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Seismic trace interpolation in the F-X domain

S. Spitz*

ABSTRACT

Interpolation of seismic traces is an effective means
of improving migration when the data set exhibits
spatial aliasing. A major difficulty of standard interpo
lation methods is that they depend on the degree of
reliability with which the various geological events can
be separated. In this respect, a multichannel interpo
lation method is described which requires neither a
priori knowledge of the directions of lateral coherence
of the events, nor estimation of these directions.

The method is based on the fact that linear events
present in a section made of equally spaced traces may
be interpolated exactly, regardless of the original
spatial interval, without any attempt to determine their
true dips. The predictability of linear events in the f-x
domain allows the missing traces to be expressed as
the output of a linear system, the input of which
consists of the recorded traces. The interpolation
operator is obtained by solving a set of linear equa
tions whose coefficients depend only on the spectrum
of the spatial prediction filter defined by the recorded
traces.

Synthetic examples show that this method is insen
sitive to random noise and that it correctly handles
curvatures and lateral amplitude variations. Assess
ment of the method with a real data set shows that the
interpolation yields an improved migrated section.

INTRODUCTION

The performance of any multichannel data processing
depends heavily on the spatial sampling interval. In partic
ular, if the frequency content of the seismic traces is
adequate for the resolution of thin beds, too large a spatial
sampling interval leads to aliasing which adversely affects
migration, resulting in poor lateral resolution of the subsur
face image. It is well known that an alternative to expensive
spatial sampling is interpolation of the seismic traces. Thus,

the ability to generate unrecorded samples from undersam
pled data, without affecting the frequency bandwidth neces
sary for vertical resolution, has a direct influence on the cost
of a seismic survey.

In order to interpolate seismic traces recorded with spatial
aliasing, some extra information is needed to overcome the
ambiguities imposed by the sampling theorem. The usual
assumption is that the seismic traces of the original section
(or, more precisely, the traces pertaining to a spatio-ternpo
ral processing gate) are made of a limited number of linear
events. Whether this assumption is correct or not depends
on the data, on the size of the spatio-temporal processing
gate and, ultimately, on the ability of the chosen method to
generate an output free of artifacts and of spatial aliasing.

Because knowledge of the dips allows unambiguous un
raveling of aliased linear events, the standard interpolation
techniques are mostly focused on the problem of finding the
true directions of the coherent events in the input section
(see, for instance, Bardan, 1987). These directions usually
result from a local dip search performed in small spatio
temporal gates. The desired samples are generated after
wards, by interpolating the amplitudes along the direction of
lateral coherence of each event. The local dip search may
amount to a scan of the multichannel coherence function and
may involve several dips, or a single dip (Lamer et al., 1981)
with obvious setbacks in the case of crossing events. How
ever, since the spatio-temporal processing gate consists of
only a few traces, in order to allow for curved events, such
an automatic search technique may provide misleading di
rections if noise is present. Unless local dips are picked
manually, as proposed by Pieprzak and McClean (1988),
some a priori information, such as local dip limits, has to be
supplied. It is also unclear how the model-free pattern
recognition technique proposed by King et al. (1984) will
handle noisy data formed of aliased events produced by
complex tectonics.

This paper takes the position that the trace interpolation
should be carried out without any attempt to solve the
difficult problem of separating geological reflectors. To this
effect, a method to interpolate linear events without any
reference to their true dips is developed in the next section.
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786 Spitz

The expressions (4) provide a relationship between the
missing traces and the known traces. This relationship may
be formally expressed as follows:

For the sake of clarity, the multichannel properties of such
events are described in the appendices. Numerical examples
on synthetic and real data sets demonstrate the method in
the third section.

gi(f)

INTERPOLATION OF LINEAR EVENTS g4(f)
MP'(f» = J!(P'(f))

gl(f)

g3(f)

(5)

It is shown in this section that N equally spaced traces
made of L events (each event being invariant from trace to
trace except for its constant dip) may be exactly interpolated
without any reference to the dips, if L is known and if it is
less that N. Using the same notation as in Appendix A, each
input trace gk may be modeled in the frequency domain as
follows:

The notation MP'(f), ~(P'(f) emphasizes the fact that
these two matrices depend only on the components of the
prediction vector P'(f). If all the components of the vector
P' are known on the signal bandwidth, expression (5) repre
sents a system of 2(2N - L - 1) equations with 2N - 1
unknowns, which can be solved in the usual least squares
sense. From a formal point of view, expression (5) defines
the missing traces as the output of a linear system defined by
the multichannel filter:

L

gk(f) = L aj(f)zj-I(f),
j= I

k= 1, ... , N, (1)

giN-2(f) giN - I (f)

L

gk(f) = L aj(f)zjk-I(f), k = 1, ... , 2N - 1. (3)
j=1

L

gk(f) = L Pj*(f)gk+j(f), k = 1, ... ,2N-L-1. (4b)
j=1

L

gk(f) = L Pj(f)gk- j(f), k = L + 1, ... , 2N - 1, (4a)
j= I

(6)}=1, ... ,L.

[A + (P'(f))MP'(f))r'A +(p'(f)m(p'(f))

and by the known traces. Here A+ stands for A transpose
and complex conjugate.

Obviously, the prediction vector P'(f) is unknown but can
be determined from the input traces prediction filter P(f). To
proceed, note that the phase shifts in the output and input
sections are related by zj(f) = z/fl2), since the interpolation
sought consists of dividing the original trace interval by a
factor of 2. Moreover, the analytical expressions (A-5) of a
given component of P'(f) or P(f) prediction filters involve
only products of the corresponding phase shifts. It follows
that the spectrum of P'(f) is determined completely:

The above expression defines a spectral estimate of the
components of the prediction filter PI(f) for which the low
frequency components of the prediction vector P(f) playa
key role. It follows that the higher the interpolation order,
the more the low-frequency content of the input traces
drives the interpolation. If the input data are band limited,
the remark does not imply that the high-frequency content of
the output traces is affected, because the input and output in
expression (5) are at the same frequency. However, for a
given time window, the estimation of P(fl2) (for instance by
zero padding in the time domain) may be misleading, owing
to the lower limit of the data spectrum. Indeed, iffl denotes
this lower limit, the expressions (5) and (6) involve the
estimation of the P vector components at the frequency fl /2,
which is out of the bandwidth. In order to overcome this
difficulty, it is shown in Appendix B that despite possible
limitation of the signal bandwidth, the L spectra
PI (f), ... , PL(f) may be defined on the full frequency
band, using a forward and backward prediction technique
along the frequency axis, for the vector P.

The sequence (2) [possibly (B-3)], (6), (5) defines a proce
dure for an exact interpolation of linear events. One advan
tage of the method is that no information on the dips is
required, expressions (5) and (6) being an alternative to a
multidip search or to a broad-band solution of the nonlinear
optimization problem defined by (A-lO).

(2a)

(2b)k= 1, ... , N - L,

k=L+1, ... ,N,

L

g'k(f) = L Pj(f)g'k + j(f),
j=1

where a/f) is the Fourier transform of the wavelet associ
ated with the event} and where z/f) is the }th event phase
shift at the frequency f, z/f) = exp (27rijpj)' corresponding
to the time shift Pj between adjacent traces. The forward
backward one-step prediction filter components P/f) (see
Canales, 1984 and Appendix A) may be determined in the
least-squares sense from the following set of equations:

L

gk(f) = L Pj(f)gk - j(f),
j= I

The forward-backward prediction filter components Pj(f)
express the traces g,,(f) of the output section in terms of the
preceding L traces and of the following L traces:

where * denotes complex conjugate.
The interpolation considered throughout this section

halves the original trace interval (first order interpolation);
the results can be generalized easily to higher order interpo
lations. If this first order interpolation is exact, each Fourier
transformed trace of the output section, giJf), allows an
expansion in terms of the L phase shifts similar to equation
(1):
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Trace Interpolation in the F-XDomain 787

NUMERICAL EXAMPLES

The main difficulty when applying the method to real data
(or to synthetic data. where some kind of noise is present) is
the choice of the "length" L of the prediction vector P. This
is very similar to the problem of determining the order of an
AR process. The position taken in this paper is that a trial
with L amounting to about half the number of traces pertain
ing to the spatio-ternporal processing gate gives a fair indi
cation of whether L should be increased/decreased , or the
processing gate changed . It is obvious , however. that a
better procedure would be the introduction of some objec
tive criterion to select , on the signal bandwidth, the optimal
L value for each processing gate.

A common feature of multichannel adaptive processing
sequences is their relative insensitivity to the presence of
random noise. This is not surprising, since these sequences
take advantage of signal redundancy in order to attenuate the

noise component. In this respect, the proposed method
involves two minimizations . in the least-squares sense, of
the random noise energy : the first minimization occurs when
the prediction vector P is determined from the input traces
[expressions (2)] and the second when the interpolated
trace s are constructed [expression (5)]. Figures I and 2
illustrate the ability of the algorithm to generate unrecorded
samples from spatially undersampled data, in the case of
aliased linear event s when random noise is present.

The true advantage of a multichannel interpolation method
lies in its ability to process a large number of traces in order
to account for the low spatial frequencies of the data. The
number of traces proce ssed together is limited by the ability
of the particular chosen algorithm to handle curved horizons
and lateral amplitude variations. In this respect , to consider
curved events as made piece-wise of linear events can only
limit the processing to a small number of traces and therefore

(bl(a)

o

50

100
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(b)
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(a)

0.0 --r---~--~----TTTT""""----

1.5 -H-++t+++t~+tt+t-1 JI - .E ~j 111'11 ,1111111 ,,II 1"

I II I II 11:1 !III'II _.-

+t++ H li++++++H+t+H+t-i-

1

+-H------j I ' I;"CII1.I'1'-
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FIG. I. (a) Input data made of three aliased linear event s and
sparse random noise. The noise and the signal have the same
spectrum. (b) First order interpolated data. The interpolation
has been carried out using a spatio-temporal processing gate
which covered the entire input. The order of the prediction
filter was L = 3. Note that the parallel events have been
correctly interpolated.

FIG. 2. Amplitude f-k spectra. The horizontal axes represent
normalized wavenumbers, from -0.5 to 0.5 cycles. (a) f-k
amplitude spectrum of the input shown in Figure I(a). The
unit scale of the normalized wavenumber is 1/32 cycles. (b)
f-k amplitude spectrum of the interpolated data set shown in
Figure I(b). The unit scale of the normalized wavenumber is
1164 cycles. Note that the event in Figure l(a) beginning at
525 ms is no longer aliased.
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788 Spitz

FIG. 3. (a) Input data set made of curved events displaying
lateral amplitude variations. (b) First order interpolated
data. The interpolation has been carried out using a spatio
temporal processing gate which covered the entire input.
The order of the prediction filter was L = IS.

to an even smaller number of dips. The underlying idea of
the method presented in this paper is that it represents a
suboptimal solution to the problem of linear events interpo
lation. Indeed, the one-step predictability in the f-x domain,
which is the basis of the method, may be seen as a neces
sary, but not sufficient, condition for the signal to be formed
of linear events. It follows from the discussion in Appendix
A that L linear events on N traces are predictable in the f-x
domain with filters of length L which involve lags higher than
I. Moreover, the components of a lag-a prediction filter are
nonlinearly related to the components of the lag-I prediction
filter. The qualityofthe interpolationin Figure3 shows that the
proposed algorithm, based on lag-I prediction, may accommo
date curvatures and strong lateral amplitude variations.

The interpolation method is checked on a part of a stacked
section from the North Sea (Figure 4). The processing input
(Figure 5) consists of a second order decimation of the
reference, and the restored section (Figure 6) is compared in
Figure 7 to the original data set. Because interpolations are
not carried out for their own sake, the influence of the

0.0

0.5 I

1.0

1.5

2.0

2.5
s. (0) (bl

processing on migration is also examined. The original
migrated section (Figure 8) and the migrated restored section
(Figure 10) are compared in Figure II. The choice of the
finite-difference scheme to perform migration was motivated
mainly by its more severe requirements with respect to
aliasing (see Figure 9).

CONCLUSIONS

This paper has described a multichannel, model-free inter
polation method. The choice of the f-x domain follows from
the fact that, in the case of a section made of linear events,
any possible aliasing does not affect the components of the
spatial prediction filter. The method does not address the
difficult problem of separating the events present in the
section to be processed. This may be seen as a definite
advantage over traditional seismic interpolation techniques.

Although derived under the assumption that the input
section is made of linear events, the method represents only
a suboptimal solution to the problem of interpolating such a
section. The numerical examples presented show that some
departure from this basic assumption can be tolerated. In the
presence of random noise, the method handles events with
moderate curvatures which display some lateral amplitude
variations, without trading vertical resolution for lateral
resolution.

The method is also derived under the assumption that the
spatial sampling of the input section is regular. However,
interpolating an irregularly sampled section violates the
method's assumptions in the same way as interpolating a
regularly spaced section made of curved events displaying
some lateral amplitude variations. It is then expected that a
first order interpolation, for instance, will calculate an ac
ceptable trace midway between the existing traces, even if
the spatial sampling is slightly irregular. At this stage it is
unclear how to modify the theory in order to interpolate and,
at the same time, transform an irregular grid into a regular
one.
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Trace Interpolation in the F-X Domain
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FIG. 4. Reference data set made of 352 traces. The trace interval is 25 m.

789
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S.

FIG. 5. Input to interpolation. The trace interval is 75 m.
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790 Spitz

0.5
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1.5
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FIG . 6. Second order interpolation. The processing has been carried out using overlapping spatio-temporal gates
made of 31 input traces and 256 ms. The order of the prediction filter was L = 9.

0.0

0.5

1.0

1.5

2.0

2.5
s.

FIG. 7. Difference between the reference section (Figure 4) and the interpolated section (Figure 6). For display
purposes, this section has been amplified by a factor of 1.25.
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Trace Interpolation in the F-X Domain

FIG. 8. Finite-difference migrated reference section shown in Figure 4.

791

FIG. 9. Finite-difference migrated section shown in Figure 5.

2.5•••••••••••1
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FIG. 10. Finite-difference migrated interpolated section shown in Figure 6.

FIG. 11. Difference between the migrated reference section (Figure 8) and the migrated second order interpolated
section (Figure 10). For display purposes, this section has been amplified by a factor of 1.25.
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Trace Interpolation in the F-X Domain 793

APPENDIX A

PREDICTION AND SEPARATION OF LINEAR EVENTS

(A-5)

P L = (_)L+ IZ1ZZ .,. ZL'

Each component Pj has 0L
) terms, where ( ) denotes the

binomial coefficient. These components are not indepen
dent, since IPLl z = I and, from the above expressions:

(A-6)j=I, ... ,L-l.

Throughout this appendix, a section of N equally spaced
traces is considered, whose signal content is composed of
linear events. Each event is characterized by its gradient Pj'

the number L of events with different gradients being less
than N. In the frequency domain the N-channel datum is a
vector xT(f) = [XI(f), ... , XN(f)), where T stands for
transpose. The assumed model is x(f) = g(f) + n(f), where
g and n denote the signal and noise vectors respectively. The
noise is assumed uncorrelated on the various traces and
uncorrelated with the signal. The complex z-transform along
the jth event defines the transfer function Sf(f) = rI,
Zj(f), ... ,zt-I(f)], with Zj(f) = exp (2Trijpj)' The system
of linear events which forms the signal may then be modeled
as a linear combination of the L steering vectors S/f):

(zf,··· ,zZ)=(PL, ... ,Pd

Since the L steering vectors are linearly independent
(except for some frequencies in the broad-band, for which it
may happen that some steering vectors are identical), the
Van Der Monde matrix ~ is of rank L. Any row may then be
written as a linear combination of L other rows. In particu
lar, the (L + I)th row, consisting of the steering vectors
components on the (L + l lth trace, may be written as a
linear combination of the first L rows as follows:

(A-8)

It is instructive to see how the roots move on the unit
circle as/varies. At the DC, all the roots are concentrated in
(I, 0). As the frequency increases, each root Zj advances
clockwise or anticlockwise in steps proportional to its gra
dient Pj' In the process, a root may cross the real negative
axis, revealing the aliasing of the corresponding event. It
may also happen that, due to the aliasing, two roots become
identical at some particular frequency. At such frequencies
the corresponding events are indiscernable and the rank of
the matrix ~ is less than L.

Obviously, P(f) has to be determined from the noisy
datum-vector x(f). Since the components of the P-vector are
invariant with respect to translations defined across the
array of N traces, it follows from (A-3) and (A-I) that the
signal component on the kth trace, gk(f), may be predicted
from the signal components on the preceding traces
gk-L(f), ... , gk-I(f'). The expression (A-6) implies that
this signal component may also be predicted from the signal
components on the traces which follow, gHI(f), ... ,

gk+L(f). Thus, at each frequency of the signal bandwidth,
the components of the forward-backward one-step predic
tion error filter are the solution of the nonwindowed system
of normal equations:

In the expression above, e denotes the minimum prediction
error energy. The components of the (L + I) x (L + I)
matrix J! are defined by:

(A-3)

(A-2)

(A-I)
L

g(f) = 2: aj(f)Sj(f).
j= I

x(f) = ~(f)a(f) + n(f).

The complex coefficient aif) is the Fourier transform of the
wavelet associated with event i. It can be very long in the
time domain, as parallel arrivals are defined as a single
event. No assumption is made on the aj(f) bandwidth in
relation to the space interval, so that the signal may display
some spatial aliasing. Defining the N x L matrix ~(f) =

[St(f), ... , SL(f)), the datum x(f) becomes, in matrix
notations,

where the frequency dependence has been dropped.
The knowledge of the steering vectors determines P at

each frequency. Conversely, the PI (f), ... ,PL(f) spectra
determine the L phase shifts, since from (A-3) these phase
shifts are the roots of the polynomial:

The analytical expression of each component P, in terms of
the phase shifts is obtained from the expansion of the
polynomial ZL = (z - ZI)(Z - zz) ... (z - zzJ:

N-L-]

Rij(f) = 2: (Xk+L+2-jXk+L+2-i +Xk+iXk+j)'

(A-9)

At this stage, the advantages of an economical solution of
(A-8)have to be carefully weighed in the light of any possible
drawbacks. If a windowed version of (A-8) is used, which
leads to Levinson's recursion, the vector P solution cannot
correctly describe the system of linear events (Gulunay,
1986). This is due to the fact that windowing assumes null
traces outside the original array of N traces, while the
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roots may be impossible to achieve when the components of
the prediction filter are to some extent corrupted by noise.
An alternative consists of overall determination of the L dips
on the broad band, which are solutions of the nonlinear
optimization problem:

It is noteworthy that the problem of separating linear
events may be described following other approaches. How
ever, any approach leads to a polynomial of the type (A-4),
described first by Pisarenko (1973), and to a separation
which involves either sorting its roots at each frequency, or
a nonlinear optimization problem on the broad band (see for
instance Mars et aI., 1987,and Leaney and Esmersoy, 1989).
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invariance of vector P for translations performed across this
array implies that the events are present outside as well.
Some drawbacks may also arise if Burg's nonwindowed
algorithm is used. Indeed, it may be checked that the
prediction filter components (A-5) do not verify Levinson's
recursion constraint which leads to Burg's algorithm (see,
for instance, Kay and Marple, 1981).

When all the components of the prediction vector are
determined on the signal bandwidth, each event in the
section may be separated from the others. The separation
involves determining the steering vectors and estimating, in
the least-squares sense, the coefficients a/f) in (A-t). The
construction of the steering vectors implies correct sorting of
the roots of ZL(f) in the frequency domain. In particular,
the correct identification ofthe roots asfvaries implies that
the aliasing is unraveled. However, correct sorting of the

Spitz

2: IZL(fW minimum.
f

(A-to)

APPENDIX B

PREDICTABILITY OF THE P·VECTOR COMPONENTS

M

Pj(k!J..f) = 2: Qj~m(t:..f)Pj«k + m)t:..f),
m=1 (B-3b)

It may be shown that this forward prediction may be
completed with the corresponding one-step backwards pre
diction:

YM)' It follows from (B-2) that Pz is predictable on the
frequency axis, the length of the one-step ahead prediction
filter being L(L - 1)/2.

In general, each component of the vector P is predictable
one step ahead on the frequency axis:

In this appendix it is shown that the prediction vector
components can be defined on the full frequency band,
despite possible limitation of the signal band width. To this
effect it is assumed thatthe coefficients al(f), ... ,aL(f) in
expression (1) vanish outside a frequency band II $ I $ h,
defined by II = klill and h = kzilI, where ill is the
frequency interval. Inside this frequency band, expression
(2) defines the L components of the prediction vector P. At
the frequency kill, the phase shifts are the roots of the
polynomial ZL(kilf) defined in (A-4). If the prediction vector
is noise-free, each root Zj moves on the unit circle in
constant steps proportional to the gradient Pj' when the
frequency varies. The position of the root on the circle may
then be predicted, for instance from its past positions. It is
then natural to seek a similar predictability of the actual
components of the vector P.

It is easily derived from expression (A-5) that the compo
nent PL is predictable one step ahead:

M

Pj(kilf) = 2: Qj,m(ilf)Pj«k - m)ilf),
m= I

k = k l + M, ... , kz.

(B-3a)

(B-1)
k=kl + l , ... ,kz·

It may be checked that the component PI is also predictable:

L

PI (kilf) = 2: Pj(ilf)PI «k - j)ilf) ,
j= I (B-2)

k = k l + L, ... , k z.

To proceed, consider the component Pz. This component,
defined in expression (A-5), is made of M = L(L - 1)/2terms
of the form ZiZj' Let YI = ZIZZ, ... ,YM = ZL-IZL, denote
these M phase shifts. Then Pz has exactly the same form as
PI in terms of these M new phase shifts, P z = -(YI + ... +

k = kl , ... , kz - M.

The length M of each prediction filter Q/ilf),j = 1, ... ,L,
is given by the binomial coefficient 0L

) . The components of
the Q/ilf) filters are in general nonlinear expressions of the
prediction filter P(ilf) components, except for j = 1 andj =
L [expressions (B-1) and (B-2) respectively]. For instance, if
L = 3, QZI(ilf) = -Pz(ilf), Qzz(ilf) = -PI (ilf)P3(ilf) and
Qzz(ilf) = (P3(ilf)z.

The expressions (B-3) show that each prediction filter
Q/ilf) is the solution of a nonwindowed system of normal
equations similar to expression (A-8), which involves the
prediction filter component P, on the bandwidth. The result
is that any component of the filter P may be defined by
extrapolation on the full frequency band.
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