 Frequency Dispersion 

FIG. 4.3-4. One second of synthetic hyperbolas with At = 4 ms, 
A x  = 25 meters, and velocity 2 km/sec. Fourier domain 90" hyperbola (top) 
and 15" finite difference hyperboloid (bottom). 

- a2 P - - - 
dx 

62 P 
lim A x  -+O 6x 

Many different definitions can all go to  the same limit as A x  goes to  zero. 
The problem is to  find an expression that is accurate when A x  is larger 
than zero and, on a practical level, is not too complicated. Our first objective 
is to  see how the accuracy of equation (1) can be evaluated quantitatively. 
Second, we will look at  an expression that is slightly more complicated than 
(1) but much more accurate. 

The basic method of analysis we will use is Fourier transformation. Take 
the derivatives of the complex exponential P = P o  exp (ikx) and look at  
any errors as functions of the spatial frequency k . For the second derivative, 

Define by an expression analogous to  the difference operator: 
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Ideally would equal k .  Inserting the complex exponential P = 

P o  exp ( i kx  ) into (I), we see that  the definition (4) gives an expression for d 
in terms of k : 

It  is a straightforward matter t o  make plots of i A x  versus k A x  from 

(5b). The half-angle trig formula allows us t o  take an analytic square root of 
(5b), which is 

i AX - -  - k A x  
sin - 

2 2 

Series expansion shows that for low frequencies i is a good approximation 
to  k .  At the Nyquist frequency, defined by k A x  = n, the approximation 
d A x  = 2 is a poor approximation to  n. 

The 1/6 Trick 

Increased absolute accuracy may always be purchased by reducing A x .  
Increased accuracy relative to  the Nyquist frequency may be purchased a t  a 
cost of computer time and analytical clumsiness by adding higher-order terms, 

say , 
d2 b2 a x 2  @ - a ---- + etc. 
d x  6 x 2  12 6 x 4  

As A x  tends to  zero (6) tends to  the basic definitions (1) and (2). 
Coefficients like the 1/12 in (6) may be determined by the Taylor-series 
method if great accuracy is desired at  small k .  Or somewhat different 
coefficients may be determined by curve-fitting techniques if accuracy is 
desired over some range of k .  In practice (6) is hardly ever used, because 
there is a less obvious expression that  offers much more accuracy at  less cost! 
The idea is indicated by 

where b is an adjustable constant. The accuracy of (7a) may be numerically 
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evaluated by substituting from (5b) t o  get 

2 k A x  sin - 
2 
2 k Ax 

1 - b 4 sin --7 

The square root of (7b) is plotted in figure 5 for a value of b = 116. 

FIG. 4.3-5. Accuracy of the second-derivative representation (7) (for b =1/6) 
as a function of spatial wavenumber. The sign of the square root of (7b) was 
chosen to  agree with k in the range -x t o  n and t o  be periodic outside 
the range. (Hale) 

Taking b in (7) t o  be 1/12, then (7) and (6) would agree t o  second 
order in A x .  The 1/12 comes from series expansion, but the  116 fits over a 
wider range and is a value in common use. Francis Muir has pointed out  that  

the value 114 - I/$ 116.726 gives an  exact fit at the Nyquist frequency 
and an accurate fit over all lower frequencies! Few explorationists consider 
the remaining accuracy deficiency of (7) t o  be sufficient t o  warrant interpola- 
tion of field-recorded values. Figure 6 compares hyperbolas for various values 
of b . Observe in figure 6 tha t  the longest wavelengths travel a t  the same 
speed regardless of b .  The time axis in figure 6 is only 256 points long, 
whereas in practice it would be a thousand or more. So figure 6 exaggerates 
the frequency dispersion attributable in practice t o  finite differencing the x -  
axis. 

Let us be sure i t  is clear how (7) is put into use. Take b = 116. The 
simplest prototype equation is the heat-flow equation: 



CRAFT 4.9 Frequency Dispersion 

FIG. 4.3-6. Hyperbolas for b = 0, 1/12, 116.726, 116, 115. 
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Multiply through the denominator: 

Time and Depth Derivatives - the Bilinear Transform 

You might be inclined to  think a second derivative is a second derivative 
and that there is no mathematical reason to do time derivatives differently 
than space derivatives. This is not the case. A hint of disparity between t 
and x derivatives comes from boundary conditions. With time derivatives 
(and often with the depth z derivative) we must consider causality - which 
means the future is determined solely from the present and past. Appropriate 
boundary conditions on the time axis are initial conditions - the function 
(and perhaps some derivatives) is specified at one point, the initial point in 
time. For depth z that special point is the earth's surface a t  z =O. But 
lateral space derivatives are different: they require boundary conditions at two 
widely separated points, usually at the left and right sides of the volume. 

The differential equation 

is associated with the very definition of k , .  The analogous difference equa- 
tion will define l, : 

Inserting the solution of (10) q = q exp(ik, z  ) into (11) gives us the rela- 
tion between the desired k, and the actual i,. 

ikz Az i k , A z / 2  - i k ,Az /2  
2 e - 1 e - e - 2 i k , ~ z  = - 

ik, A ,  ik, A2 / 2  -ikz A, / 2  
e + 1 e + e 

(12) 

This equation is known as the bilinear transform (Section 4.6). 

sin k, A z  /2 
i l, A z  = 2 i 

cos k,  A z  /2 (13) 
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k, Az k, Az - - 
2 

tan - 
2 

Equation (14) gives the accuracy of first derivatives obtained using the 
Crank-Nicolson method. Recall the migration differencing schemes in Section 
2.7. We did the time differencing in the same way that we did the depth 
differencing. So the same accuracy limitation must apply, namely, 

LJ At  - =  ~3 A t  tan - 
2 2 

Series expansion shows that LJ goes to  IJ as At  goes to zero. Relative 
errors in w at  (4, 10, and 20) points per wavelength are (30%, 3%, and 1%). 
These errors are quite large, calling for either a choice of small A t  or a more 
accurate method than (14). 

The bad news is that  there does not seem to  exist a representation of 
causal differentiation that is any more accurate than the Crank-Nicolson 
representation. There is nothing like the 116 trick. Thus the sample inter- 
vals of Az and A t  must be reduced considerably from the Nyquist cri- 
terion. The practical picture may not be as bleak as the one I am painting. 
Many people are pleased with both the speed and accuracy of time-domain 
migrations at A t  = 4 milliseconds. 

Stolt's classic paper [I9781 besides introducing the fast Fourier transform 
migration method, points out that more accuracy can be achieved when the 
requirement of causality is dropped. Stolt shows how dropping causality at 
the known depth level while retaining it a t  the next level allows stable finite 
differencing. With the depth z-axis we are stuck with causal derivatives, 
although Fourier methods could be used for discrete layers. The depth axis is 
not so troublesome as the x -  and t -axes, however, because it affects corn- 
puter time only, not data storage. 

Finite difference solutions don't just approximate the frequency - what 
they really do is to approximate exp ilc, Az . Solve (11) for the unknown. 

So for N, layers in depth z = N Az we have the approximation 

ik, N Az 1 + i k , ~ z / 2  
e 

1 - i  k z ~ z / 2  l N  
which will be of later use for Fourier domain simulations of finite difference 



CRAFT 4.5 Frequency Dispersion 

programs. Such simulations, coming in Section 4.7, enable us to compare the 
accuracy of various migration methods. 

4.4 Absorbing Sides 

Computer memory cells are often used t o  model points in a volume that 
contains propagating waves. Though we often wish to  model an infinite 
volume, the number of computer cells is, regrettably, finite. Waves in the 
computer reflect back from the boundaries of the finite computer memory 
when we would prefer that the waves had gone away to infinity. To avoid 
the need for infinite computer capacity this section develops the theory of 
absorptive side boundary conditions. 

There are two kinds of side boundary difficulties. First is where we are 
a t  the end of our observations. Second is where we somehow decided to limit 
the extent of our calculations. These boundaries might be the same. But to 
avoid confusion, let us presume that the data is of more limited extent than 
the computer memory. So alongside the data, which comprises the initial 
conditions for the calculation, is a region which will be called the data pad- 
ding. 

Data Padding 

The crudest assumption is that additional zero-valued data may be 
presumed for the padded area. To avoid an edge diffraction artifact the data 
must merge smoothly with the padding. So zero padding is a good assump- 
tion only if the data is already small around the side boundary. When data is 
zero padded, it is debatable whether or not it should be tapered (gradually 
scaled t o  zero) to match up smoothly with the zero padding. I prefer to  avoid 
tapering the data. That amounts to falsifying it. Instead I prefer to  pad the 
data not with zeroes, but with something that looks more like the data. A 
simple way is to  replicate the last trace, scaling it downward with distance 
from the boundary. This works best when the stepout of the data matches 
the stepout of the extension. Any theory for optimum data padding has two 
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important ingredients: a noise model and a signal model. An ideal data ex- 
trapolation is rarely, if ever, available in practice. Section 3.5 contains 
suggestions for more elaborate models for extensions of gathers. 

Truncation at Cable Ends and at Survey Ends 

In exploration there are two kinds of horizontal truncation problems. 
The first, which is a t  the end of the geophone cable, affects mainly common- 
midpoint stacking. The second is at  the geographical boundaries of the sur- 
vey and affects mainly migration. In both migration and stacking, hyper- 
boloids are collapsed to  points. But the processes differ because of the data 
itself. With stacking, it is predictable that  energy will dip downward toward 
the far-offset cable truncation. With migration, reflectors can dip either 
downward or upward at  the ends of the section. The downward-dipping case 
is better behaved. There seismic events move smoothly from the boundary to  
the interior. 

The troublesome case occurs with migration when the seismic events dip 
upward at  the edges of the survey. Then downward continuation moves 
seismic energy toward the boundary. On arriving at  the boundary, it bounces 
back with opposite dip, and interferes with energy still moving toward the 
boundary. The problem may be reduced by appending space to  the sides of 
the dataset, thus providing the dipping energy with a place t o  go. (You have 
previously decided what initial data padding to put in this space). 

Engquist Boundaries for the Scalar Wave Equation 

The simplest "textbook" boundary condition is that  a function should 
vanish on the boundary. A wave incident onto such a boundary reflects with 
a change in polarity (so that the incident wave plus the reflected wave will 
vanish on the boundary). The next-to-simplest boundary condition is the 
zero-slope condition. It is also a perfect reflector, but the reflection coefficient 
is +1 instead of -1. Two points at  the edge of the differencing mesh are 
required to  represent the zero-slope boundary. The most general boundary 
condition usually considered is a linear combination of function value and 
slope. This is also a two-point boundary condition. I t  so happens that  our 
extrapolation equations (Section 2.2) contain only a single depth derivative, so 
that  on the z-axis they are a two-point condition. Observing this, Bj6rn 
Engquist recognized a new application for our extrapolation equations. Many 
researchers in other disciplines are interested in forward modeling, that  is, 
evolving forward in time with an equation like the scalar wave equation, say, 

Pxx + P,, = Pu / v  2. These people suffer severely the consequences of 
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limited memory. Engquist's idea was that  they should use our extrapolation 
equations for their boundary conditions. (This idea led t o  his winning the 
SLAM prize). Suppose they desire an infinite absorbing volume surrounding a 
box in the ( x ,  z )-plane. Then they need a boundary condition that  goes all 
the way around the box. They could use the downgoing wave equation on the 
bottom of the box and the upcoming wave equation on the top edge. The 
sides could be handled analogously with an interchange of x and z .  This 
idea was thoroughly tested and confirmed by Robert Clayton. For an exam- 
ple of one of his comparisons, see figure 1. 

FIG. 4.4-1. Expanding circular wavefront in a box with absorbing sides (top) 
and zero-slope sides (bottom). (Clayton) 

Engquist Side Conditions for the Extrapolation Equations 

In data processing an extrapolation equation is used in the interior of the 
region under study. This is unlike forward modeling, in which the full scalar 
wave equation is used in the interior and an extrapolation equation can be 
used on the boundary. The scalar wave equation has a circular dispersion 
relation, whereas the extrapolation equation has, ideally, a semicircular one. 
Reasoning by analogy, Engquist speculated that  a quarter-circular dispersion 
relation might be an ideal side boundary for wave-extrapolation problems. To  
make his idea more specific and immediately applicable, he proposed that  the 
quarter-circle be approximated by a straight line. This is shown in figure 2. 

The advantage of the straight-line dispersion relation is that  in the space 
domain i t  is represented by a simple, first-order, differential equation. A 
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first-order equation has first derivatives that can be expressed over just two 
data points, and thus it can be used as a conventional, two-point, side-bound- 
ary condition. The right-side equation in figure 2 defines the boundary disper- 
sion relation D : 

In ( t  , x , z )-space this equation is 

a a a 
0 = ( v  - + - + const - )  P 

az at ax 

In retarded time, d/az may be eliminated by substitution from the interior 
equation. 

o 

FIG. 4.4-2. Dispersion relation of simple absorbing side conditions. 

For a mathematical, nonphysical point of view, imagine some peculiar 
physics which prescribe that the physical equation that applies in some region 
is just the equation which has the dispersion relation of the absorbing side 
condition. Beside this fictitious region imagine another in which the usual ex- 
trapolation equation applies. At the point of contact between the regions the 
solutions would match. It may come as no great surprise that  .the smallest 
boundary reflections would occur where the two dispersion relations were a 
good match to  each other. So the slope of the straight line would be selected 
to  form a good fit over the range of angles of interest. An example of side- 
boundary absorption during migration is shown in figure 3. 
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FIG. 4.4-3. Downward continuation with zero slope side boundaries (top), 
and absorbing side boundaries (bottom). (Toldi) 

Size of the Reflection Coefficient 

Let us look at some of the details of the reflection coefficient calculation. 
A unit amplitude, monochromatic plane wave incident on the side boundary 
generates a reflected wave of magnitude c . The mathematical representation 
is: 

In equation (3) w and k, are arbitrary, and k, is determined from w 

and k, using the dispersion relation of the interior region, i.e., a semicircle 

approximation. Assuming this interior solution is applicable a t  the side bound- 
ary, you insert equation (3) into the differential equation (2), which represents 
the side boundary. As a result, 8/8x is converted t o  + i k, on the 

incident wave, and 818s is converted t o  - i kz on the reflected wave. 

Also, 8/82 is converted t o  k Thus the first term in (3) produces the 

dispersion relation D (w, k,, k,) times the amplitude P .  The second term 

produces the reflection coefficient c times D (w, - k, , k, ) times P . So (2) 
with (3) inserted becomes: 
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The case of zero reflection arises when the numerical value of Ic, selected by 

the interior equation a t  ( a ,  kz) happens also t o  satisfy exactly the dispersion 

relation D of the side boundary condition. This explains why we t ry  t o  
match the quarter-circle as closely as possible. The straight-line dispersion 
relation does not correspond t o  the most general form of a side boundary con- 
dition, which is expressible on just two end points. A more general expression 
with adjustable parameters b b 2, and b 3, which fits even better, is 

vkz vk, 
D ( ~ 7  k2 7 k, ) = I 1 - b 3 - I w -  w [ b I - b ,  w 

The absolute stability of straight-line absorbing side boundaries for the 
15" equation can be established, including the discretization of the x-axis. 
Unfortunately, an  airtight analysis of stability seems t o  be outside the frame- 
work of the Muir impedance rules. As a consequence, I don't believe that  sta- 
bility has been established for the 45" equation. 

4.5 Tuning up Fourier Migrations 

First we will see how t o  migrate dips greater than 90". Then we will 
attack the main two disadvantages of Fourier migrations, namely, their 
periodicity and their poor tolerance of space-variable velocity. 

Dips Greater than 90" 

Migration of dips greater than 90" requires careful handling of evanes- 
cent energy. As this is being written, most migration-by-depth-extrapolation 
programs ignore or set to  zero the energy that  turns evanescent.' The proper 
thing t o  do with energy becoming evanescent a t  depth z is to  save it for a 
second pass upward. The upward pass begins from the bottom of the section 
with a zero downgoing wave. As the downgoing wave is extrapolated upward, 
the saved evanescent energy is reintroduced. As usual, the images are 
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withdrawn from the wave a t  time t = 0. 

To illustrate the concept, a program will be sketched that  makes two 
images, first the usual image of the top side of the reflector, and second the 
image of the under side. The images may be viewed separately or summed. 

The program makes the simplifying restriction on the velocity that 
dv / dz  2 0. Because of this assumption, evanescent energy can be stored "in 
place" and ignored until the return pass. It is worth noting that the second 
pass is cheaper than the first pass because the region in which evanescence 
never occurred, I k ( < I w 1 / v  (T~,),  need not be processed. 

# first pass of conventional phase-shift migration. 
P ( w , k , )  = F T [ u ( t , z ) l  
For T = AT,  AT, . . - 2 T ~ M  { 

For all k, { 
Uimage ( k , ,  T )  = 0 .  
For all w > I k I v (7) { 

c = exp( - i w AT J 1 -  v (TI' k?/w' 
P ( w ,  k , )  = P ( w ,  k , )  * C 
Uimage ( k , ,  T )  = Uimage ( k , ,  T )  + P ( w ,  k , )  
1 

} 
uimage ( z ,  T )  = F T  [Uimage ( k , ,  T ) ]  

1 

# Second pass for underside image. 
For T = T,,, T,,-AT, T,,-~AT, ' . . , 0 { 

For all k, { 
Dimage ( k , ,  T )  = 0 .  
For w =  I k 1 V ( T )  to W =  I k I v(T,=)  { 

# The wave changes direction but so does AT 
C = exp( - i w A T  J1 - v (7)' kZ2/wZ' ) 
P (w ,  k, ) = P (w ,  k, ) * C 
Dimage (k ,  , T )  = Dimage (k,  , T )  + P ( w ,  k, ) 
1 

1 
dimage ( z  , T )  = F T  [Dimage (k,  , T ) ]  

1 

Stopping P hase-Shift Migration Wraparound (S. Levin) 

Figure 1 shows a family of hyperbolas. Notice that  these hyperbolas do 
not extend to  infinite time but they truncate a t  a cut-off time t ,  . A Fourier 
method will be described to  create such time-truncated data. The method 
leads t o  a phase-shift migration program without wraparound artifacts. 

When the fast Fourier transformation algorithm first came into use peo- 
ple noticed that it could be used for filtering. Transient filtering could be 
done exactly in the periodic Fourier domain if signals and filters were 
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FIG. 4.5-1. Hyperbolas truncated at  a particular time. 

surrounded by enough zero padding. The same concept applies with migra- 
tion. If field data and migration hyperbolas are surrounded by enough zeroes 
in the time- and space-domain then migration can be done in the Fourier 
domain with no wraparound. The trick is to  see how the truncated hyperbo- 
las in figure 1 can be constructed in the Fourier domain. 

To have truncations at  time t ,  , special point sources must be used. The 
deeper the source, the narrower must be its angular aperture. Take a hyper- 

bola with first arrival a t  time t o  to  be truncated a t  some time t ,  . The pro- 
pagation angle 9 of energy at  the cutoff is given by cos 6' = t  o / t ,  . So 
exploding reflectors have their k, -spectrum truncated at  sin 9 = v k, /a. A 
90" aperture implies echoes with an infinite time delay. Here is a sketch of 
the program. 
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# Modeling with time truncation at tc 
Model (kz , t ) = FT [ model (z , z )] 
For all w and all k, 

U (w,  k, ) = 0. 
For z = z,,, z,,-At, z,,-2Az, . . . , 0  { 

For all w ( 
For all ( k, ( < ( w  ( / u  { 

if ( z < " tC& 
aine = 1 - t 2 / v  tc2 

aperture = 1. 
else 

aperture = 0.  

1 
else 

The above modeling program may be converted to  a migration program 
(as in Section 1.3) by running the depth z loop down instead of up and by 
multiplying the downward continued data by the aperture function. The 
modifications t o  the program not only improve the quality of the migration, 
but the calculation is faster. 

Controlling Stolt Migration Wraparound 

As with the phase-shift algorithm, the key to  reducing the computational 
artifacts of the Stolt algorithm is to  suppress the time-domain wraparound. 
We will see that  this amounts t o  accurate frequency-domain interpolation. 

First, consider an impulse function at  time to. Its Fourier transform is 
exp(-i wt o). If t o  is large, then the Fourier transform is a rapidly oscillating 
function of w. Rapidly oscillatory functions are always difficult to  interpo- 
late. It is better to  shift backward the time function, thereby smoothing its 
frequency function, then to  interpolate the frequency function, and finally to 
undo the shift. Given seismic data on the time interval O<t < T ,  the fre- 
quency function will be smoother if the data is shifted to  an interval 
-T /2< t < T 12. So the first proposed improvement to the Stolt migration 
program is to  multiply in the frequency domain by exp(i wT /2), then inter- 
polate, and finally multiply by exp(-i wT /2). 

Linear interpolation is almost the easiest form of interpolation. On the 
other hand, Fourier transform theory suggests interpolation with the sinc 
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function (by definition sinc u = (sin u ) /u  ). The sinc function of fre- 
quency, when brought back into the time domain is a rectangle function of 
time. Take this rectangle function t o  be nonzero on the interval 
-T /2< t < T 12. Recall that the fast (inverse) Fourier transform algorithm 
sums at  uniform intervals in the frequency domain. This implicitly assumes 
zero between sample points, which in turn assumes that the time-domain 
function is periodic outside the given time interval. Now take the rectangle 
function of time to  be the multiplier in the time domain that converts the 
periodic time function t o  the observed transient one. This multiplication in 
the time domain is equivalent to a convolution in the frequency domain with 
the appropriate sinc function. Convolution of the continuous sinc func- 
tion with the given discrete-interval frequency function is really interpolation. 
Unfortunately, the sinc function extends infinitely down the frequency axis. 
Worse yet, it decays slowly. So some approximation or truncation of the 
sinc is used. Bill Harlan showed that tapered sinc functions achieve satis- 
factory accuracy more cheaply than zero padding. It seems, however, that the 
best approach is both to zero pad and to use some sinc -like interpolation. A 
definitive study of interpolation is that of Rosenbaum and Boudreaux [1981]. 

Stolt Stretch 

The great strength and the great weakness of the Stolt migration method 
is that it uses Fourier transformation over depth. This is a strength because 
it makes his method much faster than all other methods. And it is a weak- 
ness because it requires a velocity that is a constant function of depth. The 
earth velocity typically ranges over a factor of two within the seismic section, 
and the effect of velocity on migration tends to go as its square. To 
ameliorate this difficulty, Stolt suggested stretching the time axis to make the 
data look more like it had come from a constant-velocity earth. Stolt pro- 
posed the stretching function 

where 

At late times, which are associated with high velocities, Stolt's stretch implies 
that T grows faster than t . The 7-axis is uniformly sampled to  allow the 
fast Fourier transform. Thus at  late time the samples are increasingly dense 
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on the t-axis. This is the opposite of what earth Q and the sampling 
theorem suggest, but most people consider this a fair price. 

The most straightforward derivation of (1) is based on the idea of match- 
ing the curvature of ideal hyperbola tops to  the curvature on the stretched 
data. The equation of an ideal hyperbola in (x , T)-space is 

Simple differentiation shows that the curvature a t  the hyperbola top is 

It can be shown that in a stratified medium, equation (3) applies, except that 
the velocity must be replaced by the RMS velocity: 

We seek a stretched time 7(t ). We would like to match the curves t ( x )  
and ( x )  for all x .  But that would overdetermine the problem. Instead we 
could just match the derivatives at the hyperbola top, i.e., the second deriva- 
tive of ~ [ t  (x)] with respect t o  x a t  x =O. With the substitutions (3) and 
(4), this would give an expression for T d r/dt which, after integrating and 
taking its square root, yields (1). 

A different derivation of the stretch gives a more accurate result at 
steeper angles. Instead of matching hyperbola curvature a t  the top, we go 
some distance out on the flank and match the slope and value. It is the 
flanks of the hyperbola that actually migrate, not the tops, so this result is 
more accurate. Algebraically the derivation is also easier, because only first 
derivatives are needed. Differentiating equation (2) with respect to  x for a 
reflector at any depth z j  gives 

There is an analogous expression in a stratified medium. To obtain it, solve 
x = I v  s in6d t  = p s v 2 d t  for p = d t / d x :  

Expressions (5) and (6 )  play the same role as (3) and (4), but (5) and (6) are 
valid everywhere, not just at the hyperbola top. Differentiating 7(t)  gives 
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Inserting (5) and (6) into (7) gives 

Integrating (9) gives ?/2 on the left. Then, taking the square root gives ( la)  
but with a new definition for RMS velocity: 

The thing that is new is the presence of the Snell parameter p .  In a 
stratified medium characterized by some velocity, say, v '(2 ), the velocity 
v ( p ,  t ) is defined for the tip of the ray that left the surface at  an angle with 
a stepout p .  In practice, what value of p should be used? The best pro- 
cedure is t o  look at  the data and measure the p = dt /dx of those events 
that you wish to migrate well. A default value is p = 2(sin30°)/(2.5 
km/sec) = .4 millisec/meter. The factor of 2 is from the exploding-reflector 
model. 

Gazdag's v(x) Method 

The phase-shift method of migration is attractive because it allows for 
arbitrary depth variation in velocity and arbitrary angles of propagation up to 
90". Unfortunately, lateral variation in velocity is not permitted because of 
the Fourier transformation over the x-axis. To alleviate this difficulty, Gaz- 
dag and Sguazzero (19841 proposed an interpolation method. Recall from Sec- 
tion 1.3 that the phase-shift method 2-D Fourier transforms the data p (x , t ) 
to  P (k, , o). Then P (k, , w )  is downward continued in steps of depth by 

multiplication with exp[ik, (o, k, ) Az 1. Gazdag proposed several reference 
velocities, say, v vg, v3, and v4. He downward continued one depth step 
with each of the velocities, obtaining several reference copies of the 
downward-continued data, say, PI, P2, P3, and P4. Then he inverse Fourier 
transformed each of the Pj over k, to  p j  (x , w). At each x , he interpo- 

lated the reference waves of nearest velocity to get a final value, say, p (x ,  w )  
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which he retransformed to P (k, , w )  ready for another step. This appears to  
be an inefficient method since it duplicates the usual migration computation 
for each velocity. Surprisingly, the method seems to be successful, perhaps 
because of the peculiar nature of computation using an array processor. 

EXERCISE 

1. To obtain a sharp cutoff in time t ,  requires a broad bandwidth in the 
spectral domain. Given that figure 1 is expressed on a 1000 X 1000 
mesh, deduce the uncertainty in the cutoff t, . 

2. The phase-shift method tends to produce a migration that is periodic 
with z because of the periodicity of the Fourier transform over t .  
Ordinarily, this is not troublesome because we do not look at large z .  
The upcoming wave at great depth should be zero before t =O. Kjar- 
tansson pointed out that periodicity in z could be avoided if the wave 
at  t =O is subtracted from the wavefield before the computation des- 
cends further. Thus, information could never get to  negative time and 
"wrap around." Indicate how the program should be changed. 

4.6 Impedance 

Classical physics gives much attention to  energy conservation and dissi- 
pation. Engineering filter theory gives much attention to causality - that 
there can be no response before the excitation. In geophysics we often need to 
ensure both causality and energy loss. We need to  incorporate both, not only 
in theoretical derivations, but also in computations, and sometimes in compu- 
tations that are discretized in time. There is a special class of mathematical 
functions called impedance functions that describe causal, linear disturbances 
in physical objects that dissipate energy. 

Nature evolves forward in time. Naturally, impedance functions play a 
fundamental role in any modeling calculation where time evolves from past to 
future. Besides their use in physical modeling, impedances also find use in the 
depth extrapolation of waves. We geophysicists take data on the earth's 
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surface and extrapolate downward t o  get information at depth. I t  is not the 
same as nature's extrapolation in time. In principle we don't require 
impedance functions t o  extrapolate in depth. But depth extrapolations made 
without impedance functions could exhibit growing oscillations, much like a 
physical system receiving energy from an  external source. In fact, "straight- 
forward" implementations of physical equations often exhibit unstable extrap- 
olations. By formulating our extrapolation problems with impedance func- 
tions, we ensure stability. Of all the virtues a computational algorithm can 
have - stability, accuracy, clarity, generality, speed, modularity, etc. - the 
most important seems t o  be stability. 

In this section we examine the theory of impedance functions, their pre- 
cise definition, their computation in the world of discretized time, and the 
rules for combining simple impedances t o  get more complicated ones. We will 
also examine other special functions, the minimum-phase filter and the 
reflectance filter in their relation t o  the impedance filter. Wide-angle wave 
extrapolation and migration in the time domain will be formulated with 
impedance functions. Rocks are unlike "pure" substances because they con- 
tain irregularities a t  all scales. A particularly simple impedance function will 
be found that  mimics the dissipation of energy in rocks, unlike the classical 
equations of Newtonian viscoelasticity. 

Beware of Infinity! 

T o  prove that  one equals zero take an infinite series, for example, 1, -1, 

+1, -1, +I, . . . and group the terms in two different ways, and add them 
in this way: 

Of course this does not prove that  one equals zero: it proves that  care must be 
taken with infinite series. Next, take another infinite series in which the 
terms may be regrouped into any order without fear of paradoxical results. 
Let a pie be divided into halves. Let one of the halves be divided in two, giv- 
ing two quarters. Then let one of the two quarters be divided into two 
eighths. Continue likewise. The infinite series is 112, 114, 118, 1/16, . - . . 
No matter how the pieces are rearranged, they should all fit back into the pie 
plate and exactly fill it. 
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The danger of infinite series is not that they have an infinite number of 
terms but that they may sum to  infinity. Safety is assured if the sum of the 
absolute values of the terms is finite. Such a series is called absolutely conver-  
gent. 

Z - transform 

The Z -transform of an arbitrary, time-discretized function xt is defined 

by 

Give Z the physical interpretation of time delay by one time unit. Then 
Z 2  delays two time units. Expressions like X ( Z )  U ( 2 )  and 
X ( 2 )  U (1/Z ) are useful because they imply convolution and cross- 
correlation of the time-domain coefficients. (See FGDP). 

Going on to  consider numerical values for the delay operator Z ,  we dis- 
cover that it is useful to  ask whether X ( Z )  is finite or infinite. Numerical 
values of Z that are of particular interest are Z =+I, Z=-1, and all 
those complex values of Z which are unit magnitude, say, I Z I =I or 

where w is the real Fourier transform variable. Taking w t o  be real means 
that Z is on the unit circle. Then the 2-transform is a discrete Fourier 
transform. Our attention can be restricted to time functions with a finite 
amount of energy by demanding that U ( 2 )  be finite for all values of Z on 
the unit circle I Z I = l .  Filter functions are always restricted to have finite 
energy. 

The most straightforward way to  say that a filter is causal is to  say that 
its time domain coefficients vanish before zero lag, that is ut =O for t <O. 
Another way t o  say it is to say that U (Z  ) is finite for Z =O. At Z =O the 
Z-transform would be infinite if the coefficients u - ~ ,  u - ~ ,  etc. were not 
zero. For a causal function, each term in I U ( 2 )  I will be smaller if Z is 
taken inside the disk ) Z ) <1 rather than on it. Thus convergence at  
Z =0 and on the circle I Z I =1 implies convergence everywhere inside the 
unit disk. So boundedness combined with causality means convergence in the 
unit disk. Convergence at  Z = 0 but not on the circle 1 Z I = 1 would 
refer to a causal function with infinite energy, a case of no practical interest. 
What kind of function converges on the circle, at Z = oo, but not at 
Z = O ?  What function converges at all three places, Z = 0, Z = oo, and 
121 = l ?  
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The filter 1/(1 - 2 2 )  can be expanded into powers of Z in (at least) 
two different ways. These are 

Which of these two infinite series converges depends on the numerical value of 
2 .  For I Z I =1 the first series diverges, but the second converges. So the 
only acceptable filter is anticausal. Is a series expansion unique? It is if it 
converges. Complex-variable theory proves this. 

Let bt denote a filter. Then at is its inverse filter if the convolution 
of at with bt is a delta function. In the Fourier domain, we would say 
that filters are inverse to one another if their Fourier transforms are inverse to  
one another. 2-transforms can be used to define the inverse filter, say, 
A (Z)= l /B(Z) .  Whether the filter A ( 2 )  is causal depends on whether it 
is finite everywhere inside the unit disk, or really on whether B ( 2 )  vanishes 
anywhere inside the disk. For example, B ( 2 )  = 1 - 2 2  vanishes at 
Z =1/2. There A ( 2 )  = 1/B ( 2 )  must be infinite, that is to say, the series 
A ( 2 )  must be nonconvergent at 2=1/2.  Thus - as we have just seen - 

at is noncausal. A most interesting case, called minimum phase, occurs when 

both a filter B ( 2 )  and its inverse are causal. In summary: 

Review of Impedance Filters 

Use 2 -transform notation to define a filter R (Z) ,  its input X ( Z  ), 
and its output Y (2 ). Then 

causal 

causal inverse 

minimum phase 

The filter R ( 2 )  is said to  be causal if the series representation of R (2) 
has no negative powers of 2. In other words, yt is determined from 
present and past values of xt . Additionally, the filter R ( 2 )  is minimum 

+ 

I B ( 2 ) l  < oo for ) Z  ( 51 

I l /B (Z ) 1 < oo for I 2 ( 5 1 

both above conditions 
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phase if 1 /R  ( Z )  has no negative powers of Z .  This means that  xt can be 

determined from present and past values of y, by straightforward polyno- 

mial division in 

Given that  R ( Z )  is already minimum phase, it can in addition be an 
impedance function if positive energy or work is represented by 

0 5 work = C force X velocity = voltage X current 
t t 

( 6 4  

Since ZX could be an impulse function located a t  any w, i t  follows that  

Re [R (w)] 2 0 for all real w. In summary: 

Adding an  impedance t o  its Fourier conjugate gives a real positive func- 
tion (the imaginary part of which is zero) like a power spectrum, say, 

Definition of an Impedance 

1 1 [ F 0 + T 1 - + f 2 -  
Z 

+ . - . ) > O  for real w 
z2 - 

causality 

causal inverse 

dissipates energy 

R ( z ) + R ( $ )  o fo r rea l  w (7b) 

r ,  = O  f o r t  < O  i.e. I R ( Z ) I  < m  f o r l Z I  51 

/ l / R ( Z ) (  < m  for ( Z I  51 

2 ~e R (w) = R (z )  + E ( l / Z )  3 0 real w 
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which is the basis for the remarkable fact that every impedance time function 
is one side of an autocorrelation function. 

Impedances also arise in economic theory when X and Y are price 
and sales volume. I suppose that there the positivity of the impedance means 
that  in the game of buying and selling you are bound to  lose! 

Causal Integration 

Begin with a function in discretized time pt. The Fourier transform 
with the substitution 2 = exp(i w At ) is the 2-transform 

Define -i& (which will turn out t o  be an approximation to  -i w) by 

Define another time function qt with 2-transform Q ( 2 )  by applying the 

operator t o  P ( 2  ): 

Multiply both sides by (1-2): 

Equate the coefficient of 2 on each side: 

Taking pt t o  be an impulse function, we see that qt turns out to  be a step 
function, that  is, 

So qt is the discrete domain representation of the integral of pt from 

minus infinity to  time t . It is the same as a Crank-Nicolson-style numerical 
integration of the differential equation d Q  l d t  = P. The operator 

(1+2)/(1-2) is called the bilinear transform. The accuracy of the approxi- 
mation to  differentiation can be seen by multiplication on top and bottom by 
z - . ~  and substitution of Z = e i w A t  . 
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(2 A t  - i  - = s i n w A t  2 w A t  I = - i t a n -  - a  
2 cos w A t  /2 2 

The integration operator has a pole at  Z=1, which is exactly on the 
unit circle. This raises the possibility of the paradox of infinity. In other 
words, there are other noncausal expansions too. For example, taking 
l/(-iw) t o  be an imaginary, antisymmetric function of w implies a real, 
antisymmetric time function, namely, sgn ( t  ) = t / ( t ( , which is not usu- 
ally regarded as the integration operator. To avoid any ambiguity, we intro- 
duce here a small positive number r and define p = 1 - r. The integration 
operator becomes 

Because p is slightly less than one, this series converges for any value of Z 
on the unit circle. If r had been slightly negative instead of positive the 
expansion would have come out in negative instead of positive powers of Z .  

Now the big news is that  the causal integration operator is an example of 
an impedance function. The operator is clearly causal with a causal inverse. 
Let us check in the frequency domain that  the real part is positive. Rational- 
izing the denominator gives 

1 ( l + p Z )  ( 1 - p / Z )  - ( I = -  - 1 - P2) + p(Z - 1 / Z )  

2 (1 - P Z )  ( ~ - P / Z )  positive 

- - (1 - p2) + 2 i p sin wAt 
positive (16b) 

Again, it is the choice of a positive E that has caused 1 - p2, and hence the 
real part to  be positive for all w, as shown in figure 1. 

As multiplication by -iw in the frequency domain is associated with 
differentiation d /dt in the time domain, so is division by -i w associated 
with integration. People usually associate the asymmetric operator (1, -1) 

with differentiation. But notice that the inverse to  the causal integration 
operator, namely, 
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Real frequency 

Imaginary \ 
FIG. 4.6-1. The causal integration operator I .  The frequency axis is 
represented by a discrete Fourier transform over 256 points. Zero time and 
zero frequency are on the left end of their respective axes. 

also represents differentiation, although it is completely causal and not at all 
asymmetric. In .linear systems analysis this representation of discrete 
differentiation is often the preferred one. The construction of higher-order, 
stable differential equations is subject to  certain rules, t o  be covered, for com- 
bining impedances. 

Occasionally it is necessary t o  have a negative real part for the 
differentiation operator. This can be achieved by taking E t o  be negative, 

which means taking p > 1, and doing the infinite series expansion in powers 
of 2-', tha t  is, anticausally instead of causally. In either the anticausal or 
the  causal case the imaginary part will still be -i w, but the real part will 
have the opposite sign. 

Muir's Rules for Combining Impedances 

For every physical system that  conserves or dissipates energy there is an  
impedance function. Impedance functions are special combinations of 
differential operators and positive-valued physical constants. We will see just 
what combinations are allowed. 

T o  ensure stable computations, it is important to  be able t o  ensure that  
a supposed impedance function really is an impedance function. A difficulty 
in applied geophysics is this: Although you might require results only over a 
limited range of frequencies, and you might make approximations that  are 
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reasonable within that range, if the calculated impedance becomes negative 
outside the applicable range (it often happens near the Nyquist frequency), 
then the impedance filter will yield a numerically divergent output. So even 
though the impedance is almost correct, it is not usable. 

Francis Muir providedt three rules for combining simple impedances to 
get more complicated ones. These rules are especially useful because we can 
start from the discrete-time forms of the differentiation and integration opera- 
tors. Let R 1  denote a new impedance function generated from known 
impedance functions R ,  R , ,  and R2.  These three ways of combining 
impedance are 

1. Multiplication by positive scalar a R 1 = a R  

2. Inversion 
1 R '  = - 
R 

3. Addition R 1 =  R l + R 2  

These rules do not include multiplication. Multiplication is not allowed 
because squaring, for example, doubles the phase angle, and thus may destroy 
the positivity of the real part. Since these rules do not include multiplication, 
but only scaling, summation, and inversion, the impedance functions that 
occur in nature will often be represented mathematically as continued jrac- 
t ions.  

The first two of Muir's rules are so obvious we will not prove them. The 
third rule deserves more careful attention. To prove any rule, we need to 
show three things about R I ,  namely, it is causal, it is PR (the Fourier 
transform has a positive real part), and it has an inverse. This last part is the 
hard part with Muir's third rule, namely, that the sum of two impedances has 
a causal inverse. Proof of this fact will take about two pages, and introduce 
several additional concepts. 

Impedance Defined from Reflectance 

The size of the class of filters called impedances  will be seen to  be large, 
because impedances are derived by transformation from an easily specified 
family of filters called ref lectances,  say, ct and its Fourier transform C(w) .  

To be a reflectance, the time function must be strictly causal, and the fre- 
quency function must be strictly less than unity. By strictly causal it is 
meant that the time function vanishes both at zero time and before. For 
example, take -1 < p < +1 and the reflectance ct to be an impulse of size 

tPersonal communication with Francis Muir. 
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p after a time At .  The Fourier transform is 

Obviously, the product of two reflectances is another reflectance. 

An impedance has been defined t o  be a causal filter with a causal inverse 
and a Fourier transform whose real part is positive. I t  will be shown that  
from any reflectance C the expression 

generates an impedance. There are three things to  show: R  is causal, has a 
causal inverse, and is PR.  First because of the assumption that  C  has a 
magnitude strictly less than unity, C  < 1, the denominator expands t o  a 

convergent 1 + C + c2 + . . - . Second, the inverse of R  is found by sim- 
ply changing the sign of C .  Third, multiply top and bottom by the complex 
conjugate: 

? 1 - c ) ( l + E )  > 
Re R  = Re ( - positive 

1  - C  E )  + imaginary  , Re R = Re ( - 
positive 

which shows that  R  has a real part that  is positive. 

The expression for R  ( C )  is easily back-solved for C  (R ), but the con- 
verse theorem, that  every R  generates a reflectance, is harder t o  show. 
Nevertheless, it will be proved, along with a deeper theorem. A filter that  is 
both causal and P R  is said t o  be CPR. The deeper theorem is that  every 
CPR has  a n  inverse  and hence  i s  a n  impedance.  This will be proved by show- 
ing that  every CPR - say, R , - can be used t o  construct a reflectance 6 ,  
which, since it is a reflectance, implies that  the CPR R is an impedance R . 
Backsolving gives 

Proof requires that  two things be shown - first, tha t  the magnitude of 
e is less than unity. T o  show this, form the magnitude of the denominator 
and subtract the magnitude of the numerator. The result is four times the 
real part of R , which is positive. Second, 6 must be proved causal. This 
is harder. (1 + R )-' can be expanded into a sum of positive powers of R 
and hence of positive powers of the delay operator. But the convergence of 
the series is not assured, because nothing requires R t o  be less than unity. 
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To prove that & is causal, we will take advantage of rule 1, namely, 
that an impedance can be scaled by any real positive number that you like, 
and it will still be an impedance. Consider a function that is similar to 6.  

Choose a small enough that for all w, a 1 R I <l. This ensures a conver- 
gent expansion for the denominator in positive powers of R and hence 2. 
The expansion contains only positive powers in the delay operator. Thus B 
is a reflectance, and its corresponding impedance is a R..  But an impedance 
can always be scaled by a positive number. Taking the number to be 1 / a  
shows that R is an impedance. This completes the proof that every CPR is 
an impedance. 

So impedances arise more easily than you might think. It is not neces- 
sary to have a reflectance C to  insert into the relation R = (1-C)/(l+C). 
We only need to have a CPR. 

Functional Analysis 

We will establish the following theorems about exponentials, logarithms, 
and powers of Fourier transforms of filters: 

1. The exponential of a causal filter is causal. 

2. The exponential of a causal filter is a minimum-phase filter. 

3. The logarithm of a minimum-phase filter is causal. 

4. The Fourier domain representation of a minimum-phase filter is a 
curve that does not enclose the origin of the complex plane. 

5. Any power of a minimum-phase filter is minimum phase. 

6. Any real fractional power -1s p 5 1 of an impedance function is 
an impedance function. 

To establish theorem 1, define the 2-transform of an arbitrary causal 
function 

U(Z)  = u o + u l z + u 2 z 2 +  . . .  (23) 

and substitute it into the familiar power series for the exponential function: 

No negative powers of 2 can be found in the right side of (24), so B ( 2 )  
will have no negative powers of Z .  Also, the factorials in the denominator 
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assure us that (24) always converges, so bt is always causal. 

To establish theorem 2, that the exponential is not just causal but also 
minimum phase, consider 

Clearly both B +  and B -  are causal, and they are inverses of one another. 

A minimum-phase filter is defined t o  be causal with a causal inverse. So B +  

and B- are minimum phase. 

Now we will establish the converse of theorem 2 - namely, theorem 3 - 
which states that the logarithm of a minimum-phase filter is causal. Take the 
logarithm of (24) and form the Z-derivative: 

Since B was assumed to  be minimum phase, both 1 / B  and dB/dZ  on 
the right of (26c) are causal. Since the product of two causals is causal, 
dU /dZ is causal. But dU /dZ cannot be causal unless U is causal. That 
proves theorem 3, disregarding the remote danger that B might converge 
while dB /dZ diverges. 

Theorem 4 refers to the Fourier domain representation of the minimum- 
phase filter. In the complex plane, the filter gives parametric equations for a 
curve, say [x (w), y (w)] = [Re B (Z ), Im B ( Z  )I. The phase angle 4(w) is 

defined by the arctangent of the ratio y / x .  For example, the causal, non- 
minimum-phase filter U (Z ) = Z = e gives the parametric equations 
x = cos w and y = sin w which define a circle surrounding the origin. 
Notice that the phase of Z = e is d(w) = w, which is a monotonically 
increasing function of w. In the minimum phase case, d(w=O) = 4(w=27r). 

In the non-minimum-phase case, the curve loops the origin, so $(w=O) = 
4(w=27r) + 2n. Theorem 3 allows us to say that a general formula for 
minimum-phase filters is 

N N 
B = e U ( Z )  = exp [ C Uk cos k w + i C Uk sin k w 

k =O k =O 

= exp [T (w) + i #(w)] (27b) 
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The phase $(w), being a sum of periodic functions, is itself a periodic func- 
tion of w, which means that  in the plane of (Re B ,  Im B )  the curve 
representing B (w) does not enclose the origin. 

On t o  theorem 5, which says that any power of a minimum-phase func- 
tion is minimum phase. Consider 

Since B is assumed to  be minimum phase, by theorem 3 In B will be 
causal. Scaling by a real or complex constant r does not change causality. 
Exponentiating shows, by theorem 2, that  B ' is minimum phase. 

Finally the proof of theorem 6, that an impedance function can be raised 

to  any real fractional power -1 5 p 5 +1 and the result will still be an 
impedance function. An impedance function is defined to  be a minimum- 
phase function with the additional property that the real part of its Fourier 
transform is positive. This means that the phase angle 4 lies in the range 
-7~12 < 4 < +7r/2. Raising the impedance function to  the p power will 
compress the range to  -7rp/2 < 4 < 7rp/2. This will keep the real part of 
the impedance function positive. Theorem 5 states that  any power of a 
minimum-phase function is causal, which is more than we need to  be certain 
that  a fractional real power of an impedance function will be causal. 

Wide-Angle Wave Extrapolation 

Let s = -i & denote the causal, positive, discrete representation of the 
differentiation operator, say, 

Figure 2 compares hyperbolas constructed with w to  those constructed 
with Cj. You see a pleasing drop in wraparound noise. It seems to  work 
better than the E in Section 4.1. As we will see, the introduction of 
complex-valued & leads t o  a more natural handling of the square root at  the 
evanescent transition. 

Consider the following recursion starting from R = s : 

This recursion produces continued fractions. Francis Muir introduced it as a 
means of developing wide-angle square-root approximations for migration 
(Section 2.1), and he developed his three rules to show that every R, is an 

impedance function. To  see why every Rn is an impedance function, first 
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kilometers 
0 . 5 1 1.5 

kilometers 
0.5 1 1.5 

FIG. 4.6-2. Hyperbolas with real frequency (left) and complex frequency 
(right). (Plotting uses square root gain described in Section 4.1). 

note that  the denominator s + R, is, for n = 0, the sum of two 

impedance functions. Then its inverse is an  impedance function, and multi- 
plication by the real positive constant x2 and addition of another s both 
preserve the properties of impedance functions. Recursively we see that  all 
the R, are impedances. 

As N becomes large this recursion either converges or  it does not. Sup- 
posing that  i t  does, we can see what it will converge t o  by setting 
R, +, = R, = R ,  = R . Thus, 

In wave-extrapolation problems x2 is v kz2, where v is the wave 
velocity and k, is the horizontal spatial frequency, namely, the Fourier dual 

t o  the horizontal x-axis. Performing these substitutions we have 
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So R is like f ikr v .  Remember that  R o, the first approximation t o  R , is 

-i 21. So downgoing waves are 

T o  switch from downgoing t o  upcoming waves, we could either change the 
sign in front of R or we take the complex conjugate of R . The difference 
is what you want t o  do with the real part - do you want the wave t o  grow 
or not? 

Consider the dissipation of waves in the exploding reflector model. They 
damp as  they propagate from the explosion t o  the surface. This means that  
as we migrate them, they should be exponentially growing. But we don't 
really want that.  We really want to  assure that  they are not growing, 
perhaps we even want them decaying as we extrapolate them back. So for 
migration we downward continue monochromatic waves with 

although the real behavior of a wave from an exploding reflector wave would 
be 

T o  examine the phase of the complex quantity R , set v = 1 obtaining 

First note that  (- iG) is causal because of its 2-transform representation. 
By squaring the Z -transform we see that  (- i b)2 is also causal. In the time 
domain, kz2 is a delta function a t  the time origin. Thus R given by (36) 

is causal. Figure 3 shows how the phase of (36) is constructed from its consti- 
tuents. T o  illustrate the behavior of -iG from zero t o  infinity, I include 
both an artist's conception and the function on itself, overlain a t  various 
magnifications. The function -iG is a periodic with w and its real and 
imaginary parts plot t o  a closed curve. T o  show the rate of change of the 
function, I sampled w a t  2" intervals. From great distance the function is a 
circle. Close up i t  looks like a line parallel t o  the imaginary axis. 

R 2  is causal and from figure 3 we can see that  i t  has a "branch cut" 
property. That  is, the phase of R has the positive real property. Theorem 
5 forces R t o  be causal and minimum phase. That ,  with the phase defined 
by figure 3, proves that  R , given by (36), is an impedance function. 
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FIG. 4.6-3. Complex plane diagram of constituents of the extrapolation 
operator R given by (36). The center column shows an artist's conception. 
The right column shows the function a t  several magnifications simultaneously. 
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Fractional Integration and Constant Q 

By equation (29) and theorem 6, fractional powers of integration and 
differentiation are also impedance functions. Kjartansson [I9791 has adv- 
cated the fractional power as a stress-strain law for rocks. See also Madden 
[1976]. Classical studies in rock mechanics begin with a stress-strain law such 
as 

stress = stiffness X strain + viscosity X strain-rate 

which in the transform domain is 

stress = [(-iw)' X stgness + 
(- i w)' x viscosity ] x strain (37) 

Expcrimentally, the viscoelastic law (37) does a poor job of describing real 
rocks. Let us try another mathematical form that is like (37) in its limiting 
behavior a t  high and low viscosity: 

stress = const x (- i w)' x strain (384 

- - const X (- i wy-' X strain-rate (38b) 

Here 6 close to  zero gives elastic behavior and 6 close t o  one gives viscous 
behavior. The fact that (- iw)'-' is an impedance function meshes nicely 
with the concepts that (1) stress may be determined from strain history and 
strain may be determined from stress history, and (2) stress times strain-rate 
is dissipated power. Kjartansson [1979] points out that  (- i w)7 exhibits the 
mathematical property called constant Q, so that as a stresslstrain law for 
fitting experimental data on rocks, it is far superior t o  (37). To see the con- 
stant Q property more clearly, express (- i w)7 in real and imaginary parts: 

= 1 1 7 { 0 s  [ s g  w ]  - i sin [y sgn (w)] 1 ( 3 9 ~ )  

The constant Q property follows from the constant ratio between the real 
and imaginary parts of this function. Q itself is defined by 

1 - - - 
Q 

tan TC n 6  (40) 
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A pulse with a Q of about 10 is shown in figure 4. 

4.6  Impedance 

time frequency 

Imaginary 

FIG. 4.6-4. The constant Q pulse given by e - (- iu )  Q'tO . The frequency axis 
is represented by a discrete Fourier transform over 256 points. Zero time and 
zero frequency are on the left end of their respective axes. 

EXERCISES 

1. Take E < 0 and expand the integration operator for negative powers of 
Z . Explain the sign difference. 

2. Let a>O be a real, positive scaling constant, and let C be a 
reflectance function. Without using Muir's rules, prove that C '  is a 
reflectance, where 

Note that you have proven Muir's first rule. Muir's third rule can also be 
proven in an analogous way, but with much more algebraic detail. 

3. The word isomo~.phism means not only that any impedance R R 2, R ' 
can be mapped into a reflectance C1, C2, C '  , but also that  Muir's three 
rules will be mapped into three rules for combining reflectances. 

a. What are these three rules? 

b. Although C 1  = C1C2 does not turn out t o  be one of the three 

rules, it is obviously true. Either show that it is a consequence of 
the three rules or conclude that it is an independent rule that can be 
mapped back into the domain of the impedances to  constitute a 
fourth rule. 
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4. Show that the log of the discrete causal integration operator, 

log[(l+Z )/(I-Z )I, is one side of the discrete Hilbert transform. Show 
that the reflected pulse from a boundary between two media with the 
same velocity but slightly different Q is one side of the Hilbert 
transform. 

5. Consider the fourth-order Taylor expansion for square root in an extrapo- 
lat ion equation 

a. Will this equation be stable for the complex frequency 
- i w  = -iwo + c? Why? 

b. Consider causal and anticausal time-domain calculations with the 
equation. Which, if any, is stable? 

6. Consider a material velocity that may depend on the frequency w and 
on the horizontal x-coordinate as well. Suppose that, luckily, the veloci- 
ty  can be expressed in the factored form v (x , w) = v l(x ) v 2 ( ~ ) .  
Obtain a stable 45" wave-extrapolation equation. Hints: try 

x2 = positive eigenvalue o j  (v  la,)(v la,)T 

7. Is the Levinson Recursion described in FGDP related to  the rules in this 
section? If so, how? Hint: see Jones and Thron (19801. 

8. Show the converse t o  theorem 4, namely, that  if the phase curve of a 
causal function does not enclose the origin, then the inverse is causal. 
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4.7 Accuracy - the Contractor's View 

A chain is no stronger than its weakest link. Economy dictates that all 
the links should be equally strong. Many broad questions merit study such as 
the errors associated with velocity uncertainty and with migration after, 
rather than before, stack. Having read this far, you are now qualified to  
attack these broad questions. Now we will narrow our focus and examine 
only the errors in downward continuation that result from familiar data pro- 
cessing approximations. 

In the construction of a production program for wave-equation migration, 
weakness arises from approximations made in many different places. Econ- 
omy dictates that funds to  purchase accuracy should be distributed where 
they will do the most good. Geophysical contractors naturally become experts 
on accuracy/cost trade-offs in the migration of stacked data. Contractors will 
use the equations and program gathered below to  obtain best results for the 
lowest cost. Users of reflection data are interested in learning to  recognize 
imperfect migrations, so they may want to use the program to  see the effect of 
various shortcuts. 

In preparation for a big production job there are two general approaches 
t o  examining accuracy. The first approach, which gives the best insight into 
qualitative phenomena, is t o  make synthetic hyperbolas by the various 
methods. The synthetic hyperboloids can be be compared to  the data at  hand 
with a video movie system or by plotting on transparent paper. In the second 
approach you compute travel times of hyperboloids or spheroids of waves of 
different stepouts and frequencies for different mesh sizes, etc. Then an 
optimization program can be run to  minimize the average error over the 
important range of parameters. 

It is not necessary to  write a time domain 45" finite difference migration 
program to  see what its synthetic hyperboloids would look like. We can sim- 
ply express all the formulas in the (w, k, )-domain and then do an inverse 

two-dimensional Fourier transformation. To facilitate comparisons between 
the many migration methods we will gather equations from different parts of 
the book in the order that they are needed. Then I'll present the program 
that makes the diffraction hyperbolas for many methods. Using the same 
equations you can compute travel times and solve the optimization problem 
as you wish. 
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Lateral Derivatives 

First, kz will range over f r / A x .  If the x-axis is going to  be handled 

by finite differencing then we will need 

2 k Ax sin - 
2 

So if the x-axis is going to  be handled by finite differencing then subsequent 
reference to  k, should be replaced by iZ. The finite differencing introduces 

the free parameter b . Likewise, you could also scale the whole expression by 
an adjustable parameter near unity. Also, Ax isn't necessarily fixed by the 
data collection. You could always interpolate the data before processing. A 
finite-difference method using interpolated data could be mandated by enough 
lateral velocity variation. 

Viscosity and Causality 

The frequency w will range over f n / A t .  If the t -axis is going t o  be 
handled by finite differencing then we will need the 2-transform variable 

and the causal derivative 

The data can be subsampled or supersampled before processing, so A t  is an 
adjustable parameter. The causality parameter p should be a small amount 
less than unity, say p = 1 - E where r>O is an adjustable parameter. You 
may want to  introduce p even if you are migrating in the frequency domain 
because it reduces wraparound in the time domain - it is a kind of viscosity. 
The E should be about inverse to the data length, say l / N t  where Nt is 

the number of points on the time axis. (Because I made many plots of syn- 
thetic hyperbolas with square root gain, 7 = 112, time wraparounds were 
larger than life. So I had the program default t o  c four times larger). If you 
like t o  adjust free parameters, you could separately adjust numerator and 
denominator values of p. Subsequently, I'll distinguish between w and &, 
but you can take & to  be w if you don't care to  introduce causality. 
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Retarded Muir Recurrence 

The kz square root may be computed with the square root function in 

your computer or by Muir's expansion. For Fourier domain calculations 
incorporating causality, you must use a complex square root function. This 
will also take care of the evanescent region automatically - you no longer 
have the discontinuity between evanescent and nonevanescent regions. The 
square root of a complex number is multivalued, so you better first check that  
your computer chooses the phase as described in figure 4.6-3. Mine did. But 
I found that  limited numerical accuracy prevented me from achieving strict 
positivity of the real part of the impedance until I replaced the expression 

- s by its algebraic equivalent v 2k '/(d- + s ). 

For finite differencing we will need the Muir recurrence. Let r o  define 

the cosine of the angle that  starts the Muir recurrence, often 0" or 45". This 
is another free parameter for optimization. See for example figure 2.1-1. This 
angle is also an angle of exact fit for all orders of the recurrence. Let 

Starting from R = r s the Muir recursion is 

For a diffraction program we will be evaluating exp(-Rz ). Since R was 
proven in 4.6 t o  have a positive real part, the exponential should never grow. 
Finite difference calculations are normally done with retarded time. T o  retard 
time, exp(-Rz ) is expressed as 

As discussed in Section 4.1, you probably don't want the time shift of retarda- 
tion t o  be associated with viscous effects. So you will probably want t o  down- 
ward continue instead with 

Notice the signs and distinction of w from h. 

From equation (4.6-30) we see that  R -s should have a positive real 
part. I found that  numerical roundoff sometimes prevented it. So the Muir 
recurrence was reorganized to  incorporate the retardation. Let 

Equation (4.6-30) becomes 
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From Muir's rules, you can see that R ' will always have a positive real part if 
we start it that way, so we start it from 

R', = 
& 

(1 + ro) 

(Combining (5) and (3) gives the same 15" equation as does (4.6-30)) 
Mathematically (2) is identical t o  

e - R I  Z / V  ,+iw Z / V  (6) 

but numerically the exponential in (6) is assured to  decay in z .  

Stepping in Depth 

If you are using finite differences on depth, or travel-time depth, then we 
have the relation 

it Az k, Az 
- - tan - 

2 
(4.3-14) 

2 

which can be used in exp ik,  z .  Since dissipation may be present, the quanti- 

ties above may be complex. Let N, be the number of depth layers, gen- 

erally equal or less than Nt . Adapting (4.3-17) to  (6) gives 

Lightning Phase Shift Migration 

Not only can the causality and viscosity features of time domain methods 
be incorporated in the frequency domain, but the square roots and complex 
exponentials of the phase shift method can be replaced by complex multiplies 
and divides. First note that  the square root expansion need not begin from a 
starting guess or from a lower order iteration. I t  could begin from the square 
root previously obtained from the preceding w or k .  (I noticed this when 
an early version of the program had a bug that  made all my 15" calculations 
look like 90" calculations)! Also, Az / v  is necessarily small in the phase shift 
method to  accommodate imaging at  every time point. So the finite 

differencing form (7) is probably as good as the complex exponential. Why 
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don't you try it? 

Final Appearances 

The output of an impulse-response program always looks awful. The 
main reason is the large area of (w, k, )-space which is near the Nyquist fre- 

quency or above the evanescent cutoff. Since we rarely sample data in time as 
coarsely as the Nyquist criterion permits, the program below defaults to  final 
filtering with the filter (1+2)/(1-32).  This filter still passes a lot of energy 
outside the usual bandwidth of seismic data. Since all land data and most 
marine data do not have the zero frequency component, the program contains 
an option to  filter further with (1-2)/(1-.82). I haven't displayed anything 
with this extra filter because I wanted this book to  show all the artifacts you 
might encounter. Furthermore, I deliberately enhanced the visibility of 
artifacts on wiggle-trace, variable-area plots by plotting with the nonlinear 

7 = 112 gain described in Section 4.1. (Perspective hidden-line drawings 
always have linear gain). Since my plots are necessarily about 10 cm square 
in this book and in practice you will look at  plots of about a hundred times 
the area, I plotted only one second of travel time. 

Program 

Many of the figures in the book were made with the program presented 
here. To  enable you to  reproduce them I am including the complete program. 
The parameter input and data output calls are site dependent, but I include 
them anyway to help clarify the defaults, increasing the odds that you can get 
exactly what I did. 

# representations of e -J(-i WI" l2 + 
integer output, outfd, fetch 
integer iw,nw,ik,nk, omhat, kxhat, kzhat, degree, tfilt, xfilt 
real v, dt, dx, dz, xf, xO, tf, tau0, rho, bi, rO, eps, pi, omega, k, vk2 
complex cz, cs, cikz, cexp, cmplx, csqrt, cp(1024) 
outfd = output() 

call putch "esizen,"i", 8) # complex numbers 
nw = 256; call putch "nln,"i",nw) # inner index is w 
nk = 64; call putch "n2" ,"in ,nk) # outer index is k, 

call putch I "n3","iP, 1) # one frame movie 

"v", "f", v) == 0 # rock vel 
"dt", "f", dt) == 0 # A t ,  sec 
"dx", "f", dx == # A z , k m  
"dzn, " P ,  dz] == 0 # A t ,  sec 
"xf", "f", xf) == 0 xO =xf*nk*dx 
"tf","P, t f ) = = O )  tf =.5; tauO=tf*nw*dt 
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"omhat" "in, omhat)==O) ornhat = 0 # L A  
" kxhat" , "inl kxhat == 0 kxhat = 0 # 
" kzhat", "inl kzhat == 0 kzhat = 0 

"degreen, "in ,de ree 1 == 0 1 degree= 90 
# kz 

ntfiltn, *ipl tfilty == 0 ) tfilt = 1 
"xfilt" , "in, xfilt) == 0 ) xfilt = 1 

"rho", "f", rho) == 0 ) rho = 1-4./nw 
"bin, "f", bi == 0 bi = 6.726 # 6-' 
"rOn, "f", 4 == 0 1  rO = 0.7071 

"eps", "f", eps) == 0 ) eps = 0. 

"labell","sn,"secn) 
"label2" ,"s","ki1ometers") 
# close data  description file 

pi = 3.14159265 
do ik = 1, nk { # loop over all k, 

k = 2*pi * (ik-1.) / nk 
if( k > i ) k = k - 2*pi 
k = k %  
if( kxhat == 0 ) 

vk2 = (v/2)**2 * k*k 
else 

vk2 = (v/2)**2 * **2 * sin(k*dx/2)**2 / (1 - 
* sin(k*dx/2)**2 ) 

do iw = 1, nw { # loop over all w 
omega = 2*pi * (iw-1.) / nw 
if( omega > pi ) omega = omega - 2*pi 
omega = omega / dt  
cz = cexp( cmplx( O., omega * d t  ) ) 
if( omhat == 0 ) 

cs = cmplx( 1.e-5 / dt,  - omega) 
else 

cs = (2./dt) * (1. - r h o  * cz) / (1. + rho * cz) 
if ( degree == 90 

cikz = v $ 2 / ( csqrt( cs * cs + vk2 ) + cs ) 
if ( degree == 15 1 degree == 45 ) 

cikz = vk2 / ( eps + (rO+l.) * cs ) 
if (degree == 45 ) 

cikz = vk2 / ( 2.*cs + cikz) 
if( real( cikz) < 0.) call erexit("cikz not positive realn) 

if( kzhat == 0 ) 
cp(iw) = cexp( - tauO * cikz ) 

else 
= ((1.-cikz * dz/2) / (l.+cikz * dz/2) ) ** (tauO/dz) 
* cexp(cmplx(O., omega * tau0 )) # unretard 

call rite( dutfd, cp, 8*nw ) # write 
1 
I 

stop; end 
# Finally, you must 2-D Fourier Transform (Section 1.7), take real part, and plot. 

Twenty-two plots displayed in this book were made with this program. 
Different input parameters for the different plots are in the table below. 
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Section and figure. 

1.3-6a 
1.3-6b 
2.0-la 
2.0-lb 
4.0-la 
4.0-lb 
4.1-4a 
4.1-4b 
4.1-5a 
4.1-5b 
4.2-4 
4.3-4a 
4.3-4b 
4.3-6a 
4.3-6b 
4.3-6~ 
4.3-6d 
4.3-6e 
4.6-2a 
4.6-213 
4.7-la 
4.7-lb 

Default parameter overrides. 

t f i l t=O 

It is rumored that  accuracy can be improved by making the z mesh 
coarser. This couldn't happen if x and t were in the continuum, but since 
they may be discretized, there is the possibility of errors fortuitously cancel- 
ing. To  test this rumor, I tried tripling Az (actually, tripling the increment 
in travel-time depth). The result is in figure 1. What do you think? 

Complete as this analysis must seem, it is limited by the assumption of 
Fourier analysis that  velocity is constant laterally. To handle this problem 
we turn  now to  the final lecture on techniques. 
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FIG. 4.7-1. Left is a 45" point diffraction in ( x ,  z ,  t )-space with 
Az = v A t .  At  the right, with Az  = 3 v A t .  

4.8 The Bulletproofing of Muir and Godfrey 

Stable extrapolation can be assured by preserving certain symmetries. I t  
will be shown that  stability is assured in both the differential equation 

and its Crank-Nicolson approximation 

provided that  R + R* is a positive definite (actually, semidefinite) matrix. 
When stability was studied in the previous section the operator R was a 
scalar 2-transform. Because 2-transforms were used, the mathematics of 
that  section was particularly suitable for time domain migrations. Because R 
was a scalar, the mathematics of that  section was particularly suitable when 
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data  has been Fourier transformed over x .  Here we will focus on the matrix 
character of R. Thus we are concerning ourselves with migration in the x -  
domain. Our purpose in doing this theoretical work is t o  gain the ability to  
write a "bulletproof" program for migrating seismic data  in the presence of 
lateral velocity variation. As  an example, the familiar 45" extrapolation equa- 
tion will be put in the bulletproof form. This section, combined with the pre- 
vious one, gives a general theory for stable migration in ( t  , x)-space. 

S tab i l i ty  of t h e  Differential  E q u a t i o n  

Let q* denote the Hermitian conjugate of q. For equation (I) t o  be 
stable the energy q* q must be either constant or decaying during depth ex- 
trapolation. 

Substituting equation ( I )  into equation (3) gives 

Equation (4) shows that  R + R* must be positive semidefinite for the 
differential equation t o  be stable. 

S tab i l i ty  of t h e  Difference E q u a t i o n  

The stability of the difference equation can be shown in a similar way, 
but with some extra clutter. First observe the identity 

1 
(a* a - b* b) - [(a + b)* (a - b) + ( a  - b)* (a + b)] 

2 (5) 

Letting a = qn +l and b = qn , equation (5) becomes 

Now, replace the (qn - qn ) terms by equation (2): 
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This equation establishes the result: If the matrix R + R* is positive 
definite, then q,*+lq, + l  is less than q,* q, . 

Application to 45" Wavefield Extrapolation 

The scalar wave equation for the extrapolation of a downgoing wavefield 
is 

where the R operator takes the usual form 

Our plan is t o  approximate the square root by the usual continued frac- 
tion expansion and then identify i k, with d, t o  obtain a space-domain 
equation. The main effort we must make stems from our refusal t o  make the 
usual assumption that  v (x , z ) is independent of x . Since d, v q differs 

from v a, q, the space representation does not seem t o  be unique, and we 

may wonder how the variable q relates t o  physical wave variables like pres- 
sure and displacement. Since (9) is purely imaginary, the depth-invariance of 
the quadratic q* q can be interpreted as the downward energy flux across the 
datum a t  depth z .  Our main effort will be t o  assure that  q* q does indeed 
remain depth-invariant when v (x , z ) # cons t .  The task of determining 
the relation between the energy flux variable q and the physical variables 
will be left t o  the reader. 

First v2kz2 must be represented in the space domain. Thinking of the 
x-derivative operator d /dx  = 8, as a large bidiagonal matrix with 
(1, - l ) /Ax along the diagonal and V (x ) as a diagonal matrix, we are 
attracted t o  expressions like ( V  a, ) T ( ~  a, ) or ( V  a, )(V a, )T because they 
are symmetric, positive, semidefinite matrices. In simplest form, such numeri- 
cal representations are tridiagonal matrices that  can be abbreviated as 

A t  a later time accuracy or some other consideration could determine the 
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choice in (10). Even other expressions could be used, provided they are real, 
symmetric, and positive definite. 

In the previous section the constant velocity, 45" expansion of (9) was 
shown to  be 

This scalar R always has a positive real part because - i w is always 
represented in an impedance form, and the whole expression is built up satis- 
fying Muir's rules for combining impedance functions. In going to the x -  
domain notice that (i k, )2 = -a,, and (a, )T = - 8, . So the positive 
scalar v2kZ2 corresponds to  the positive eigenvalues of (10). 

The expression of the bulletproof, square-root operator R in the space 
domain will now be given as 

Use of the division sign in (12) is justifiable because the matrix T commutes 
with the identity matrix I. (A hazard in this work is that  T does not com- 
mute with the diagonal matrix V ) .  The matrix M has the properties 
required of R since a basic matrix theorem says that the eigenvalues of a 
polynomial of a real symmetric matrix are the polynomials of the eigenvalues. 
In other words, replacing T in (12) by one of its eigenvalues produces a com- 
plex M whose real part is positive, so that  M* + M is positive as required. 
What is needed is to  show that the following matrix is positive definite: 

A matrix A is positive definite if for arbitrary d ,  the scalar d*A d is 
positive. The diagonal matrix V-'l%an certainly be absorbed into d and 
d will still be arbitrary, so the proof is complete. 

In programming it is a nuisance to put V-'Ie on each side of the matrix 
M. Actually you can put V-' on either side. In general, some other qua- 
dratic form such as q*U q where U is strictly positive definite will be 
decreasing if R* U + U R is positive definite. 
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In this final chapter of the book are gathered together imaging concepts 
that  have been published, but have not yet come into routine industrial use. 
The first part of this chapter develops the mathematical concept of linear 
moveout and how it  relates t o  velocity analysis. Data  can be focused so that  
the interval velocity can be read directly. The latter part of the chapter is 
about multiple reflections. Here too linear moveout helps t o  define the prob- 
lem. You will see basic mathematical tools that  have the power t o  deal with 
multiple reflections and lateral velocity variations. This chapter has many 
data  processing proposals. They are not descriptions of production processes! 

Interpreting Seismic Data 

Initially I regarded this chapter as one for specialists interested mainly in 
devising new processes. Then I realized that  in dealing with things that  don't 
seem t o  work a s  they are expected to, we are really, for the first time, strug- 
gling t o  contend with reality, not with what theory predicts. This can hold 
much interest for skilled interpreters. 

The heart of petroleum prospecting is the interpretation of reflection 
seismic data. What is seismic interpretation? T o  be a "routine interpreter" 
you must know everything on which theory and practice generally agree. To 
be a good interpreter you must know the "noise level" of alternate 
phenomena with similar effects. Anomalies in seismic data  can arise from the 
complexity of the earth itself, from seismic wave propagation in the earth 
(deep, near surface, or out of plane), or from imperfections in recording and 
imaging techniques. T o  make realistic judgements in so wide a realm, you 
must be a seismologist who is part geologist, part engineer, and part 
mathematician. This chapter will not teach you t o  be a good interpreter, but 
i t  will offer you a chance t o  observe some critical thinking about the relation- 
ship of seismic theory to  seismic data. 
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Leaning 

Echo delay is much like depth. We usually measure angles by their 
departure from the vertical ray, while in reality zero-offset data is rarely 
recorded. The best seismic data is usually far from vertical. In this chapter a 
pattern of thinking is developed that is oriented about a selected nonvertical 
ray. Rotation of coordinates does not solve the problem since after rotation, 
the plane on which measurements would be made would no longer be simply 
z = 0. Rotation would also make a mess of the simple seismic velocity func- 
tion v (z ) by making it a strongly two-dimensional function v '(x I,  z I). The 
view of offset presented in Chapter 3 may have seemed rather complete, but 
in fact it was not very general because square roots were expanded about the 
vertical ray. The Stolt stretch development in Section 4.5 illustrated the 
advantage of leaving the hyperbola top and getting out on the flanks. 

Linear moveout (LMO) is the way to  reorient our thinking about non- 
vertical rays. While not widely incorporated in the modern production 
environment, this deeper view of offset is of special interest to researchers. It 
offers an understanding of multiple reflections, a subject untouched in 
Chapter 3. It also offers a better understanding of velocity estimation. 

Stepout Review 

In Section 1.5 a Snell wave was defined as a plane wave that has become 
nonplanar by moving into a velocity-stratified medium v = v (2). A plane 
wave keeps its angle of propagation constant, while a Snell wave keeps its 
stepout dt l dx  a co~lstant function of z. Figure 1 shows a Snell wave 
incident on the earth's surface. The wavefronts at successive times are not 
parallel t o  each other; they are horizontal translations of one another. The 
slowness of horizontal motion is called the stepout. It is measured in units of 
inverse velocity and is given as milliseconds per meter or as seconds per kil* 
meter. The slowness, denoted as p ,  is also called the ray parameter or the 
Snell parameter: 

d t p = - -  - sin 6 z 
dx 

= const (z) 
v(z) 
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FIG. 5.0-1. Wavefront arrival at  earth's surface, showing that observation of 
d t l d x  givestheratio d t ldx  = (sinO)/v. 

5.1 Radial Traces 

Radial trace sections were introduced in Section 3.6 as an alternative to 
constant-offset sections. In Section 3.6 the goal was to  achieve a proper 
migration of nonzero-offset data. We also saw the definition of dip moveout 
(DMO). D M 0  simplifies further analysis because after DM0 we can analyze 
gathers assuming that they come from a horizontally layered earth. 

A radial trace gather is defined by a deformation of an ordinary gather. 
Let the ordinary gather be denoted by P ( x ,  t ). Let the radial parameter be 
denoted by r = x / t  . Then the radial trace gather P f ( r  , t ) is defined by 
the deformation P f ( r  , t ) = P (rt , t ). 

The horizontal location x of the tip of a ray moves according to 
x = v t sin 0. So in a constant-velocity medium, the radial trace with a 
fixed r = x / t  contains all the energy that propagates at  angle 0. 

The constancy of propagation angle within a radial trace should be help- 
ful in the analysis of multiple reflections. It should also be helpful in compen- 
sation for the shot waveform, since the antenna effects of the shot and geo- 
phone arrays are time-invariant. on each radial trace. 

Assuming reflectors at  depth z j  and constant velocity, hyperbolic 

travel-time curves are 
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Let us see what happens to  the hyperbola (1) when the offset x is 
transformed to  the radial parameter r = x / t  . We get an equation for a 
family of curves in the ( r  , t >plane (plotted in figure 1). 

FIG. 5.1-1. Family of hyperbolas before and after transformation to  radial 
space. 

The asymptotes, instead of being along sloping lines x 2  = f v 2 t 2 ,  are 
along vertical lines r = f v. The filled region of the ( r  , t >plane is rec- 
tangular, while the filled region of the (x , t >plane is triangular. 

Figure 2 shows a field profile before and after transformation to  radial 
space. Zero traces were interspersed between live ones t o  clarify the shape of 
the deformation. To understand this deformation, it helps t o  remember that 
a field trace is a curve of constant x = rt  . 

An interesting aspect of the radial-trace transformation is its effect on 
ground roll. A simple model of ground roll is a wave traveling horizontally at  
a constant rate. So on a radial-trace gather the ground roll is found as d.c. 
(zero frequency) on a few radial traces near r = v .  Figure 3 shows an 

approximation to  the idealization. 
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FIG. 5.1-2. Field profile from Alberta (Western Geophysical) interspersed 
with zero traces, shown before and after radial-trace deformation. 

Moveout-Corrected Radial Traces 

Moveout correction may be regarded as a transformation from time t o  
depth. When the moveout correction is properly done, all traces should show 
the same depth-dependent reflectivity. In principle, radial moveout correction 
proceeds by introducing z and eliminating t with the substitution tv = 

d m .  In practice you would prefer a travel-time-depth axis t o  a depth 

axis. So the transformation equation becomes t = . Eliminating 
x with rt we get 

Inspecting (3) we see that  moveout correction in radial-trace coordinates 
is a uniform compression of the time t-axis into a T-axis. The amount of 
compression is fixed when r is fixed. The amount of compression does not 
change with time. The uniformity of the compression is an aid t o  modeling 
and removing the effects of shot waveforms and multiple reflections. It is 
curious t o  note that  moveout correction of radial traces compresses time, 
while moveout correction of constant-offset data stretches time nonuniformly. 
Figure 3 shows a field profile before and after the radial-trace transformation. 
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FIG. 5.1-3. Field profile from Alberta (Western Geophysical) shown before 
and after deformation into radial traces. 

Snell Traces 

The radial-trace coordinate system can be used no matter what the ve- 
locity of the earth. But the coordinate system has a special advantage when 
the velocity is constant, because then it gathers all the energy of a fixed pro- 
pagation angle. The logical generalization t o  stratified media is to  gather all 
the energy with a fixed Snell parameter. A Snell trace is defined (Ottolini) as 
a trajectory on the ( a ,  t )-plane where the stepout p = dt / d x  would be 
constant if the velocity were v ( z  ). Where the velocity increases with depth, 
the Snell traces bend upward. The Snell trace trajectory is readily found by 
integrating the ray equations: 

t = J  d z  
0 v COS 6' 

To  do moveout correction on the Snell traces, introduce the vertical travel- 
time depth t  such that  dz  = v d T. The radial-trace moveout-correction 
equations become 
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Where the earth velocity is stratified, Snell traces have a theoretical 
advantage over radial traces. However they have the disadvantage that the 
curves could become multibranched, so that the transformation would not be 
one-bone. So in practice you might use a simplified velocity model instead 
of your best estimate of the true velocity. 

More philosophically, the transition from constant-o%et traces to  radial 
traces is a big one, whereas the transition from radial traces to Snell traces is 
not so large. Since the use of radial traces is not widespread, we can specu- 
late that  the practical usefulness of Snell traces may be further limited. 

Slant Stack 

Slant stack is a transformation of the offset axis. It is like steering a 
beam of seismic waves. I believe I introduced the term slant stack (Schultz 
and Claerbout [1978]) as a part of a migration method to be described next in 
Section 5.3. I certainly didn't invent the slant-stack concept! It has a long 
history in exploration seismology going back to Professor Rieber in the 1930s 
and to  Professor Riabinkin in the Soviet Union. Mathematically, the slant- 
stack concept is found in the Radon [I9171 transformation. 

The slant-stack idea resembles the Snell trace method of organizing data 
around emergent angle. The Snell trace idea selects data based on a 
hypothetical velocity predicting the local stepout p = dt l d x .  Slant stack 
does not predict the stepout, but extracts it by filtering. Thus slant stack 
does its job correctly whether or not the velocity is known. When the veloci- 
ty  of the medium is known, slant stack enables immediate downward con- 
tinuation even when mixed apparent velocities are present as with diffractions 
and multiple reflections. 
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Slant Stacking and Linear Moveout 

Looking on profiles or gathers for events of some particular stepout 
p = dt l d x  amounts to  scanning hyperbolic events t o  find the places where 

they are tangent t o  a straight line of slope p . The search and analysis will 
be easier if the data  is replotted with linear moveout - tha t  is, if energy 
located a t  offset x = g -s and time t in the ( x ,  t )-plane is moved t o  time 
T = t - px in the ( x ,  T)-plane. This process is depicted in figure 1. The 
linear moveout converts all events stepping out a t  a rate p in (x , t )-space t o  
"horizontal" events in ( x ,  T)-space. The presence of horizontal timing lines 
facilitates the search for and the identification and measurement of the loca- 
tions of the events. 

slope 

P = 

FIG. 5.2-1. Linear moveout converts the task of identifying tangencies t o  
constructed parallel lines t o  the task of locating the tops of convex events. 

After linear moveout T = t - px ,  the components in the data that  have 
Snell parameters near p are slowly variable along the x-axis. T o  extract 
them, apply a low-pass filter on the x-axis, and do so for each value of T, 

The limiting case of low-frequency filtering is extracting the mean. This leads 
t o  the idea of slant stack. 

T o  slant stack, do linear moveout with T = t - px ,  then sum over x .  
This is the same as summing along slanted lines in ( t ,  x)-space. In either 
case, the entire gather P ( x ,  t )  gets converted t o  a single trace that  is a 
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function of T. 

Slant stack assumes that the sum over observed ofkets is an adequate 
representation of integration over all offset. The (slanted) integral over offset 
will receive its major contribution from the zone in which the path of integra- 
tion becomes tangent t o  the hyperboloidal arrivals. On the other hand, the 
contribution to the integral is vanishingly small when the arrival-time curve 
crosses the integration curve. The reason is that propagating waves have no 
zero-frequency component. 

The strength of an arrival depends on the length of the zone of tangency. 
The Fresnel definition of the length of the zone of tangency is based on a 
half-wavelength condition. In an earth of constant velocity (but many flat 
layers) the width of the tangency zone would broaden with time as the hyper- 
bolas flatten. This increase goes as 6, which accounts for half the 
spherical-divergence correction. In other words, slant stacking takes us from 
two dimensions to  one, but a 6 remains t o  correct the conical wavefront 
of three dimensions to the plane wave of two. 

Slant-St ack Gathers are Ellipses. 

A slant stack of a data gather yields a single trace characterized by the 
slant parameter p . Slant stacking at many p -values yields a slant-stack 
gather. (Those with a strong mathematical-physics background will note that 
slant stacking transforms travel-time curves by the Legendre transformation. 
Especially clear background reading is found in Thermodynamics, by H.B. 
Callen, Wiley, 1960, pp. 90-95). 

Let us see what happens t o  the familiar family of hyperbolas 
t ' v 2  = zj2+x2 when we slant stack. It will be convenient to consider the 

circle and hyperbola equations in parametric form, that is, instead of 
t 2 v2=x2+z2 ,  we use z =v t  cos6 and x = vt sin6 or x = Z  tang. 
Take the equation for linear moveout 

and eliminate t and x with the parametric equations. 

z sin 0 - -  Z 
T = z t a n 9  = - cos6 

v cos 6 v v (2) 

Squaring gives the familiar ellipse equation 
n 
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FIG. 5.2-2. Travel-time curves for a data gather on a multilayer earth model 
of constant velocity before and after slant stacking. 

Equation (4) is plotted in figure 2 for various reflector depths a j .  

Two-Layer Model 

Figure 3 shows the travel times of waves in a two-layer model. As is the 
usual case, the velocity is higher in the deeper layer. At  the left are the fa- 
miliar hyperboloidal curves. Strictly, the top curve is exactly a hyperbola 
whereas the lower curve is merely hyperboloidal. The straight line through 
the origin represents energy traveling horizontally along the earth's surface. 
The lower straight line is the head wave. (In seismology it is often called the 
refracted wave, but this name can cause confusion). It represents a ray that  
hits the deeper layer a t  critical angle and then propagates horizontally along 
the interface. 

The right side of the figure shows the travel-time curves after slant 
stacking. Note tha t  curves cross one another in the (x , t )-space but they do 
not cross one another in the (p , 7)-space. The horizontal axis p = dt l dx  
has physical dimensions inverse t o  velocity. Indeed, the velocity of each layer 
may be read from its travel-time curve as the maximum p -value on its ellipse. 
The head waves - which are straight lines in ( a ,  t )-space - are points in 
(p , 7)-space located where the ellipsoids touch. The top curve in (p , T)-space 
is exactly an ellipse, and the lower curve is merely ellipsoidal. 
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FIG. 5.2-3. Identification of precritical reflection ( a  ), postcritical reflection 
( b  ), and head wave ( c  ). 

Interval Velocities from Slant Stacks 

Section 1.5 showed that  downward continuation of Snell waves is purely 
a matter of time shift. The amount of time shift depends only on the angle of 
the waves. For example, a frequency domain equation for the shifting is 

Downward continuing to  the first reflector, we find that the first reflections 
should arrive at  zero time. In migration it is customary to  retard time with 
respect t o  the zero-dip ray. So downward continuation in retarded time 
flattens the first reflection without changing the zer-dip ray. Time shifting 
the data t o  align on the first-layer reflection is illustrated by the third panel 
in figure 4. The first panel shows the velocity model, and the second panel 
shows the slant stacks a t  the surface. After the first reflector is time aligned, 
we have the data that should be observed a t  the bottom of the first layer. 
Now the next deeper curve is an exact ellipse. Estimate the next deeper ve- 
locity from that next deeper ellipse. Continue the procedure to  all depths. 
This method of velocity estimation was proposed and tested by P. Schultz 
[1982]. 

Figure 4 illustrates the difficulty caused by a shallow, high-velocity layer. 
Reflection from the bottom of any deeper, lower-velocity layer gives an incom- 
plete ellipse. It does not connect to  the ellipse above because it seems to  want 
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FIG. 5.2-4. Schultz flattening on successive layers. 

t o  extend beyond. The large p-values (dotted in the figure) are missing 
because they are blocked by the high-velocity (low p ) layer above. The cutoff 
in p happens where waves in the high-velocity layer go horizontally. So 
there are no head waves on deeper, lower-velocity layer bottoms. 

Schultz's method of estimating velocity from an  ellipse proceeds by sum- 
ming on scanning ellipses of various velocities and selecting the one with the 
most power. So his method should not be troubled by shallow high-velocity 
layers. I t  is interesting t o  note that  when the velocity does increase continu- 
ously with depth, the velocity-depth curve can be read directly from the 
rightmost panel of figure 4. The velocity-depth curve would be the line con- 
necting the ends (maximum p ) of the reflections, i.e. the head waves. 

Interface Velocity from Head Waves 

The determination of earth velocity from head waves is an old subject in 
seismology. Velocity measurement from head waves, where i t  is possible, 
refers t o  a specific depth -the depth of the interface- so i t  has even better 
depth-resolving power than an interval velocity (the velocity of a depth inter- 
val between two reflections). 

Traditionally, head-wave velocity analysis involved identification (pic k- 
ing) of travel times. Travel times are hard t o  pick out on noisy data. Clay- 
ton and McMechan [1981] introduced a new method based on the wavefield 
itself, instead of on picked travel times. They did for the velocity analysis of 
head waves what wave-equation migration did for reflections. 

The same idea for getting velocity from back-scattered head waves on 
sections (Section 3.5) can be used on ordinary head waves on common- 
midpoint gathers. On gathers you have the extra information not on a sec- 
tion that  downward continuation focuses energy on zero offset. The focus is 
not a featureless point. Take original data  t o  consist of a head wave only, 
with no reflection. Downward continuation yields a focus a t  zero offset. The 
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FIG. 5.2-5. The upper figure (a contains a synthetic head-wave profile (plot- d ted with linear moveout). The ata  is transformed by slant stack to  the lower 
half of the figure (b). The result of downward continuation of this slant- 
stacked wavefield (b) is shown in figure 6. (Clayton & McMechan) 

focus is a concentrated patch of energy oriented with the same stepout 
dt ldh as the original unfocused head wave. Summing through the focus at  
all possible orientations (slant stack) transforms the data u (h , T) to  dip 
space, say Ti(p , T). The velocity of the earth a t  travel-time depth T is 
found where the seismic energy has concentrated on the ( p ,  T)-plane. The 
velocity is given directly by v (T) = l l p  (7). Given v (T), v ( z  ) is readily 
found. Or the entire calculation could be done in depth z directly instead 
of in travel-time depth T. 

Clayton and McMechan actually do the downward continuation and the 
slant stack in the opposite order. They slant stack first and then downward 
continue. In principle these processes can be done in either order. Remember 
that we are bootstrapping to  the correct earth velocity. Slant stacking does 



FRONTIERS 5.2 Slant Stack 

not depend on the earth's velocity, but downward continuation does. Slant 
stacking need be done only once if it is done first, which is why Clayton and 
McMechan do it that way. Figures 5 and 6 show one of their examples. 

FIG. 5.2-6. The result of downward continuation of the slant-stacked 
wavefield in figure 5b with the correct velocity-depth function (the solid line). 
(Clayton & McMechan) 

Compare the method of Clayton and McMechan to  that of Schultz. 
Schultz flattens the reflections by a method that is sensitive t o  the large p 
parts of the ellipse. Clayton and McMechan look only a t  the largest p part of 
the ellipse. Schultz has the advantage that a method based on reflection is 
not troubled by high-velocity layers, but the disadvantage that decision mak- 
ing is required during the descent. Clayton and McMechan present the inter- 
preter with a plane of information from which the interpreter selects the ve- 
locity. Clayton and McMechan's velocity space is a linear, invertible function 
of the data. Section 5.4 will describe a linear, invertible transformation of 
reflection data (not head waves) t o  velocity space. 
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Slant Stack and Fourier Transform 

Let u (x ,  t ) be a wavefield. The slant stack C(p , r) of the wavefield is 
defined mathematically by 

u ( x ,  r +  px)  dx E l  
The integral across x in (6) is done at  constant r, which is a slanting line 
in the (x , t )-plane. 

Slant stack is readily expressed in Fourier space. The definition of the 
two-dimensional Fourier transformation of the wavefield u (x , t ) is 

Recall the definition of Snell's parameter in Fourier space p = k /w and use 
i t  t o  eliminate k from the 2-D Fourier transform (7). 

U(wp, w) = e  jw(' - pz )  u ( x ,  t )  dx dt (8) 

Change the integration variable from t to  r = t - px . 
~ ( w p , w )  = J e i w r [ J  u ( x , r + p x )  dx ] d r  (9) 

Insert the definition (6) into (9). 

Think of U(wp, o) as a one-dimensional function of w that is extracted 
from the ( k ,  w)-plane along the line k = wp . 

The inverse Fourier transform of (10) is 

The result (11) states that a slant stack can be created by Fourier- 
domain operations. First you transform u (x , t ) to  U (k , w). Then extract 
U ( u p ,  w) from U (k , w). Finally, inverse transform from w to  T and 
repeat the process for all interesting values of p . 

Getting U(wp , w) from U(k ,  w) seems easy, but this turns out to be 
the hard part. The line k = u p  will not pass nicely through all the mesh 
points (unless p = A t  / A x )  so some interpolation must be done. As we have 
seen from the computational artifacts of Stolt migration, Fourier-domain 
interpolation should not be done casually. Interpolation advice is found in 
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Section 4.5. 

Both (6) and (11) are used in practice. In (6) you have better control of 
truncation and aliasing. For large datasets, (11) is much faster. 

Inverse Slant Stack 

Tomography in medical imaging is based on the same mathematics as 
inverse slant stack. Simply stated, (two-dimensional) tomography or inverse 
slant stacking is the reconstruction of a function given line integrals through 
it. The inverse slant-stack formula will follow from the definition of two- 
dimensional Fourier integration: 

Substitute k = wp and dk = w dp into (12). Notice that when w is 
negative the integration with dp runs from positive to  negative instead of 
the reverse. To  keep the integration in the conventional sense of negative to 
positive, introduce the absolute value I w 1 .  (More generally, a change of 
variable of volume integrals introduces the Jacobian of the transformation). 
Thus, 

u (x ,  t )  = J e-jwt [I eiwpz U(wp,w) Iwl  dp ] dw (13) 

Obsex-ve that the { ) in (14) contain an inverse Fourier transform of a product 
of three functions of frequency. The product of three functions in the w- 
domain is a convolution in the time domain. The three functions are first 
U(wp, w), which by (11) is the F T  of the slant stack. Second is a delay 
operator e wPZ,  i.e an impulse function of time at  time px . Third is an 

I w I filter. The 1 w 1 filter is called a rho filter. The rho filter does not 
depend on p so we may separate it from the integration over p . Let "*" 
denote convolution. Introduce the delay px as an argument shift. Finally 
we have the inverse slant-stack equation we have been seeking: 

It is curious that the inverse to the slant-stack operation (6) is basically 
another slant-stacking operation (15) with a sign change. 
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Plane-Wave Superposition 

Equation (15)  can be simply interpreted as plane-wave superposition. To  
make this clear, we first dispose of the rho filter by means of a definition. 

% ( P , T )  = rho(r) * T ( p  , T )  (16)  

Equation (16)  will be seen to  be more than a definition. We will see that  

IU ( p  , T )  can be interpreted as the plane-wave spectrum. Substituting the 
definition (16)  into both (15)  and ( 6 )  gives another transform pair: 

T o  confirm that  " U p ,  T )  may be interpreted as the plane-wave spec- 
trum, we take % ( p  , T )  t o  be the impulse function 6 ( p  - p O )  6(7 - rO) and 

substitute it into (17).  The result u ( x  , t ) = 6(t - p O x  - r0) is an impulsive 

plane wave, as expected. 

Reflection Coefficients - Spherical versus Planar 

The amplitudes that you see on the reflected waves on a field profile are 
affected by many things. Assume that  corrections can be made for the spheri- 
cal divergence of the wave, the transmission coefficients through the layers, 
inner bed multiples, etc. What remains are the spherical-wave reflection 
coe$icients. Spherical-wave reflection strengths are not the same as the 
plane-wave reflection coefficients calculated in FGDP or by means of Zoep- 
pritz [1919] equations. Theoretical analyses of reflection coefficient strengths 
are always based on Fourier analysis. Equations (17)  and (18)  provide a link 
between plane-wave reflection coefficients and cylindrical-wave reflection 
coefficients. See page 196 for going from cylinders t o  spheres. 

The Rho Filter 

In practical work, the rho filter is often ignored because it can be 
absorbed into the rest of the filtering effects of the overall data recording and 
processing activity. However, the rho filter is not inconsequential. The 
integrations in the slant stack enhance low frequencies, and the rho filter 
pushes them back t o  their appropriate level. Let us inspect this filter. The 
rho filter has the same spectrum as does the time derivative, but their time 
functions are very different. The finite-difference representation of a time 
derivative is short, only A t  in time duration. Because of the sharp corner 
in the absolute-value function, the rho filter has a long time duration. The 
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Hilbert kernel - l / t  has a Fourier transform i sgn (w). Notice that 
I w 1 = (-iw) X i sgn (w). In the time domain this means that 

d /dt (-llt ) = l / t  2, SO rho(t ) = l / t  2. 

An alternate view is that the rho filter should be divided into two parts, 
with half going into the forward slant stack and the other half into the 
inverse. Then slant stacking would not cause the power spectrum of the data 
to  change. An interesting way to divide the 1 w 1 is 1 w I = 6 6. It 
was shown in Section 4.6 that 6 is a causal time function and 6 is 
anticausal. More details about slant stacks are found in Phinney et al. [I9811 

In practice, slant stack is not so cleanly invertible as 2-D FT, so various 
iteration and optimization techniques are often used. 

EXERCISES 

1. Assume that v ( z  ) = const and prove that the width of a Fresnel zone 
increases in proportion to  6 . 

2. Given v ( z  ), derive the width of the Fresnel zone as a function of t . 

5.3 Snell Waves and Skewed Coordinates 

Slant stacks are closely related to Snell waves. But there is more to  it 
than that. Three different types of gathers (CSP, CGP, and CMP) can be 
slant stacked, and the meaning is different in each case. 

A Snell wave can be synthesized by slant stacking ordinary reflection 
data. Snell waves are described by wave-propagation theory. You can expect 
to  be able to  write a wave equation that really describes the Snell wave 
despite complexities of lateral velocity variation, multiple reflections, shear 
waves, or all these complications at  once. Contrast this to a CDP stack 
where downward continuation is already an approximation even when velocity 
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is constant. Of course we can always return t o  data  analysis in shot-geophone 
space. But the slant stack is a stack, and that  means there is already some 
noise reduction and data  compression. 

Snell Wave Information in Field Data 

The superposition principle allows us t o  create an  impulse function by a 
superposition of sinusoids of all frequencies. A three-dimensional generaliza- 
tion is the creation of a point source by the superposition of plane waves 
going in all directions. Likewise, a plane wave can be a superposition of many 
Huygens secondary point sources. A Snell wave can be simulated by an 
appropriate superposition, called a slant stack, of the point-source data 
recorded in exploration. 

Imagine that  all the shots in a seismic survey were shot off at the same 
time. The downgoing wave would be approximately a plane wave. (Let us 
ignore the reality that  the world is 3-D and not 2-D). The data recorded from 
such an experiment could readily be simulated from conventional data  simply 
by summing the data  field P ( s  , g , t ) over all s . In each common- 
geophone profile the traces would be summed with no moveout correction. 

To  simulate a nonvertical Snell wave, successive shots must be delayed 
(to correspond t o  a supersonic airplane), according t o  some prescribed 
p, = dt I d s .  

What happens if data  is summed over the geophone axis instead of the 
shot axis? The result is point-source experiments recorded by receiver anten- 
nas that  have been highly tuned to  receive vertically propagating waves. 
Time shifting the geophones before summation simulates a receiver antenna 
that  records a Snell wave, say, pg = d t  /dg upcoming a t  an angle 

sin 6' = P g  V -  

Integration over an axis is an  extreme case of low-pass filtering over an 
axis. Between the two extremes of the point-source case and the plane-wave 
case is the case of directional senders and receivers. 

The simple process of propagation spreads out a point disturbance t o  a 
place where, from a distance, the waves appear t o  be nearly plane waves or 
Snell waves. Little patches of data  where arrivals appear t o  be planar can be 
analyzed as though they were Snell waves. 

In summary, a downgoing Snell wave is achieved by dip filtering in shot 
space, whereas an upcoming Snell wave is achieved by dip filtering in geo- 
phone space. 
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Muting and Data Recording 

The basic goal of muting is t o  remove horizontally moving energy. Such 
energy is unrelated t o  a deeper image. Typically muting is performed as 
described in Section 3.5 - tha t  is, a weighting function zeroes data  generally 
beyond some value of ( g  -s ) / t  . There is no question that  muting removes 
much horizontally moving energy, but more can be done. Because of back- 
scattering, horizontally moving energy can often be found inside the mute 
zone. The way t o  get rid of it is t o  use a dip filter instead of a weighting 
function. Before modern high-density recording, slow moving noises were 
often aliased on the geophone cable, so dip filtering wasn't feasible. If the 

emergent angle isn't close enough t o  vertical, that  is, if dt /dg  isn't small 
enough, then the waves can't have come from the exploration target. On 
explosion data, filtering is not so easily applied in shot space as it is in geo- 
phone space because data is not very densely recorded in shot space. Don't 
fall into the trap of thinking that  this dip filtering can be done on a common- 
mid point gather. Back-scattered ground roll has no moveout on a common- 
midpoint gather (see Section 3.2). 

Marine water-bottom scatter is frequently so strong that  it is poorly 
suppressed by conventional processing. In Section 3.2 we saw the reason: 
point scatterers imply hyperbolic arrivals, which have steep dip, hence they 
have the stacking velocities of sediment rather than water. What  is needed 
are two dip filters - one t o  reject waves leaving the shots a t  nonpenetrating 
angles, and the other t o  reject waves arriving a t  the geophones a t  non- 
penetrating angles. 

Present-day field arrays filter on the basis of spatial frequency k z .  More 

high-frequency energy would be left in the da ta  if the recording equipment 
used dip ( k  l w )  filters instead of spatial-frequency k filters. The causal dip 
filters described in Section 2.5 might work nicely. 

Synthesizing the Snell Wave Experiment 

Let us synthesize a downgoing Snell wave with field data, then imagine 
how the upcoming wave will look and how it will carry t o  us information 
about the subsurface. 

Slant stacking will take the survey line data P (s , g , t ), which is a func- 
tion of shot location s , geophone location g , and travel time t , and sum 

over the shot dimension, thereby synthesizing the upcoming wave U(g  , t ), 
which should have been recorded from a downgoing Snell wave. This should 
be the case even though there may be lateral velocity variation and multiple 
reflections. 
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The summation process is confusing because three different kinds of time 
are involved: 

t - - travel time in the point-source field experiments. 

t ' = t - p (g - s ) = interpretation time. The shal- 
lowest reflectors are seen just after t' = 0. 

- 
peeudo - time in the Snell pseudoexperiment with a mov- 

ing source. 

Time in the pseudoexperiment in a horizontally layered earth has the peculiar 
characteristic that  the further you move out the geophone axis, the later the 
echoes will arrive. Transform directly from the field experiment time t t o  
interpretation time t ' by 

Figure 1 depicts a downgoing Snell wave. 

FIG. 5.3-1. Wavefront of a Snell wave that  reflects from two layers, carrying 
information back up t o  g 

Figure 2 shows a hypothetical common-geophone gather, which could be 
summed to  simulate the Snell wave seen a t  location g in figure 1. The 

lateral offset of B from C is identical in figure 1 with that  in figure 2 (at 
two places in figure 2). Repeating the summation for all geophones syn- 
thesizes an  upcoming wave from a downgoing Snell wave. 
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input data sh@?ed for firing after firing 

FIG. 5.3-2. On the left is a common-geophone gather a t  g over two flat 
reflectors. In the center the data  is shifted by linear moveout in preparation 
for the generation of the synthetic Snell wave by summation over shots. On 
the right is shown the Snell wave trace recorded a t  geophone gl. A Snell 
wave seismic section consists of many side-by-side traces like g 

The variable t ' may be called an interpretation coordinate, because 
shallow reflectors are seen just after t ' = 0, and horizontal beds give echoes 
that  arrive with no horizontal stepout, unlike the pseudo-Snell wave. For 
horizontal beds, the detection of lateral location depends upon lateral change 
in the reflection coefficient. In figure 1, the information about the reflection 
strength at B  is recorded rightward a t  g instead of being seen above B ,  
where it would be on conventional stack. The moving of received data  t o  an 
appropriate lateral location is thus an additional requirement for full interpre- 
tation. 

Figure 3 shows the same two flat layers as figures 1 and 2, but there are 
also anomalous reflection coefficients a t  points A , B,  and C.  Point A is 
directly above point B .  The path of the wave reflected a t  B  leads directly 
t o  C and thence t o  g l .  Subsequent frames show the diffraction hyperbolas 

associated with these three points. Notice that  the pseudo-Snell waves 
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model 

gl 

Snell wave 

A C g ,  

partial interpretation full interpretation 

FIG. 5.3-3. Top left is three point scatterers on two reflectors. Top right is 
the expected Snell wave. Bottom left is the Snell wave after linear moveout. 
Bottom right is after transform to  full interpretation coordinates. At  last a ,  
b , and c are located where A , B , and C began. 
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reflecting from the flat layers step out a t  a rate p .  Hyperbolas from the 
scatters A , B , and C come tangent t o  the Snell waves a t  points a , b , 
and c . Notice that  b and c lie directly under g l  because all are 

aligned along a raypath with Snell parameter p . The points A , B ,  and C 
locate the tops of the hyperbolas since the earliest arrival must be directly 
above the point scatterer, no matter what the incident wavefield. Converting 
t o  the interpretation coordinate t ' in the next frame offers the major advan- 
tage that  arrivals from horizontal layers become horizontal. But notice that  
the hyperboloids have become skewed. Limiting our attention t o  the arrivals 
with little stepout, we find information about the anomalous reflection 
coefficients entirely in the vicinities of a , b , and c , which points originally 
lay on hyperbola flanks. These points will not have the correct geometrical 
location, namely that  of A , B and C ,  until the data is laterally shifted to  
the left, to, say, g ' = g - f ( t  I ) .  Then a will lie above b . The correct 

amount of shift f ( t  I )  is a subject that  relates t o  velocity analysis. The ve- 
locity analysis that  pertains t o  this problem will be worked out in the next 
section. 

What's Wrong with Snell Waves? 

Before the DSR was developed, I thought that  the only proper way to  
analyze seismic data  was t o  decompose it into Snell waves. Since a Fresnel 
zone seems t o  be about 10" wide, not many Snell waves should be required. 
The small number of required sections was important because of the limited 
power of computers in the 1970's. I knew tha t  each Snell wave is analyzable 
by a single square-root equation, and that  even multiple reflections can be 
handled by methods described in FGDP and here in Section 5.6. Theoreti- 
cally this approach was a big improvement over CDP stack, which is hardly 
analyzable a t  all. A practical problem for downgoing Snell waves, however, is 
that  they may become complicated early if they encounter lateral velocity 
inhomogeneity shortly after they depart the earth's surface. I no longer 
believe that  Snell waves are a panacea, although I am unsure what their ulti- 
mate role will be. But many waves behave a little like they are Snell waves. 
This motivates the development of a coordinate system that  is ideal for Snell 
waves, and good for waves that  are not far from being Snell waves. 
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Lateral Invariance 

The nice thing about a vertically incident source of plane waves p = 0 
in a horizontally stratified medium is that  the ensuing wavefield is laterally 
invariant. In other words, an observation or a theory for a wavefield would in 
this case be of the form P ( t  ) X const (x ). Snell waves for any particular 
nonzero p -value are also laterally invariant. Tha t  is, with 

5' = x 

lateral invariance is given by the statement 

Obviously, when an apparently two-dimensional problem can be reduced t o  
one dimension, great conceptual advantages result, t o  say nothing of sampling 
and computational advantages. Before proceeding, study equation (3) until 
you realize why the wavefield can vary with x but be a constant function of 
x '  when (2b) says x = x'. 

The coordinate system (2) is a retarded coordinate system, not a moving 
coordinate system. Moving coordinate systems work out badly in solid-earth 
geophysics. The velocity function is never time-variable in the earth, but it 
becomes time-variable in a moving coordinate system. This adds a whole 
dimension t o  computational complexity. 

The goal is t o  create images from data  using a model velocity tha t  is a 
function of all space dimensions. But the coordinate system used will have a 
rejerence velocity that  is a function of depth only. 

Snell Wave Coordinates 

A Snell wave has three intrinsic planes, which suggests a coordinate sys- 
tem. First are the layer planes of constant z , which include the earth's sur- 
face. Second is the plane of rays. Third is the moving plane of the wave- 
front. The planes become curved when velocity varies with depth. 

The following equations define Snell wave coordinates. 

cos 8 z 1 ( 2 , x ,  t )  = Z - 
v 

x ' ( z , x ,  t )  = z t a n 0  + x 

cos 8 t l ( z ,  x ,  t )  = 
sin 8 z - x -  

v v 
+ t 
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Equation (4a) simply defines a travel-time depth using the vertical phase 
velocity seen in a borehole. Interfaces within the earth are just planes of con- 
stant z'. 

Setting x '  as defined by equation (4b) equal t o  a constant, say, xo, 

gives the equation of a ray, namely, (x - x o)/z = - tan 6. Different values 

of x o  are different rays. 

Setting t '  as defined by equation (4c) equal to  a constant gives the 
equation for a moving wavefront. To see this, set t '  = t and note that at  

constant x you see the borehole speed, and a t  constant z you see the air- 
plane speed. 

Mathematically, one equation in three unknowns defines a plane. So, set- 
ting the left side of any of the equations (4a,b,c) to  a constant gives an equa- 
tion defining a plane in (z , x , t )-space. To get some practice, we will look a t  
the intersection of two planes. Staying on a wavefront requires dt '  = 0. 
Using equation (4c) gives 

cos 9 dt '  = 0 = - sin 8 
dz - - dx + dt 

v v (5) 

Combining the constant wavefront equation dt '  = 0 with the constant depth 
equation dz' = dz = 0 gives the familiar relationship 

When coordinate planes are nonorthogonal, the coordinate system is said 
t o  be a$ine. With afine coordinates, such as (4), we have no problem with 
computational tractability, but we often do have a problem with our own con- 
fusion. For example, when we display movies of marine field data, we see a 
sequence of (h , t )-planes. Successive planes are successive shot points. So 

the data is displayed in ( s ,  h )  when we tend to  think in the orthogonal 
coordinates (y  , h ) or (s , g ). With affine coordinates I find it easiest to for- 
get about the coordinate axis, and think instead about the perpendicular 
plane. The shot axis s can be thought of as a plane of constant geophone, 

say, cg . So I think of the marine-data movie as being in (cs , ch , ct )-space. 
In this movie, another plane, really a family of planes, the planes of constant 
midpoints cy , sweep across the screen, along with the "texture" of the data 
(Section 3.0). 

To  define Snell coordinates when the velocity is depth-variable, it is only 
necessary to  interpret (4) carefully. First, all angles must be expressed in 
terms of p by the Snell substitution sin 6 = p v ( z  ). Then z must every- 
where be replaced by the integral with respect t o  z . 
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Snell Waves in Fourier Space 

The chain rule for partial differentiation says that  

In Fourier space, equations (7a) and (7b) may be interpreted as 

Of particular interest is the energy that  is flat after linear moveout (constant 
with x ) .  For such energy d / a x t  = 2 k: = 0. Combining (8a) and (8b) 

gives the familiar equation 

EXERCISES 

1. Explain the choice of sign of the s -axis in figure 1. 

2. Equation (4) is for upgoing Snell waves. What coordinate system would 
be appropriate for downgoing Snell waves? 

3. Express the scalar wave equation in the coordinate system (4). Neglect 
first derivatives. 

4. Express the dispersion relation of the scalar wave equation in terms of 
the Fourier variables (w', ki , kl ). 
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5.4 Interval Velocity by Linear Moveout 

Linear moveout forms the basis for a simple, graphical method for finding 
seismic velocity. The method is particularly useful for the analysis of data 
that  is no longer in a computer, but just exists on a piece of paper. Addition- 
ally, the method offers insights beyond those offered by the usual computer- 
ized hyperbola scan. Using it will help us  rid ourselves of the notion that 
angles should be measured from the vertical ray. Non-zero Snell parameter 
can be the "default." 

Ultimately this method leads t o  a definition of velocity spectrum, a plane 
in which the layout of data, after a linear invertible transformation, shows the 
seismic velocity. 

Graphical Method for Interval Velocity Measurement 

A wave of velocity v from a point source at  location (x , z ) = (0, z, ) 
passes any point (x , z ) at time t where 

In equation (1) x should be replaced by either half-offset h or midpoint y . 
Then t is two-way travel time; the velocity v is half the rock velocity; and 
(z - z, ) is the distance t o  an image source. 

Differentiating (1) with respect t o  t (at constant z ) gives 

Figure 1 shows that  the three parameters required by (3) t o  compute the 
material velocity are readily measured on a common-midpoint gather. 

Equation (3) can be used to  estimate a velocity whether or not the earth 
really has a constant velocity. When the earth velocity is stratified, say, 
v ( z  ), it is easy to  establish that the estimate (3) is exactly the root-mean- 
square (RMS) velocity. First recall that the bit of energy arriving at  the point 
of tangency propagates throughout its entire trip with a constant Snell pa- 
rameter p = dt /dx . 
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FIG. 5.4-1. A straight line, drawn tangent t o  hyperbolic observations. The 
slope p of the line is arbitrary and may be chosen so that  the tangency 
occurs a t  a place where signal-tenoise ratio is good. (Gonzalez) 

The best way to  specify velocity in a stratified earth is t o  give it as some 
function v '(2 ). Another way is to  pick a Snell parameter p and start des- 

cending into the earth on a ray with this p .  As the ray goes into the earth 
from the surface z = 0 at t = 0, the ray will be moving with a speed of, 

say, v (p , t ). It  is an elementary exercise to  compute v (p , t ) from v '(2 ) 
and vice versa. The horizontal distance x which a ray will travel in time t 
is given by the time integral of the horizontal component of velocity, namely, 

Replacing sin 0 by pv and taking the constant p out of the integral 
yields 

Recalling that p = d t  l d x  , insert(5) into (3): 

2 x d x  = -- 
measured t d t  

2 1 
measured = - 5 V (P 7 t )2 d t  

0 

which justifies the assertion that 

- - 
measured - root-mean-square - v~~~ (8) 

Equation (7) is exact. It does not involve a "small offset" assumption or a 
L'straight ray" assumption. 
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Next compute the interval velocity. Figure 2 shows hyperboloidal 
arrivals from two flat layers. Two straight lines are constructed t o  have the 
same slope p . Then the tangencies are measured to  have locations (x l, t l) 

and (x2, t 2). Combining ( 6 )  with (4), and using the subscript j t o  denote 

the j th tangency (xi , t ), gives 

Assume that the velocity between successive events is a constant vinterval ,  

and subtract (9) with j +l from (9) with j to  get 

FIG. 5.4-2. Construction of two parallel lines on a common-midpoint gather 
which are tangent to  reflections from two plane layers. (Gonzalez) 

Solving for the interval velocity gives 

2 - "j+1 - "j - dx 
interval - 

t j  +I - t j  dt 
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So the velocity of the material between the jth and the j +lst 

reflectors can be measured directly using the square root of the product of the 
two slopes in (ll), which are the dashed and solid straight lines in figure 2. 
The advantage of manually placing straight lines on the data, over automated 
analysis, is that you can graphically visualize the noise sensitivity of the meas- 
urement, and you can select on the data the best offsets a t  which t o  make the 
measurement. 

If you do this routinely you quickly discover that the major part of the 
effort is in accurately constructing two lines that are tangent to  the events. 
When you run into difficulty, you will find it convenient to replot the data 
with linear moveout t' = t - px.  After replotting, the lines are no longer 
sloped but horizontal, so that any of the many timing lines can be used. 
Locating tangencies is now a question of finding the tops of convex events. 
This is shown in figure 3. 

FIG. 5.4-3. Measurement of interval velocity by linear moveout. (Gonzalez) 
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In terms of the time t ', equation (11) is 

2 " interval 

Earth velocity is measured on the right side of figure 3 by measuring the slope 
of the dashed line, namely A t l / A x ,  and inserting it into equation (12). 
(The value of p is already known by the amount of linear moveout that  was 
used to  make the plot). 

Common-Midpoint Snell Coordinates 

Common-midpoint slanted wave analysis is a more conservative approach 
to  seismic data analysis than the Snell wave approach. The advantage of 
common-midpoint analysis is that the effects of earth dip tend to  show up 
mainly on the midpoint axis, and the effect of seismic velocity shows up 
mainly on the of ie t  axis. Our immediate goal is t o  define an invertible, 
wave-equation approach to  determination of interval velocity. 

The disadvantage of common-midpoint analysis is that  it is nonphysical. 
A slant stack at  common geophone simulates a downgoing Snell wave, and 
you expect to  be able to  write a differential equation t o  describe it, no matter 
what ensues, be it multiple reflection or lateral velocity variation. A 
common-midpoint slant stack does not model anything that is physically real- 
izable. Nothing says that a partial differential equation exists t o  extrapolate 
such a stack. This doesn't mean that  there is necessarily anything wrong 
with a common-midpoint coordinate system. But it does make us respect the 
Snell wave approach even though its use in the industrial world is not exactly 
growing by leaps and bounds. 

(Someone implementing common-midpoint slant stack would immediately 
notice that it is easier than slant stack on common-geophone data. This is 
because a t  a common midpoint, the tops of hyperboloids must be at  zero 
offset, the location of the Fresnel zone is more predictable, and interpolation 
and missing data problems are much alleviated). 

Seismic data is collected in time, geophone, shot, and depth coordinates 
(t , g , s , z ). A new four-component system will now be defined. Midpoint is 
defined in the usual way: 

Travel-time depth is defined using the vertical phase velocity in a borehole. 
Two-way travel times are used, in order to be as conventional as possible: 
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Next the surface offset h '  is defined. We will not use the old definition of 
offset. For this method, shots and geophones should not go straight down, 
but along a ray. This can be so if h ' is defined as follows: 

With this new definition of h ' the separation of the shot and geophone 
decreases with depth for constant h '. 

Define the LMO tame as the travel time in the point-source experiment 
less the linear moveout. So, a t  any depth, the LMO time is t - p (g -s ). As 
h '  was defined t o  be the surface half-offset, t' is defined t o  be the surface 
LMO time. From the LMO time of a buried experiment, the LMO time a t  
the surface is defined by adding in the travel-time depth of the experiment: 

You may like t o  think of (16) as a "slant" on time retardation for upcoming 
waves, say, t ' = tLMO + zelant / v .  Formally, 

Figure 4 is a geometrical representation of these concepts. 

From the geometry of figure 4 it will be deduced that  a measurement of 
a reflection a t  some particular value of (h', t ') directly determines the veloci- 

ty. Write an equation for the reflector depth: 

t ' h ' 
v [ + p h ' cos 0 = reflector depth = - 

tan 0 

Using Snell's law t o  eliminate angles and solving for velocity gives 

This is consistent with equation (12). 

Gathering the above definitions into a group, and allowing for depth- 
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FIG. 5.4-4. The CMP-LMO coordinate frame geometry. This is a natural 
coordinate system for describing waves that  resemble a reference Snell wave. 

variable velocity by replacing z by the integral over z ,  we get 

cos 0 
t 1 ( t , g 7 s , z )  = t - p ( g  - s ) + 2 j -  d~ 

0 ( 2 0 4  
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Before these equations are used, all the trigonometric functions must be 
eliminated by Snell's law for stratified media, sin 8(z ) = p v ( z  ). Snell's pa- 
rameter p is a numerical constant throughout the analysis. 

The equation for interval velocity determination (12) again arises when 
dt 'ldz from (20a) and dh 'ldz from (20c) are combined: 

dt ' - - - 2 cos 8 
dh ' v tan 8 

Eliminating the trig functions with p v = sin 8 allows us to solve for the 
interval velocity: 

1 , 2  = - 1 
1 dt '  

p + - -  
2 dh' 

At the earth's surface z = 0, seismic survey data can be put into the 
coordinate frame (20) merely by making a numerical choice of p and doing 
the linear moveout. No knowledge of velocity v (z ) is required so far. Then 
we look at  the data for some tops of the skewed hyperbolas. Finding some, 
we use equation (12), (19) or (22) to  get a velocity with which to  begin down- 
ward continuation. 

Waves can be described in either the ( t  , g , s ,  z )  physical coordinates 
or the newly defined coordinates ( t ', y , h ', 7). In physical coordinates the 
image is found at 

t = O  and 9 = s ( 2 3 4 4  

To express these conditions in the Snell coordinates, insert (23) into (20a) and 
(20d). The result is what programmers call the stopping condition: 

This is the depth at  which the velocity information should be best focused in 
the (h I, t '>plane. Next some downward-continuation equations. 

Differential Equations and Fourier Transforms 

The chain rule for partial differentiation gives 
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In our usual notation the Fourier representation of the time derivative at is 

-i w. Likewise, at and the spatial derivatives (ay , ah a,, a. , a8 , az ) are 
associated with 2 (ky , kh 1, k, kg , k8 , k, ). Using these Fourier variables in 
the vectors of (25) and differentiating (20) to  find the indicated elements in 
the matrix of (25), we get 

0 t a n 9  2 cos 9 
v 

Let S be the sine of the takeoff angle at  the source and let G be the 
sine of the emergent angle at  the geophone. If the velocity v is known, then 
these angles will be directly measurable as stepouts on common-geophone 
gathers and common-shot gathers. Likewise, on a constant-offset section or a 
slant stack, observed stepouts relate t o  an apparent dip Y ,  and on a linearly 
moved-out common-midpoint gather, stepouts measure the apparent stepout 
H '. The precise definitions are 

With these definitions (26b) and (26c) become 

The familiar offset stepout angle H is related to  the LMO residual stepout 
angle H' by H' = H - p v .  Setting H' equal to  zero means setting khI  

equal t o  zero, thereby indicating integration over h ', which in turn indicates 
slant stacking data with slant angle p . Small values of H t / v  or kht/w 

refer to  stepouts near t o  p . 

Processing Possibilities 

The double-square-root equation is 
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With substitutions (26a,d), and (27a,b) the DSR equation becomes 

+ [ 1 -  2 p v ( H 1  + Y )  + 2 (H'  2 + Y ) ~  
1 - p  v 

Equation (30) is an exact representation of the double-square-root equa- 
tion in what is called retarded Snell midpoint coordinates. 

The coordinate system (20) can describe any wavefield in any medium. 
Equation (20) is particularly advantageous, however, only in stratified media 

of velocity near v ( z )  for rays that  are roughly parallel t o  any ray with the 
chosen Snell parameter p .  There is little reason t o  use these coordinates 
unless they "fit" the wave being studied. Waves that  fit are those that  are 
near the chosen p value. This means that  H' doesn't get too big. A 
variety of simplifying expansions of (30) are possible. There are many permu- 
tations of magnitude inequalities among the three ingredients pv , H', and 
Y.  You will choose the expansion according t o  the circumstances. The 
appropriate expansions and production considerations, however, have not yet 
been fully delineated. But let us take a look a t  two possibilities. 

First, any dataset can be decomposed by stepout into many datasets, 
each with a narrow bandwidth in stepout space - CMP slant stacks, for 
example. For any of these datasets, H' could be ignored altogether. Then 
(30) would reduce t o  

The above approach is similar to  the one employed by Richard Ottolini in his 
dissertation. 

Next, let us make up an approximation t o  (30) which is separable in Y 
and HI. We will be using separation methodology introduced in Section 3.4. 
Equation (31b) provides the first part. Then take Y = 0 and keep all terms 
up t o  quadratics in H': 
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A separable approximation of (30) is (31b) plus (32). It is no accident 
that  there are no linear powers of H' in (32). The coordinate system was 
designed so that energy near the chosen model Y = 0 and H = pv should 
not drift in the (h ', t '>plane as the downward continuation proceeds. 

The velocity spectrum idea represented by equation (32) is t o  use the H' 
term to  focus the data on the (h ', t ')-plane. After focusing, it should be pos- 
sible to read interval velocities directly as slopes connecting events on the 
gathers. This approach was used in the dissertation of Alfonso Gonzalez 
[1982]. 

EXERCISE 

1. A hyperbola is identified on a zero-offset section. The top is obscured 
but you can measure ( p  , x , t ) at  two places. What is the earth veloci- 

ty? Given the same measurements on a field profile (constant s ) what is 
the earth velocity? 

5.5 Multiple Reflection, Current Practice 

Near the earth's surface are a variety of unconsolidated materials such as 
water, soil, and the so-called weathered zone. The contrast between these 
near-surface materials and the petroleum reservoir rocks below is often severe 
enough to produce a bewildering variety of near-surface resonances. These 
resonance phenomena are not predicted and cannot be explained by the 
methods described in previous chapters. 

Hard Sea Floor Example 

Figure 1 shows textbook-quality multiple reflections from the sea floor. 
2 2 Hyperbolas v t - x 2  = zj2 appear a t  uniform intervals zj = j AZ , 

j =0, 1,2 ,  . - . The data is unprocessed other than by multiplication by a 
spherical divergence correction t .  Air is slower and lighter than water while 
sea-floor sediment is almost always faster and denser. This means that 
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FIG. 5.5-1. Marine profile of multiple reflections from Norway. A t  the right, 
the near trace is expanded. (GECO) 
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successive multiple reflections almost always have alternating polarity. The 
polarity of a seismic arrival is usually ambiguous, but here the waveform is 
distinctive and it clearly alternates in polarity from bounce to  bounce. The 
ratio of amplitudes of successive multiple reflections is the reflection 
coefficient. In figure 1, the reflection coefficient seems to  be about - 0.7. Mul- 
tiply reflected head waves are also apparent, as are alternating polarities on 
them. Since the head-wave multiple reflections occur a t  critical angle, they 
should have a -1.0 reflection coefficient. We see them actually increasing 
from bounce to  bounce. The reason for the increase is that the spherical- 
divergence correction is based on three-dimensional propagation, while the 
head waves are really spreading out in two dimensions. 

Multiple reflections are fun for wave theorists, but they are a serious 
impediment t o  geophysicists who would like t o  see the information-bearing 
primary reflections that they mask. 

Deconvolution in Routine Data Processing 

The water depth in figure 1 is deeper than typical of petroleum prospect- 
ing. Figures 2 and 3 are more typical. In figure 2, the depth is so shallow it 
is impossible t o  discern bounces. With land data the base of the weathered 
zone is usually so shallow and indistinct that it is generally impossible t o  dis- 
cern individual reflections. The word shallow as applied to  multiple reflections 
is defined t o  mean that  the reflections reoccur with such rapidity that they 
are not obviously distinguished from one another. 

Statisticians have produced a rich literature on the subject of deconvolu- 
tion. For them the problem is really one of estimating a source waveform, 
not of removing multiple reflections. There is a certain mathematical limit in 
which the multiple-reflection problem becomes equivalent t o  the source- 
waveform problem. This limit holds when the reverberation is confined to  a 
small physical volume surrounding the shot or the geophone, such as the soil 
layer. The reason that  the source-waveform and multiple-reflection problems 
are equivalent in this limit is that the downgoing wave from a shot is not sim- 
ply intrinsic t o  the shot itself but also includes the local soil resonances. The 
word ghost in reflection seismology refers t o  the reflection of the source pulse 
from the surface (or sometimes from the base of the weathered layer). 
Because the source is so near to these reflectors, we often regard the ghost as 
part of the source waveform too. 

An extensive literature exists on the vertical-incidence model of multiple 
reflections. Among wave-propagation theorists, the removal of all multiples is 
called inversion. It  seems that for inversion theory to be applicable to the 
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real problem, the theory must include a way t o  deal with an unknown, spec- 
trally incomplete, shot waveform. 

Routine work today typically ignores inversion theory and presumes the 
mathematical limit within which multiples may be handled as a shot 
waveform. The basic method was first developed for the industry by 
Schneider, Larner, Burg, and Backus [I9641 of GSI (figure 2). Despite many 
further theoretical developments and the continuing active interest of many 
practical workers, routine deconvolution is little changed. 

FIG. 5.5-2. Field profiles before (left) and after (right) deconvolution. (distri- 
buted by GSI, circa 1965) 

Conventional industrial deconvolution (figure 2) has many derivations 
and interpretations. I will state in simple terms what I believe to  be the 
essence of deconvolution. Every seismogram has a spectrum. The spectrum 
is a product of many causes. Some causes are of fundamental interest. Oth- 
ers are extraneous. It is annoying when a seismogram is resonant just because 
of some near-surface phenomena. Deconvolution is basically a process in 
which strong resonances are measured, and then a filter is designed t o  
suppress them. The filter is designed t o  have a spectrum that  is roughly 
inverse t o  the spectrum of the raw data. Thus the output of the filter is 
roughly white (equal amounts of all frequencies). From the earliest times, 
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seismologists have found that  reflection seismic data  rarely makes sense much 
outside the frequency band 10-100 Hz, so as a final step, frequencies outside 
the band are removed. (The assumption that  the output spectrum should be 
white seems t o  most seismologists t o  be a weak assumption, but practice usu- 
ally shows i t  better than interpreting earth images from raw data). 

Another nonmathematical explanation of why deconvolution is a success 
in practice is that  it equalizes the spectrum from trace t o  trace. I t  balances 
the spectra (Tufekcic et a1 [1981)). Not only is it annoying when a seismo- 
gram is resonant just because of some near-surface phenomena, but  i t  is more 
annoying when the wave spectrum varies from trace t o  trace as the near sur- 
face varies from place t o  place. A variable spectrum makes it hard t o  meas- 
ure stepouts. Notice that  the conventional industrial deconvolution described 
above includes spectral balancing as a byproduct. Figure 3 shows data that  
needs spectral balancing. 

The above interpretation of deconvolution and why it works is different 
from what is found in most of the geophysical literature. Deconvolution is 
often interpreted in terms of the predictability of multiple reflections and the 
nonpredictability of primary reflections. It is shown in FGDP how multiple 
reflections are predicted. They are predicted, not by a strictly convolutional 
model, but approximately so. Prediction by convolution works best when the 
reverberation is all in shallow layers. Then it is like a source waveform. 

Cardiovascular research is well integrated with routine practice, whereas 
pulmonary research is not. I compare this t o  migration and velocity theory 
being a good guide t o  industrial practice, whereas deconvolution theory is less 
so. The larger gap between theory and practice is something t o  be aware of. 
Some fields are more resistant t o  direct attack. In them you progress by more 
indirect routes. This is confusing for the student and demoralizing for the 
impatient. But that  is the way it is. For more details, see Ziolkowski [1984]. 

The next few pages show land data with buried geophones confirming 
that  source waveforms are mainly near-surface reverberation. Then we turn 
t o  departures from the convolutional model. 

A Vertical Seismic Profile (VSP) 

Seismologists always welcome the additional information from a vert ical  
se ismic  profile (VSP) .  A V S P  is some collection of seismograms recorded from 
the surface to  a borehole. Routine well-based measurements such as rock cut- 
tings and electric logs record local information, often just centimeters from 
the well. I t  is nice to  think of the earth as horizontal strata, but this idealiza- 
tion fails at some unknown distance from the well. Surface reflection 
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FIG. 5.5-3. Profile from the North 
Sea. (Western Geophysical) 
Observe strong reverberations with 
a period of about 90 ms. These 
are multiple reflections from the 
sea floor. Note that  the strongest 
signal occurs a t  increasing offset 
with increasing time. This is 
because the strongest multiples are 
often a t  critical angle. The 
strength of the reverberation 
diminishes abruptly 1.8 km behind 
the ship. This implies that  the sea 
floor changes abruptly a t  that  
point. 

seismology, although it is further from the "ground truth7'  of well-bore meas- 
urements, provides the needed information about lateral continuity. But sur- 
face reflection data has resolving-power limitations as well as other uncertain- 
ties. The VSP provides information at an intermediate scale and also pro- 
vides a calibration of the surface seismic method. Unfortunately, VSPs are 
costly and we rarely have them. 

The subject of VSP occupies several books and many research papers. 
(See Ga17perin (19741 and Balch et a1 [1982]). Here we will just look a t  a sin- 
gle VSP to get some idea of source waveforms and multiple reflections. The 
VSP shown in figure 4 is from a typical land area. The multiple reflections 
are not so severe as with the marine data shown elsewhere in this chapter. 
The earliest arrival in figure 4 is the primary downgoing wave. Downgoing 
waves increase their travel time with depth, the slope of the arrival curve giv- 
ing the downward component of velocity. After the first downgoing waves 
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Rrco VSP - P-wave d e t e c t o r  

FIG. 5.5-4. 
the borehol 
travel time 

Vertical seismic profile. The source is a t  the earth's surface near 
e. The horizontal axis is the receiver depth. The vertical axis is 
from zero t o  one second. Amplitudes are scaled by t (ARCO) 

arrive, you can see more downgoing waves with the same velocity. Upgoing 
waves have the opposite slope of the downgoing waves. These are also visible 
in figure 4. 

Since late echoes are weaker than early ones, seismic data is normally 
scaled upwards with time before being displayed. There is no universal agree- 
ment in either theory or practice of what scaling is best. I have usually found 
t 2  scaling t o  be satisfactory for reflection data. (See Section 4.1). Figure 4 
shows tha t  t scaling keeps the first arrival a t  about a constant amplitude 
on the VSP. 

Viewing figure 4 from the side shows that  the downgoing pulse is fol- 
lowed by a waveform that  is somewhat consistent from depth t o  depth. The 
degree of consistency is not easy t o  see because of interference with the 
upcoming wave. As far a s  I can tell from the figure, the downgoing wave a t  
the greatest depth is equal to  that  a t  the shallowest depth. 

Figure 5 shows the same data augmented by some shallow receivers. You 
will notice that  the downgoing wave no longer seems to  be independent of 
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depth. So we can conclude that ,  as a practical matter, the downgoing 
waveform seems t o  be mainly a result of near-surface reverberation. 

Rrco VSP - P-wave d e t e c t o r  

FIG. 5.5-5. The data of figure 4 augmented with shallower receivers. Ampli- 
tudes are scaled by t (ARCO) 

The energy in the first burst in figure 4 is roughly comparable t o  the 
remaining energy. The remaining energy would be less if the VSP were 
displayed without t 1.5 scaling, but since the surface reflection data is nor- 
mally displayed with some such scaling (often t 2),  it makes more sense statist- 
ically t o  speak of the energy on the scaled data. So the reverberating energy 
is roughly comparable to  the first arriving energy. 

Below the near-surface region, the downgoing wave changes slowly with 
depth. Now we should ask how much the downgoing wave would change if 
the experiment were moved laterally. Obviously the borehole will not move 
laterally and we will be limited to  data where only the surface source moves 
laterally. Since near-surface variations often change rapidly in the lateral 
direction, we may fear that  the downgoing waveform also changes rapidly 
with shot location. The reverberation near a shot is repeated similarly near 
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any surface receiver. The resulting composite reverberation is the convolution 
of near-shot reverberation and near-geophone reverberation. So t o  get the 
information needed t o  deconvolve surface seismic data, the VSP should be 
recorded with many surface source locations. 

Unfortunately such offset VSP data  is rarely available. When petroleum 
production declines and expensive secondary recovery methods are contem- 
plated, the cost of VSP will not seem so high. The production lost during 
VSP acquisition may be more easily weighed against future gains. 

Again we should think about the meaning of "bad" data. Seismic data  is 
generally repeatable whenever it is above the level of the ambient microse- 
ismic noise. But often the signals make no sense. The spatial correlations 
mean nothing t o  us. Most data  at late times fits this description. Perhaps 
what is happening is this: (1) The downgoing waveform is getting a long 
trail; (2) the trail is a chaotic function of the surface location; and (3) the 
energy in the trail exceeds the energy in the first pulse. So, with so much ran- 
domness in the downgoing wave, the upcoming wave is necessarily 
incomprehensible. 

Deep Marine Multiples, a Phenomenon of Polar Latitudes 

It has frequently been noted that  sea-floor multiple reflection seems t o  be 
a problem largely in the polar latitudes only - rarely in equatorial regions. 
This observation might be dismissed as being based on the statistics of small 
numbers, but two reasons can be given why the observation may be true. 
Each of these is of interest whether or  not the statistics are adequate. 

I t  happens that  natural gas is soluble in water and raises the temperature 
of freezing, particularly a t  high pressure. Ice formed when natural gas is 
present is called gas hydrate. Thus there can be, under the liquid ocean, 
trapped in the sediments, solid gas hydrate. The gas hydrate stiffens the sedi- 
ment and enhances multiple reflections. 

A second reason for high multiple reflections a t  polar latitudes has t o  do 
with glacial erosion. Ordinarily ocean bottoms are places of slow deposition 
of fine-grained material. Such freshly deposited rocks are soft and generate 
weak multiple reflections. But in polar latitudes the scouring action of gla- 
ciers removes sediment. Where erosion is taking place the freshly exposed 
rock is stronger and stiffer than newly forming sediments. Thus, stronger 
sea-floor reflections. 

Continents erode and deposit a t  all latitudes. However, one might specu- 
late tha t  on balance, continental shelves are created by deposition in low and 
middle latitudes, and then drift t o  high latitudes where they erode. While 



FRONTIERS 5.5 Multiples - Current Practice 

highly speculative, this theory does provide an  explanation for the association 
of multiple reflections with polar latitudes. 

Water bottom Peg leg lntra bed 

FIG. 5.5-6. Raypaths are displayed for (a) a water-bottom multiple, (b) a 
pegleg multiple family, and (c) a short-path multiple. 

Pegleg and Intrabed Multiple Reflections 

Multiple reflections fall into one of three basic categories - see figure 6. 

Water-bottom multiples are those multiples whose raypaths lie entirely 
within the water layer (figure 6a). Since the sea floor usually has a higher 
reflectivity than deeper geological horizons, water-bottom multiples often have 
strong amplitudes. In deep water these multiples can be very clear and dis- 
tinct. A textbook-quality example is shown in figure 1. 

Pegleg multiple reflections are variously defined by different authors. 
Here pegleg multiples (figure 6b) are defined t o  be those multiples that  
undergo one reflection in the sedimentary sequence and other reflections in the 
near surface. 

To  facilitate interpretation of seismic data, let us review the timing and 
amplitude relations of vertical-incidence multiple reflections in layered media. 
Take the sea-floor tw-way travel time t o  be t l  with reflection coefficient 

c ,. Then the nth  multiple reflection comes a t  time n t with reflection 

strength c T. Presume also a deeper primary reflection at travel-time depth 

t 2  with reflection coefficient c 2 .  The sea-floor peglegs arrive a t  times 

t + n t l. Note that  peglegs come in families. For example, the time 

t + 2t could arise from three paths, t + 2t l ,  t + t + t or 2t + t 2. 

So the n t h  order pegleg multiple echo is really a summation of n + 1 rays, 
and thus its strength is proportional t o  (n + 1) c c y . The sea-floor rever- 

beration is c y , which is not the same function of n as the function that  

describes reverberation on sediments, (n + 1) c y . Ignoring the sea-floor 
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Near Offset Section (As  = 25m ) 

FIG. 5.5-7. Near-offset section - offshore Labrador (Flemish Cap). The 
offset distance is about 9 shotpoints. SF  = sea floor, BMl  = first bottom 
multiple, BM2 = second bottom multiple, P = primary, PM1 = first pegleg 
multiple, and PM2 = second pegleg multiple. (AMOCO-Canada, Morley) 

reverberation itself you can just think of (n + 1) c ; as a shot waveform. 

Every multiple must have a "turn-around" where an upcoming wave 
becomes a downgoing wave. Almost all readily recognized multiples are sur- 
/ace multiples, that  is, they have their turn-arounds a t  the earth's surface. 
Figure 7 shows some clear examples. In land data  the turn-around can be a t  
the  base of the soil layer, which is almost the same as being a t  the earth's sur- 
face. 
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A raypath that  is representative of yet another class of multiples, called 
short-path or intrabed multiples, is shown in figure 6c. Their turn-around is 
not a t  or near the earth's surface. These multiples are rarely evident in field 
data, although figure 8 shows a clear case in which they are. When they are 
identified, it is often because the seismic data is being interpreted using some 
accompanying well logs. The reason that  short-path multiples are so rarely 
observed compared t o  peglegs is that  the reflection coefficients within the sedi- 
mentary sequence are so much lower than on the free surface. The weakness 
of individual short-path multiples may be compensated for, however, by the 
very large numbers in which they can occur. Any time a seismic section 
becomes incomprehensible, we can hypothesize that  the data has become 
overwhelmed by short-path multiples. 

FIG. 5.5-8. A rare case of unambiguous intrabed multiple reflections. The 
data was recorded near Puerto Rico. The inner-bed multiple is between the 
sea fioor and the basement. Thus its travel time is t base + ( t  base  - tpoor) .  
Do you see it? (Western Geophysical) 
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The Need to Distinguish between Types of Sections 

By 1974, wave-equation methods had established themselves as a success- 
ful way t o  migrate CDP-stacked sections. Bolstered by this success, Don 
Riley and I set out t o  apply the wave equation t o  the problem of predictive 
suppression of deep-water multiple reflections. Hypothesizing that  diffraction 
effects were the reason for all the difficulty that  was being experienced then 
with deepwater multiple reflection, we developed a method for the modeling 
and predictive removal of diffracted multiple reflections (see FGDP, Chapter 
11-4). We didn't realize that  in practice the multiple reflection problem 
would be so much more difficult than the primary reflection problem. For pri- 
maries, the same basic migration method works on zero-oflket sections, CDP- 
stacked sections, or  vertical-incidence plane-wave sections. Our multiple- 
suppression method turned out t o  be applicable only t o  vertical plane-wave 
stacks. Don Riley prepared figure 9, which shows some comparisons. 

- P 
5- .8- 

-"I 

1 0 -  1 0  - 

I S -  I S -  

2-D Synthetic 27-Fold CDP Section Near Trace Secrlon 

plane wave source 
field data ~ a m e  d a t a  

FIG. 5.5-9. Diffracted multiple-reflection examples: (a ) 1-D synthetic, ( b  ) 2-D 
synthetic, vertical plane-wave source, (c ) 27-fold CDP data section (GSI), (d ) 
near-trace section. (Riley) 

One thing t o  keep in mind while studying the comparisons in figure 9 is 
that  on the field data there are likely t o  be aspects of propagation in three 
dimensions that  may go unrecognized. The third dimension is always a 
"skeleton in the closet." I t  doesn't usually spoil two-dimensional migration, 
but that  doesn't assure us that  it won't spoil 2-D wave-equation multiple 
suppression. 
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Examples of Shallow-Water Multiples with Focusing 

The exploding-reflector concept does not apply t o  multiple reflections, so 
there is no simple wave-theoretic means of predicting the focusing behavior of 
multiples on  a near-trace section. Luckily multiples on vertical plane-wave 
stacks are analyzable. They may give us some idea about the focusing 
behavior of multiple reflections on other seismic sections. A vertically down- 
going plane wave is simulated by a common-geophone stack without moveout. 
This isn't the same as the familiar CDP stack, but i t  is analyzable with the 
techniques described in Chapters 1 and 2. 

Consider a multiple reflection that  has undergone several surface 
bounces. The seismic energy started out as a downgoing plane wave. I t  
remained unchanged until i ts first reflection from the sea floor. The sea-floor 
bounce imposed the sea-floor topography onto the plane wave. In a computer 
simulation the topography would be impressed upon the plane wave by a step 
with the lens equation. Then the wave diffracted its way up t o  the surface 
and back down t o  the sea floor. In a computer another topographic lens shift 
would be applied. The process of alternating diffraction and lensing would be 
repeated as often as you would care t o  keep track of things. Figure 10 shows 
such a simulation. A striking feature of the high-order multiple reflections in 
figure 10 is the concentration of energy into localized regions. I t  is easy t o  see 
how bounces from concave portions of the sea floor can overcome the ten- 
dency of acoustic energy t o  spread out. These regions of highly concentrated 
energy that  occur late on the time axis do not resemble primaries at all. With 
primaries a localized disturbance tends t o  be spread out  into a broad hyper- 
bola. Primary migration of the highly concentrated bursts of energy seen on 
figure 10 must lead t o  semicircles. Such semicircles are most unlikely geologi- 
cal models - and are all too often predicted by the industry's best migration 
programs. 

The most important thing to  learn from the synthetic multiple reflections 
of figure 10 is that  multiples need not resemble primaries. Semicircles that  
occur on migrated stacks could be residual multiple reflections. Unfor- 
tunately, there is no simple theory that  says whether or not focused multiples 
on vertical wave stacks should resemble those on zero-ofhet sections or CDP 
stacks. Luckily some data exists that  provides an answer. Figure 11 is a 
zero-offset section which establishes that  such focusing phenomena are indeed 
found in qualitative, if not quantitative, form on reflection survey data. 

The marine data  exhibited in figure 11 clearly displays the focusing 
phenomena in the synthetic calculations of figure 10. This suggests that  we 
should utilize our understanding in a quantitative way t o  predict and suppress 
the multiple reflections in order to  get a clearer picture of the earth's 
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FIG. 5.5-10. Simulated sea- 
floor multiple reflections. The 
vertical exaggeration is 5. Lit- 
tle focusing is evident on the 
gentle sea-floor topography, 
but much focusing is evident 
on high-order multiple 
reflections. At late times 
there is a lack of lateral con- 
tinuity, really unlike primary 
reflection data. 

subsurface. There are several reasons why this would not be easy t o  do. 
First, the Riley theory applies to  vertical wave stacks. These are quantita- 
tively different from common-midpoint stacks. Second, the effective seismic 
sea-floor depth is not a known input: i t  must somehow be determined from 
the data itself. Third, the water depth in figure 11 is so shallow that  indivi- 
dual bounces cannot be distinguished. 

Why Deconvolution Fails in Deep Water 

It has been widely observed that  deconvolution generally fails in deep 
water. A possible reason for this is that  deep water is not the mathematical 
limit a t  which the multiple-reflection problem is equivalent to  the shot- 
waveform problem. But that  is not all. Theory predicts that  under ordinary 
circumstances multiples should alternate in polarity. The examples of figure 1 
and figure 2 confirm it. You will have trouble, however, if you look for alter- 
nating polarity on CDP st.acks. The reason for the trouble also indicates why 
deconvolution tends t o  fail to  remove deep multiples from CDP stacks. 

Recall the timing relationships for multiples a t  zero offset. The rever-  
beration period is a constant function of time. Because of moveout, this is not 
the case a t  any other offset. Normal-moveout correction will succeed in 
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FIG. 5.5-11. Example of focusing effects on multiple reflections in near-trace 
section a t  Chukchi Sea. These effects are obscured by stacking. (U.S. Geologi- 
cal Survey) 

A. Existing structure. 

B. Former structure unevenly eroded away leaving localities of sea floor con- 
vex or  concave. 

C. High order multiple reflections focusing where the sea floor is concave. 

D. Existing structural dip exposed in windows where the multiples are weak 
(i.e., where convex sea floor causes multiple t o  spread rapidly). 
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restoring zero-offset timing relationships in a constant-velocity earth, but 
when the velocity increases with depth, the multiples will have a slower RMS 
velocity than the primaries. So the question is what velocity to use, and 
whether, in typical land and marine survey situations, the residual time shifts 
are greater than a half-wavelength. No equations are needed to  answer this 
question. All that is needed is the general observation that conventional 
common-midpoint stacking suppresses multiples because they have lower velo- 
cities than primaries. This observation implies that normal moveout routinely 
time shifts multiple reflections a half-wavelength or more out of their natural 
zero-offset relationships. 

To make matters worse, the amplitude relationships that we expect at 
zero offset are messed up. Reflection coefficient is a function of angle. But on 
a seismogram from some particular oEset, each multiple reflection will have 
reflected at  a different angle. 

Vertical incidence timing relationships are approximately displayed on 
CDP stacks. The practical difficulty is that the CDP stack does not mimic 
the vertical-incidence situation well enough to enable satisfactory prediction 
of multiples from primaries. 

Before stack, on marine data, moveout could be done with water veloci- 
ty, but then any peglegs would not fit the normal-incidence timing relation- 
ship. Since peglegs are often the worst part of the multiple-reflection prob- 
lem, moveout should perhaps be done with pegleg velocity. No matter how 
you look at  it, all the timing relationships for deep multiple reflections can- 
not be properly adjusted by moveout correction. 

EXERCISE 

1. On some land data it was noticed that a deep multiple reflection arrived 
a short time earlier than predicted by theory. What could be the expla- 
nation? 
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5.6 Multiple Reflection - Prospects 

T o  improve our ability t o  suppress multiples, we t ry  t o  better character- 
ize them. The trouble is that  a realistic model has many ingredients. Few of 
the theories that  abound in the literature have had much influence on routine 
industrial practice. I would put these unsuccessful theories into two 
categories: 

1. Those that  t ry  t o  achieve everything with statistics, oversimplifying 
the complexity of the spatial relations 

2. Those that  t ry  to  achieve everything with mathematical physics, 
oversimplifying the noisy and incomplete nature of the data  

Multiple reflection is a good subject for nuclear physicists, astrophysi- 
cists, and mathematicians who enter our field. Those who are willing t o  take 
up the challenge of trying t o  carry theory through t o  industrial practice are 
rewarded by learning some humility. I'll caution you now that  I haven't 
pulled it all together in this section either! 

Here two approaches will be proposed, both of which attend t o  geometry 
and statistics. Both approaches are new and little tested. Regardless of how 
well they may work, I think you will find that  they illuminate the task. 

The first approach, called CMP slant stack, is a simple one. I t  
transforms data into a form in which all offsets mimic the simple, one- 
dimensional, zero-offset model. The literature about that  model in both 
statistics and mat hematical physics is extensive. 

The second approach is based on a replacement impedance concept. I t  is 
designed t o  accommodate rapid lateral variations in the near surface. I t  is 
easiest t o  explain for a hypothetical marine environment where the sole 
difficulty arises from lateral variation in the sea-floor reflectivity. The basic 
idea is downward continuation of directional shots and directional geophones 
t o  just beneath the sea floor, but no further. This is followed by upward con- 
tinuation through a replacement medium that  has a zero sea-floor reflection 
coefficient. This process won't eliminate all the multiple reflections, but it 
should eliminate the most troublesome ones. 



FRONTIERS 5.6 Multiples - Prospects 

Transformation to One Dimension by Slant Stack 

A rich literature (c.f. FGDP) exists on the one-dimensional model of mul- 
tiple reflections. Some authors develop many facets of wave-propagation 
theory. Others begin from a simplified propagation model and develop many 
facets of information theory. These one-dimensional theories are often 
regarded as applicable only a t  zero offset. However, we will see that  all other 
offsets can be brought into the domain of one-dimensional theory by means of 
slant stacking. 

FIG. 5.6-1. Rays at constant-offset (left) arrive with various angles and hence 
various Snell parameters. Rays with constant Snell parameter (right) arrive 
with various offsets. A t  constant p all paths have identical travel times. 

The way t o  get the timing and amplitudes of multiples t o  work out like 
vertical incidence is t o  stop thinking of seismograms as time functions a t  con- 
stant  offset, and start  thinking of constant Snell parameter. In a layered 
earth the complete raypath is constructed by summing the path in each layer. 
At  vertical incidence p = 0, it is obvious that  when a ray is in layer j its 
travel time ti for that  layer is independent of any other layers which may 

also be traversed on other legs of the total journey. This independence of 
travel time is also true for any other fixed p . But, as shown in figure 1, it is 
not true for a ray whose total offset C / ,, instead of its p , is fixed. Like- 

wise, for fixed p , the horizontal distance /, which a ray travels while in 

layer j is independent of other legs of the journey. Thus, in addition, 
t j  + const j , for any layer j is independent of other legs of the journey. 

So t j  ' = ti - p j , is a property of the j th layer and has nothing t o  do with 

any other layers which may be in the total path. Given the layers that  a ray 
crosses, you add up the t j  and the / for each layer, just as you would in 

the vertical-incidence case. Some paths are shown in figure 2. 

T o  see how t o  relate field data  t o  slant stacks, begin by searching on a 
common-midpoint gather for all those patches of energy (tangency zones) 
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FIG. 5.6-2. A two-layer model showing the events ( t  2t t 2, t l+t l). On 
the top is a ray trace. On the left is the usual data  gather. On  the right the 
gather is replotted with linear moveout t '  = t - p f . Plots were calcu- 
lated with (v v 2, l / p  ) in the proportion (1,2,3). Fixing our attention on the 
patches where data is tangent to lines of slope p ,  we see that  the arrival 
times have the vertical-incidence relationships - tha t  is, the reverberation 
period is fixed, and it is the same for simple multiples as it is for peglegs. 
This must be so because the ray trace a t  the top of the figure applies precisely 
t o  those patches of the data where dt /dx = p .  Furthermore, since 
61 = 62, the times ( t  2t 1', t 2'+t 21) also follow the familiar vertical- 
incidence pattern. (Gonzalez) 



FRONTIERS 5.6 Multiples - Prospects 

where the hyperboloidal arrivals attain some particular numerical value of 
slope p = dt l d j  . These patches of energy seen on the surface observations 
each tell us where and when some ray of Snell's parameter p has hit the 
surface. Typical geometries and synthetic data are shown in figures 2 and 3. 

Both the ti and the t, ' behave like the times of normal-incident mul- 

tiple reflections. While the lateral location of any patch unfortunately 
depends on the velocity model v ( z  ), slant stacking makes the lateral location 
irrelevant. In principle, slant stacking could be done for many separate values 

of p so that  the ( j  , t )-space would get mapped into a (p , t )-space. The 
nice thing about ( p  , t )-space is that the multiple-suppression problem decou- 
ples into many separate one-dimensional problems, one for each p-value. 
Not only that, but the material velocity is not needed to solve these problems. 
I t  is up to  you t o  select from the many published methods. After suppressing 
the multiples you inverse slant stack. Once back in (f , t )-space you could 
estimate velocity and further suppress multiples using your favorite stacking 
method. 

FIG. 5.6-3. The same geometry as  figure 2 but with more multiple reflections. 

Figure 3 is a "workbook" exercise. By picking the tops of all events on 
the right-hand frame and then connecting the picks with dashed lines, you 
should be able t o  verify that sea-bottom peglegs have the same interval veloc- 
ity as the simple bottom multiples. The interval velocity of the sediment can 
be measured from the primaries. The sediment velocity can also be measured 
by connecting the n th  simple multiple with the n th  pegleg multiple. 
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Transformation t o  one dimension by slant stack for deconvolution is a 
process that  lies on the border between experimental work and industrial 
practice. See for example Treitel et a1 [1982]. Its strength is that  i t  correctly 
handles the angle-dependences that  arise from the source-receiver geometry as 
well as the intrinsic angle-dependence of reflection coefficient. One of its 
weaknesses is that  it assumes lateral homogeneity in the reverberating layer. 
Water is extremely homogeneous, but sediments a t  the water bottom can be 
quite inhomogeneous. 

Near-Surface Inhomogeneity 

Soils have strange acoustic behavior. Their seismic velocities are usually 
less than or equal t o  the speed of sound in water (1500 meters/sec). I t  is not 
uncommon for soil velocity to  be five times slower than the speed of sound in 
water, or as slow as the speed of sound in air (300 meterslsec). Where practi- 
cal, seismic sources are buried under the weathered zone, but the receivers are 
almost always on the surface. About the only time you may encounter buried 
receivers is in a marshy area. There field operations are so difficult that  you 
will have many fewer receivers than normal. 

A source of much difficulty is that  soils are severely laterally inhomogene- 
ous. I t  is not rare for two geophones separated by 10 meters t o  record quite 
different seismograms. In particular, the uphole transit time (the seismic 
travel time from the bottom of a shot hole t o  the surface near the top of the 
hole) can easily exhibit time anomalies of a full wavelength. All this despite a 
flat level surface. How can such severe, unpredictable, travel-time anomalies 
in the weathered zone be understood? By river meanders, tiny shallow gas 
pockets, pocketed carbonates, glacial tills, etc. All these irregularities can be 
found a t  depth too, but they are worse a t  the surface before saturation and 
the pressure of burial reduce the acoustic inhomogeneity. See also Section 
3.7. 

The shallow marine case is somewhat better. Ample opportunities for 
lateral variations still exist - there are buried submarine channels as well as 
buried fossil river channels. But the dominant aspect of the shallow marine 
case becomes the resonance in the water layer. The power spectrum of the 
observed data  will be controlled by this resonance. 

Likewise, with land data, the power spectrum often varies rapidly from 
one recording station t o  the next. These changes in spectrum may be inter- 
preted as changes in the multiple reflections which stem from changes in the 
effective depth or character of the weathered zone. 



FRONTIERS 5.6 Multiples - Prospects 

Modeling Regimes 

Downward-continuation equations contain four main ingredients: the 
slowness of the medium a t  the geophone v ( g  )-I; likewise a t  the shot v ( s  )-I; 
the stepout in offset space k,, /w; and the dip in midpoint space ky /w. 

These four ingredients all have the same physical dimensions, and modeling 
procedures can be categorized according to  the numerical inequalities that  are 
presumed to  exist among the ingredients. One-dimensional work ignores three 
of the four - namely, dip, stepout, and the difference v ( g  )-I - v ( s  )-I. 
CMP slant stack includes the stepout kh /w. Now we have a choice as to  

whether t o  include the dip or the lateral velocity variation. The lateral veloc- 
ity variation is often severe near the earth's surface where the peglegs live. 
Recall the simple idea that  typical rays in the deep subsurface emerge steeply 
at a low-velocity surface. When using continuation equations in the near sur- 
face, we are particularly justified in neglecting dip, that  is v - I  >> ky /w. It 

is nice t o  find this excuse to  neglect dip since our field experiments are so 
poorly controlled in dip out of the plane of the experiment. Offset stepout, on 
the other hand, is probably always much larger in the plane of the survey line 
than out  of it. 

Another important ingredient for modeling or processing multiple 
reflections is the coupling of upcoming and downgoing waves. This coupling 
introduces the reflectivity beneath the shot c ( s  ) and the receiver c ( g  ). An 
important possibility, t o  which we will return, is that  c ( s  ) may be different 
from c ( g  ), even though all the angles may be neglected. 

Subtractive Removal of Multiple Reflections 

Stacking may be thought of as a multiplicative process. Modeling leads 
t o  subtractive processes. The subtractive processes are a supplement t o  stack- 
ing, not an  alternative: After subtracting, you can stack. 

First we t ry  t o  model the multiple reflections, then we t ry  t o  subtract 
them from the data. In general, removal by subtraction is more hazardous 
than removal by multiplication. To  be successful, subtraction requires a 
correct amplitude as well as a timing error of less than a quarter-wavelength. 

Statistically determined empirical constants may be introduced to  
account for discrepancies between the modeling and reality. In statistics this 
is known as regression. For example, knowing that a collection of data points 
should fit a straight line, we can use the method of least-sum-squared- 
residuals t o  determine the best parameters for the line. A careful study of the 
data  points might begin by removing the straight line, much as we intend to  
remove multiple reflections. Naturally an adjustable parameter can help 
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account for the difficulty expected in calculating the precise amplitude for the 
multiples. An unknown timing error is much harder to  model. Because of the 
nonlinearity of the mathematics, a slightly different, more tractable approach 
is t o  take as adjustable parameters the coefficients in a convolution filter. 
Such a filter could represent any scale factor and time shift. I t  is tempting t o  
use a time-variable filter t o  account for time-variable modeling errors. An  
inescapable difficulty with this is that  a filter can represent a lot more than 
just scaling and amplitude. And the more adjustable parameters you use, the 
more the model will be able to  fit the data, whether or not the model is 
genuinely related t o  the data. 

The difficulty of subtracting multiple reflections is really just this: If an 
inadequate job is done of modeling the multiples - say, for example, of 
modeling the geometry or velocity - then you need many adjustable parame- 
ters in the regression. With many adjustable parameters, primary reflections 
get subtracted as well as multiples. Out goes the baby with the bath water. 

Slanted Deconvolution and Inversion 

Because of the wide offsets used in practice, it has become clear that  
seismologists must pay attention to  differences in the sea floor from bounce to  
bounce. A straightforward and appealing method of doing so was introduced 
by Taner [1980] - tha t  was his radial-trace method. A radial trace is a line 
cutting through a common-shot profile along some line of constant r = h / t  . 
Instead of deconvolving a seismogram a t  constant offset, we deconvolve on a 
radial trace. The deconvolution can be generalized t o  a downward- 
continuation process. Downward continuation of a radial trace may be 
approximated by time shifting. Unfortunately, there is a problem when the 
data  on the line consists of both sea-floor multiples and peglegs, because these 
require different trajectories. The problem is resolved, a t  least in principle, by 
means of Snell waves. Estevez, in his dissertation [1977], showed theoretically 
how Snell waves could also be used to  resolve other difficulties, such as 
diffraction and lateral velocity variation (if known). An example illustrating 
the relevance of the differing depths of the sea floor on different bounces, is 
shown in figure 4. 

Incompleteness of the data  causes us t o  have problems with most inver- 
sion methods. Data can be incomplete in time, space, or in its spectrum. 
Any recursive method must be analyzed to  ensure that  an error made at shal- 
low depths will not compound uncontrollably during descent. All data  is 
spectrally incomplete. Also, with all da ta  there is uncertainty about the shot 
waveform. At  the p -values for which pegleg multiples are a problem, the first 
sea-floor bounce usually occurs too close t o  the ship t o  be properly recorded. 
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FIG. 5.6-4. Time of multiple depends on sum of all times. (Estevez [1977]) 

To solve this problem, Taner built a special auxiliary recording system. 

It is an advantage for Snell wave methods that  slant stacking creates 
some signal-to-noise enhancement from the raw field data, but i t  is a disad- 
vantage that  the downward continuation must continue t o  all depths. The 
methods t o  be discussed next are before-stack methods, but they do not 
require downward continuation much below the sea floor. 

The Split Backus Filter 

We are preparing a general strategy, impedance replacement, for dealing 
with surface multiple reflections. This strategy will require heavy artillery 
drawn from both regression theory and wave-extrapolation theory. So as not 
t o  lose sight of the goals, we will begin with an example drawn from an ideal- 
ized geometry. That  reality is not too far from this idealization was demon- 
strated by Larry Morley, whose doctoral dissertation [I9821 illustrates a suc- 
cessful test of this method and describes the impedance-replacement strategy 
in more detail. 

Imagine that  the sea floor is flat. Near the shot the sea-floor reflection 
coefficient is taken as c, . Near the geophone it is taken t o  be c g  . Near the 

geophone the reverberation pattern is 
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where Z is the two-way delay operator for travel t o  the water bottom. (See 
Section 4.6 or  FGDP for 2-transform background). Near the shot there is a 
similar reverberation sequence: 

Ignoring the difference between c, and cg leads t o  the Backus [I9591 rever- 

beration sequence, which is the product of (1) and (2): 

The denominator in (3) is the Backus filter. Applying this filter should 
remove the reverberation sequence. Morley called the filter which results from 
explicitly including the difference a t  the shot and geophone a split Backus 
filter. The depth as well as the reflection coefficient may vary laterally. (The 
effect of dip is second order). Thus the split Backus operator can be taken to  
be 

Inverting (4) into an expression like (3), you will find that  the n th  term splits 
into n terms. This just means that  paths with sea-floor bounces near the 
shot can have different travel times than paths with bounces near the geo- 
phone. 

Figure 5 ,  taken from Morley's dissertation, shows that  split pegleg multi- 
ples are an observable phenomenon. His interpretation of the figure follows: 

[The figure] is a constant-offset section (COS) from the same line for an 
offset halfway down the cable (a separation of 45 shot points with this 
geometry). The first-order pegleg multiple starting a t  2.5 seconds on the 
left and running across t o  3 seconds on the right is "degenerate" (unsplit) 
on the near-trace section but is split on the COS due t o  the sea-floor 
topography. The maximum split is some 200 mils around shot points 
180-200. This occurs, as one might expect, where the sea floor has max- 
imum dip; i.e., where the difference between sea-floor depths a t  the shot 
and geophone positions is greatest. 

Most present processing ignores the Backus filter altogether and solves 
for an independent deconvolution filter for each seismic trace. This intro- 
duces a great number of free parameters. By comparison, a split Backus 
approach should do a better job of preserving primaries. 



FRONTIERS 5.6 Multiples - Prospects 

Constant Ofset Section (As = 25m ) 

PMl g 

PMl s 

FIG. 5.6-5. Constant-offset section (COS) from the same line as figure 7 in 
Section 5.5. Offset distance is about 46 shotpoints. Notice that  the first-order 
pegleg multiple is now split into two distinct arrivals, PM 1s and PM 1g . 
(AMOCO Canada, Morley) 

In practice we would expect that  any method based on the split Backus 
concept would need t o  include the effect of moveout. Luckily, velocity con- 
trast would reduce the emerging angle for peglegs. Of course, residual 
moveout problems would be much more troublesome with water-bottom mul- 
tiples. Presumably the process should be applied after normal moveout in 
that  case. Let us take a look a t  the task of estimating a split Backus opera- 
tor. 
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Sea-Floor Consistent Multiple Suppression 

Erratic time shifts from trace to  trace have long been dealt with by the 
so-called surface-consistent statics model. Using this model you fit the 
observed time shifts, say, t ( s  , g ), t o  a regression model t (s , g ) 
t, ( s  ) + tg ( g  ). The statistically determined functions t, ( s  ) and tg ( g  ) can 

be interpreted as being derived from altitude or velocity variations directly 
under the shot and geophone. Taner and Coburn [I9801 introduced the 
closely related idea of a surface-consistent frequency response model that is 
part of the statics problem. We will be interpreting and generalizing that 
approach. Our intuitive model for the data P ( s  , g , a)  is 

The first two factors represent the split Backus filter. The next factor is the 
normal moveout. The factor H (h  , w) is the residual moveout. The factor 
Y ( y  , w) is the depth-dependent earth model beneath the midpoint y . The 

last factor F (w) is some average filter that  results from both the earth and 
the recording system. 

One problem with the split Backus filter is a familiar one - that the 
time delays 4 s  ) and ~ ( g  ) enter the model in a nonlinear way. So to  linear- 
ize it the model is generalized to 

Now S contains all water reverberation effects characteristic of the shot 
location, including any erratic behavior of the gun itself. Likewise, receiver 
effects are embedded in G .  Moveout correction was done to  P ,  thereby 
defining PI. 

Theoretically, taking logarithms gives a linear, additive model: 

The phase of P ', which is the imaginary part of the logarithm, contains 
the travel-time information in the data. This information begins to lose 
meaning as the data consists of more than one arrival. The phase function 
becomes discontinuous, even though the data is well behaved. In practice, 
therefore, attention is restricted to the real part of (7), which is really a state- 
ment about power spectra. The decomposition (7)  is a linear problem, 
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perhaps best solved by iteration because of the high dimensionality involved. 
In reconstructing S and G from power spectra, Morley used the Wiener- 
Levinson technique, explicitly forcing time-domain zeroes in the filters S and 
G t o  account for the water path. He omitted the explicit moveout correc- 
tion in (5), which may account for the fact that  he only used the inner half of 
the cable. 

Replacement-Medium Concept of Multiple Suppression 

In seismology wavelengths are so long that  we tend t o  forget it is physi- 
cally possible t o  have a directional wave source and a directional receiver. 
Suppose we had, or  were somehow able t o  simulate, a source that  radiated 
only down and a receiver that  received only waves coming up. Then suppose 
that  we were somehow able to  downward continue this source and receiver 
beneath the sea floor. This would eliminate a wide class of multiple 
reflections. Sea-floor multiples and peglegs would be gone. That  would be a 
major achievement. One minor problem would remain, however. The data 
might now lie along a line that  would not be flat, but would follow the sea 
floor. So there would be a final step, an  easy one, which would be t o  upward 
continue through a replacement medium that  did not have the strong disrup- 
tive sea-floor reflection coefficient. The process just described would be called 
impedance replacement. It is analogous t o  using a replacement medium in 
gravity data  reduction. It is also analogous t o  time shifting seismograms for 
some replacement velocity. (See Section 3.7). 

The migration operation downward continues an upcoming wave. This is 
like downward continuing a geophone line in which the geophones can receive 
only upcoming waves. In reality, buried geophones see both upcoming and 
downgoing waves. The directionality of the source or receiver is built into the 
sign chosen for the square-root equation that  is used t o  extrapolate the 
wavefield. With the reciprocal theorem, the shots could also be downward 
continued. Likewise shots physically radiate both up and down, but we can 
imagine shots that  radiate either up or down, and mathematically the choice 
is a sign. So the results of four possible experiments a t  the sea floor, all possi- 
bilities of upward and downward directed shots and receivers, can be deduced. 

Extrapolating all this information across the sea-floor boundary requires 
an estimate of the sea-floor reflection coefficient. This coefficient enters the 
calculation as a scaling factor in forming linear combinations of the waves 
above the sea floor. The idea behind the reflection-coefficient estimation can 
be expressed in two ways that  are mathematically equivalent: 
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1. The waves impinging on the boundary from above and below should 
have a cross-correlation that  vanishes a t  zero lag. 

2. There should be minimum power in the wave that  impinges on  the 
boundary from below. 

After the geophones are below, you must start  t o  think about getting the 
shots below. To  invoke reciprocity, it is necessary t o  invert the directionality 
of the shots and receivers. This is why it was necessary t o  include the auxili- 
ary experiment of upward-directed shots and receivers. 

EXERCISES 

1. Refer t o  figure 3. 

a. What graphical measurement shows that  the interval velocity for 
simple sea-floor multiples equals the interval velocity for peglegs? 

b. What graphical measurements determine the sediment velocity? 

c. With respect t o  the velocity of water, deduce the numerical value of 
the (inverse) Snell parameter p . 

d. Deduce the numerical ratio of the sediment velocity to  the water ve- 
locity. 

2. Consider the upcoming wave U  observed over a layered medium of 
layer impedances given by (I1, 12,  13, . . . ), and the upcoming wave 

U' at the surface of the medium (I2, 12, 13, . . . ). Note that  the top 

layer is changed. 

a. Draw raypaths for some multiple reflections that  are present in the 
first medium, but not in the second. 

b. Presuming that  you can find a mathematical process t o  convert the 
wave U t o  the wave U ' ,  what multiples are removed from U' 
that  would not be removed by the Backus operator? 

c. Utilizing techniques in FGDP, chapter 8, derive an equation for U'  
in terms of U ,  11, and Iz that  does not involve 13, I4 . . . . 
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5.7 Profile Imaging 

A field profile consists of the seismograms of one shot and many receivers 
along a line. Migration of a single profile, or of many widely separated 
profiles, demands a conceptual basis that  is far removed from anything dis- 
cussed so far in this book, namely, exploding-reflector and survey-sinking con- 
cepts. Such a conceptual basis exists, predates (Claerbout [1970]), and seems 
more basic than that  of exploding reflectors or survey sinking. I call this older 
imaging concept the U / D  imaging concept. 

The sinking concept seems t o  demand complete coverage in shot- 
geophone space. Exploding reflectors requires many closely spaced shots. On  

the other hand, profile imaging with the U / D  concept has no requirement 
for density along the shot axis. An example of a dataset that  could only be 
handled by the older concept is a sonobuoy. A sonobuoy is a hydrophone 
with a radio transmitter. I t  is thrown overboard, and a ship with an air gun 
sails away, repeatedly firing until the range is too great. The principle of 
reciprocity says that  the data  is equivalent t o  a single source with a very long 
line of geophones. 

While improving technology is leading t o  greater sampling density on the 
geophone axis, we are unlikely t o  see increasing density in shot space. There 
are only twenty-four hours in a day, and we must wait ten seconds between 
shots for the  echoes t o  die down. So, given a certain area t o  survey and a cer- 
tain number of months to  work, we end out  with an  irreducible shotpoint 
density. Indeed, with three-dimensional geometries proving their worth, we 
may see less spatial sampling density. Poor sample density in shot space is a 
small impediment t o  profile methods. 

Unlike the exploding-reflector method and the survey-sinking method, 
U / D  concepts readily incorporate modeling and analysis of multiple 
reflections. Indeed, an ingenious algorithm for simultaneous migration and 
de-reverberation is found in FGDP. In principle i t  can be applied t o  either 
field profiles or slant stacks. 

Wave equation methods have been suggestive of new ways of making 
weathering-layer corrections. Yet none have yet become widely accepted in 
practice, and it is too early t o  tell whether a DSR approach or a profile 
approach will work better. 

All these considerations warrant a review of the profile migration method 
and the U / D  imaging concept. We could easily see a revival of these in 
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one form or another. 

The U  I D  Imaging Concept 

The U / D  imaging concept says that  reflectors exist in the earth a t  
places where the onset of the downgoing wave is time-coincident with an 
upcoming wave. Figure 1 illustrates the concept. 

FIG. 5.7-1. Upcoming and downgoing waves observed with buried receivers. 
A disturbance leaves the surface a t  t =O and is observed passing the buried 
receivers GI...GS a t  progressively later times. At  the depth of a reflector, 
z3, the G 3  receiver records both the upcoming and downgoing waves in 
time coincidence. Shallower receivers also record both waves. Deeper 
receivers record only D  . The fundamental principle of reflector mapping 
states that  reflectors exist where U and D  are time-coincident. (Riley) 

It is easy t o  confuse the survey-sinking concept with the U /D concept 
because of the similarity of the phrases used t o  describe them: "downward 
continue the shots" sounds like "downward continue the downgoing wave." 
The first concept refers t o  computations involving only an upcoming wavefield 

U (s , g , z , t ). The second concept refers t o  computations involving both 
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upcoming U (x , z , t ) and downgoing D (x , z , t ) waves. No particular 
source location enters the U / D  concept; the source could be a downgoing 
plane wave. 

In profile migration methods, the downgoing wave is usually handled 
theoretically, typically as an impulse whose travel time is known analytically 
or  by ray tracing. But this is not important: the downgoing wave could be 
handled the same way as the upcoming wave, by the Fourier or  finite- 
difference methods described in previous chapters. The upcoming wave could 
be expressed in Cartesian coordinates, or in the moveout coordinate system to  
be described below. 

The time coincidence of the downgoing and upcoming waves can be 
quantified in several ways. The most straightforward seems t o  be t o  look a t  
the zero lag of the cross-correlation of the two waves. The image is created 
by displaying the zerelagged cross-correlation everywhere in (x , z )-space. 

The time coincidence of the upcoming wave and the earliest arrival of a 
downgoing wave gives evidence of the existence of a reflector, but in principle, 
more can be learned from the two waves. The amplitude ratio of the upcom- 
ing t o  the downgoing wave gives the reflection coefficient. 

In the Fourier domain, the product U (w, x , z ) b (w, x , z ) represents 
the zero lag of the cross-correlation. The reflection coefficient ratio is given 

by U (w, x , z )/D (w, x , z ). This ratio has many difficulties. Not only may 
the denominator be zero, but it may have zeroes in the wrong part of the 
complex plane. This happens when the downgoing wave is causal but not 
minimum phase. (See Section 4.6 and FGDP). The phase of the complex con- 
jugate of a complex number equals the phase of the inverse of the number. 
Thus the ratio U / D  and the product U both have the same phase. It 
seems you can invent other functional forms that  compromise the theoretical 
appeal of U I D  with the stability of U b. 

Don C. Riley 119741 proposed another form of the U / D  principle, 
namely, that  the upcoming waves must vanish for all time before the first 
arrival of the downgoing wave. Riley's form found use in wave-equation 
dereverberation. 

Migration with Moveout Correction 

If the earth were truly inhomogeneous in all three dimensions, we could 
hardly expect the data  of a single seismic line t o  make any sense a t  all. But 
reflection seismology usually seems t o  work, even when it is restricted t o  a 
single line. This indicates that  the layered model of the earth is a reasonable 
starting point. Thus normal-moveout correction is usually a good starting 
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process. Mathematically, NMO is an excellent tool for dealing with depth 
variation in velocity, but its utility drops in the presence of steep dip or a 
wide dip spectrum. 

My early migration programs were based on concepts derived from single 
profiles. The data and the wave equation were transformed to  a moveout- 
corrected coordinate system. This approach to  migration is well suited to 
data that is sparsely sampled on the geophone axis. When steepness of dip 
becomes the ground on which migration is evaluated, then moveout correction 
offers little advantage; indeed, it introduces unneeded complexity. Whatever 
its merits or drawbacks, NMO commands our attention by its nearly universal 
use in the industrial world. 

Moveout/Radial Coordinates in Geophone Space 

Our theoretical analysis will abandon the geophone axis g in favor of a 

radial-like axis characterized by a Snell parameter p . (This really says noth- 
ing about the implied data processing itself, since it would be simple enough 
t o  transform final equations back to offset). The coordinate system being 
defined will be called a retarded, moveout-corrected, Snell trace, coordinate 
system. Ideal data in this coordinate system in a zero-dip earth is unchanged 
as it is downward continued. Hence the amount of work the differential equa- 
tions have to  do is proportional to  the departure of the data from the ideal. 
Likewise the necessity for spatial sampling of the data increases in proportion 
to  the departure of data from the ideal. Define 

P (sin O)/v , the Snell ray parameter 

any one-way time from the sur- 
face along a ray with parameter 
P 

9 the surface separation of the shot 
from the geophone 

t '  one-way time, surface to  reflector, 
along a ray 

T travel-time depth of buried geo- 
phones, one-way time along a ray 

t travel time seen by buried g e e  
phones 

v (p , tp ) a stratified velocity function 
vt(z ), in the new coordinates 
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The coordinate system is based on the following simple statements: (I) 
travel time from shot to  geophone is twice the travel time from shot to 
reflector, less the time-depth of the geophone; and ( 2 )  the horizontal distance 
traveled by a ray is the time integral of v sin 9 = pv2; (3)  the vertical dis- 
tance traveled by a ray is computed the same way as the horizontal distance, 
but with a cosine instead of a sine. 

Surfaces of constant t '  are reflections. Surfaces of constant p are rays. 
Surfaces of constant T are datum levels. Unfortunately, it is impossible to 
invert the above system explicitly to get ( t  I ,  p , T )  as a function of ( t  , g , z ). 
It is possible, however, to  proceed analytically with the differentials. Form 
the Jacobian matrix 

Performing differentiations only where they lead to obvious simplifications 
gives the transformation equation for Fourier variables: 

It should be noted that (5) is a linear relation involving the Fourier vari- 

ables, but the coefficients involve the original time and space variables. So ( 5 )  
is in both domains at once. This is useful and valid so long as it is assumed 
that second derivatives neglect the derivatives of the coordinate frame itself. 
This assumption is often benign, amounting to something like spherical diver- 
gence correction. 

Here we could get bogged down in detail, were we t o  continue to attack 
the nonzero offset case. Specializing to  zero offset, namely, p = 0, we get 
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Equation (6) may be substituted into the single-square-root equation for 
downward continuing geophones, thereby transforming i t  t o  a retarded equa- 
tion in the new coordinate system. 

Historical Notes on a Mysterious Scale Factor 

My first migrations of reflection seismic data  with the wave equation 
were based on the U / D  concept. The first wave-equation migration pro- 
gram was in the frequency domain and worked on synthetic profiles. Since 
people generally ignored such work I resolved t o  complete a realistic test on 
field data. Frequency-domain methods were deemed "academic." I found I 
could use the bilinear transformation of 2-transform analysis t o  convert the 
15" wave equation t o  the time domain. As a practical matter, i t  was 
apparent that  a profile migration program could be used on a section. But 
the theoretical justification was not easy. At  that  time I thought of the 
exploding-reflector concept as a curious analogy, not as a foundation for the 
derivation. 

The actual procedure by which the first zero-offset section was migrated 
with finite differences was more circuitous and complicated than the procedure 
later introduced by Shenvood (Loewenthal et a1 [1976]) and adopted generally. 
The equation for profile migration in moveout-corrected coordinates has many 
terms. Neglecting all those with offset as a coefficient (since you are trying t o  
migrate a zero-offset section), you are left with an equation that  resembles the 
retarded, 15' extrapolation equation. But there is one difference. The v all 
term is scaled by a mysterious coefficient, [ t ' / (2 t ' -~ ) ]~ .  This is the equation 
I used. As the travel-time depth T increases from zero t o  the stopping depth 
t ', the mystery coefficient increases slowly from 114 t o  1. 

Unfortunately my derivation was so complicated that  few people followed 
it. (You notice that  I do not fully include it here). My 1972 paper includes 
the derivation but by way of introduction it takes you through a conceptually 
simpler case, namely, the seismic section that  results from a downgoing 
plane-wave source. This simpler case brings you quickly t o  the migration 
equation. But the mystery coefficient is absent. Averaged over depth the 
mystery coefficient averages t o  a half. (The coefficient multiplies the second 
x-derivative and arises from Ax decreasing as geophones descend along a 
coordinate ray path toward the shot). Sherwood telephoned me one day and 
challenged me t o  explain why the coeficient could not be replaced by its aver- 
age value, 112. I could give no practical reason, nor can I today. So he aban- 
doned my convoluted derivation and adopted the exploding-reflector model as 
an assumption, thereby easily obtaining the required 112. I felt more 
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comfortable about the mystery coefficient later when the survey-sinking con- 
cept emerged from my work with Doherty, Muir, and Clayton. 

My first book, FGDP, describes how the U I D  concept can be used to  
deal with the three problems of migration, velocity analysis, and multiple 
suppression. In only one of these three applications, namely, zero-offset 
migration (really CDP-stack migration), has the wave-equation methodology 
become a part of routine practice. None-the-less, the U / D  concept has 
been generally forgotten and replaced by Sherwood's exploding-reflector con- 
cept. 

5.8 Predictions for the Next Decade 

In the 1960s seismologists learned how to apply time-series optimization 
theory to  seismic data - see FGDP for that. Eventually time series reached 
the point of diminishing returns because its approach to  spatial relations was 
oversimplified. In the 1970s seismologists learned to  apply the wave equation. 
That's what this book has been about. You can see that the job of applying 
the wave equation is not yet complete, but we have come a long way. 
Perhaps we have solved most of our "first-order" problems, and the problems 
that  remain are mainly "second order." For second-order effects to  be 
significant, all the first-order phenomena must be reasonably accounted for. 

Some first-order effects that this book has touched on only lightly relate 
t o  obvious, as well as subtle, imperfections in seismic data. 

Problems in the Database 

We often have a problem of truncation. The recording cable is of course 
finite in length, and perceptible waves generally travel well beyond it. The 
seismic survey itself has finite dimensions. We also have the problem of gaps. 
Gaps in seismic data may occur unpredictably, as when a gun misfires or sur- 
veyors are denied access to parcels of land in the midst of their survey. In 
addition we have the problem of spatial aliasing. Because of improving tech- 
nology, we can expect a substantial reduction in aliasing on the geophone 
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axis, but aliasing on the shot axis will remain. There are only twenty-four 
hours in a day, and we must wait ten seconds between shots for the echoes t o  
die down. So, given a certain area to  survey and a certain number of months 
t o  survey it in, we end out with a certain number of shotpoints per square kil- 
ometer. With marine data, the spacing in the line of the path of the ship 
presents no problems compared t o  the problems presented by data spacing off 
the line. 

Migration provides a mapping from a data space t o  a model space. This 
transformation is invertible (in the nonevanescent subspace). When data is 
missing, the transformation matrix gets broken into two parts. One part 
operates on the known data values, and the other part operates on the miss- 
ing values. Except for a bit of Section 3.5, this book ignores the missing part. 
Although a strategy is presented in 3.5 for handling the missing part, it is 
very costly, and I believe i t  will ultimately be superseded or much improved. 

Noisy data can be defined as data that  doesn't fit our model. If the miss- 
ing data  were replaced by zeroes, for example, the data would be regarded as  
complete, but noisy. Data is missing where the signal-to-noise ratio is known 
t o  be zero. More general noise models are also relevant, but  statistical treat- 
ment of partially coherent multidimensional wave fields is poorly developed 
in both theory and practice. 

My prediction is that  a major research activity of the next decade will be 
t o  try to  learn to  simultaneously handle both the physics and the statistics of 
wavefields. 

Reuniting Optimization Theory and Wave Theory 

Let's take a quick peek beyond this book into the future. A seismic 
image is typically a 1000X1000 plane, derived from a volume of about 1000~ 
interrelated data points. There are unknowns present everywhere, not only in 
the earth model, but also in the data, as noise, as gaps, and as insufficient 
spatial density and extent of data recording. T o  assemble an interpretation 
we must combine principles from physics with principles from statistics. 
Presumably this could be done in some monster optimization formulation. A 
look a t  the theory of optimization shows that  solution techniques converge in 
a number of iterations that  is greater than the number of unknowns. Thus 
the solution t o  the problem, once we learn how t o  pose the problem properly, 
seems t o  require about a million times as much computing power as is avail- 
able. What  a problem! 

But the more you look a t  the problem, the more interesting it becomes. 
First we have an optimization problem. Since we are constrained to  make 
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only a few iterations, say, three, we must go as far as we can in those three 
steps. Now, not only do we have the original optimization problem, but we 
also have the new problem of solving it in an optimum way. First we have 
correlated randomness in the raw data. Then, during optimization, the earth 
model changes in a correlated random way from one iteration t o  the next. 
Not only is the second optimization problem the practical one - it is deeper 
a t  the theoretical level. 

Throw Away Your Paper Sections. 

Current seismic interpretation often amounts t o  taking colored pencils 
and enhancing aspects of a computer-generated image. Seismic interpretation 
is entering an  era in which the interpretation will all be done on a video 
screen. The basic reason is that  a sheet of paper is only two-dimensional, 
while most reflection data  is three-dimensional. Modern 3-D surveys really 
record four-dimensional data. A video screen can show a movie. The 
operator/interpreter can interact with the movie. There are things I would 
like t o  show you, but I cannot show you in a book. Seismic data or even a 
blank sheet of paper has texture. When a textured object moves, you 
immediately recognize it. But I couldn't show it t o  you with pictures in this 
book. (Imagine a sequence of pictures of a blank sheet of paper, each one 
shifted some way from the previous one). The perception of small changes is 
blocked by any eye movement between pictures. Astronomers look for 
changes in the sky by rapidly blinking between looking at photographs taken 
a t  different times. Our eyes are special computers. Movies often show "where 
something comes from," enabling us t o  notice the unexpected in the general 
ambiance. 

Most seismic interpretation is done on stacked sections. The original 
data  is three-dimensional, but one dimension is removed by summation. 
Theoretically, the summation removes only redundancy while i t  enhances the 
signal-to-noise ratio. In reality, things are much more complicated. And much 
more will be perceptible when summations are done by the human eye (just 
by increasing the speed of a movie). There will be two generations of seismic 
interpreters - those who can interpret the prestacked data they see on their 
video screens - and those who interpret only stacked sections. 
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in divergence correction, 234, 245 
layer, 297 

R 0, r 0,  83-86 

anisotropy, 254, 301, 303 
with viscosity, 241 

Radial trace, 215-219, 311-313, 369 

Ratfor (Rational Fortran), 67 

Reciprocity principle, 173-177, 374, 
37 6 

Reflected head waves, 205-206, 
347-348 

Reflection coefficient, 11 
absorbing side, 271 
decreases with depth, 234 
multiple reflection family, 355-356 
with offset, 149-151, 347, 351 
random in depth, 238 
replacement, 370-375 
sea floor, 347-348 
spherical wave, 325 
texture, 149-151 
U ID estimate of, 378 
at  vertical fault, 226-228 

Relativity, 131 

Replacement: 
reflectivity, 374-375 
velocity, 220-222 
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Resolution: Japan trench, 12 
in midpoint enhanced by DMO, Philippines, 222 

219 Puerto Rico, 357 
of migration, 17-20, 240 Thailand (3-D), 159 
of S waves, 42 Shelikof Strait, 169 
of velocity estimates, 206 Semicircle superposition, 26-27, 38 
velocity versus depth, head waves, 

320 
Separation, full separation of equa- 

VSP, 351 
tions, 113-122 

Resolving power, (see Resolution) 
Shale, 21, 40-42 

Shear wave, 42-43, 326 
Retarded coordinate, 127-131 

CMP slant stack, 345 Sherwood, John W.C., 208-21 1, 
system, 333 38 1-382 

Retarded-time variable, 85-87, 
127-131, 300-301, 319 

Rho filter, 203, 324-325 

Rocca, Fabio: 
2-D F.T., 65-66, 72-74 
repeated migration, 121 
reciprocity, 176 
dip moveout, 209-213 

Sandstone, 14, 21, 40-41 
lens and channel, 154-159 

Scalar wave equation, 17, 47-49, 
54-56, 62, 268-269 

in afine coordinates, 335 

Schneider, William, 26-28, 35, 349 

Schroedinger equation, 54, 82 

Section: 
constant-offset, 145 
with multiples, 356, 372 
partial migration of, 208-216, 219 
point response on, 165 
random scatterers on, 166 
with v (x ), 227 

Section, field, 223, 372 
East Africa, 43 
Alaska, 22 
California Valley, 174 
Chukchi Sea, 361 
Flemish Cap, 356 
Grand Isle, 156 
Gulf of Mexico, 13 

Side boundary conditions, 106-108, 
267-272 

Sidescatter, 168-169, 239 

Sideswipe, 119, 168-169 

Slant stack, 190-191, 315-326, 
326-330 

CMP versus CSP, 340, 364-367 

Slowness, 58, 248-251, 310 

Snell parameter, 59, 315-325, 
336-346, 364-366 

in Stolt stretch, 277-278 

Snell trace, 314-315, 380 

Snell wave, 37-62, 190-191, 310-311, 
326-335, 369 

contrasted to CMP slant stack, 340 

Snell's law, 20, 57-58 

Spatial alias, 29-30, 39, 230, 
257-261, 382-383 

anti-alias, 219 
on geophone axis, 328 
reduction by retardation, 130, 191 
during slant stack, 324 

Split Backus operator, 370-372 

Split spread, (see profile) 

Splitting a gather by velocity, 205 

Splitting an equation, 87, 91, 101, 
113-121 

Stability: 
absorbing sides, 272 
extrapolation, 279-297 
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lateral velocity variation, 305-308 
time domain extrap., 134, 139-143 
(See also Instability) 

Stanford Exploration Project, 201 

Stationary phase method, 255-256 

Statistical prediction, 347 

Statistical problem: 
multiples, 363, 374-375 
velocity, 198, 233-235 
(See also Missing data) 

Steepening of migration, 9 

Stepout, 10, 78 
forms of operator, 186 
in midpoint, 336-346 
modeling regimes, 368 
predicted versus measured, 315 
in s and g , 327 
transformation of, 180-181 

Stolt, Robert H.: 
finite difference, 266 
method, 33-35, 38, 39 
method for DMO, 214, 219 
method in offset continuation, 207 
program, 64, 72, 118 
stretch, 276-279 

Substitution operator, 245 

Survey sinking, 177-178, 183, 382 
versus profile migration, 377-378 

t gain, 233-234 

Taner, Turhan, 194, 216, 258, 369, 
373 

Texture, 149-151, 334, 384 

Thermodynamics, 317 

Three-dimensional: 
divergence correction, 233-234 
filter, 126 
migration, 117-119, 122 
phase shift, 105, 112 
random points, 148-149 
survey, 158-159 

Tomography, 152-159, 323-325 

Transpose: 
algorithm, 64-65 
of NMO, 202-203 

Travel-time depth, 26, 112, 313, 
321, 333, 340-341 

increment, 304-305 
pitfall, 229 

Tridiagonal matrix, 97-99, 102, 106, 
143, 231, 307 

Velocity analysis, 192-207 
with DMO, 208-219 
slant stack, 319-322, 382 

Velocity spectrum, 195, 202 
focused LMO, 346 

Velocity variation: 
big doses of, 220-230 
bullet-proofing migration against, 

232, 305-308 
in DSR, 180 
frustrating migration of stack, 188 
near-surface, 367 
with Snell waves, 309, 326 
(See also Lateral velocity varia- 
tion) 

Vertical seismic profile (VSP), 
350-354 

Vertical stack, 186-188 

Viscosity, 45, 245, 295, 299 

VSP (Vertical Seismic Profile), 
350-354 

W a t e r  table, 53 

Waters, K., 42 

Weathered zone, 353, 376 

Wraparound, 38, 77, 112-113, 249 
suppression, 273-275, 279, 

291-292, 299 

Yilrnaz, Ozdogan, 219 
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