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OLD NEWS:   We seek sparse deconvolutions
by imposing a hyperbolic penalty function.

NEW:   Although FT based, we find theory
for arbitrary gain(t) and mute(t,x)

AFTER decon.

NEW:   We have identified a long-needed regularization.

NEW:  Results confirm benefit of  “gain after decon”
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Sparseness goals
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The �2-norm decon forces a whiteness assumption
and forces a “minimum phase” assumption. Both bad.

The sparseness goal should yield a “best” spectrum
and (hopefully) the most appropriate phase.

Enhance low frequency only when it aids sparsity.

Seek to integrate reflectivity to obtain log impedance.
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Logarithmic parameterization

Lag-log space.  

 Strange!
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D(ω) is the FT of the data.
rt is reflectivity (and residual)
uτ are the free parameters.
. u0 = 0 is mean log spectrum.

rt = FT−1 D(ω) exp




�

τ �=0

uτZτ




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Gain and sparsity
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qt = gt rt

where:
rt is the physical output of the filter
gt is the given gain function, often t2

qt is the gained output, also called
the “statistical signal” to be sparsified.
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qt = gt rt

H(qt) =
�

q
2
t + 1− 1

dH

dq
= H

�(q) =
q�

q2 + 1
= softclip(q)

rt is the physical output of the filter
gt is the given gain function
qt is the gained output,
H(q) is the hyperbolic penalty function.
Choose gt so that qt ≈ 1.
“Sparsity” is 1 /

�
t H(qt)

softly clipped residual

What percentile?
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rt = FT−1 D(Z) e···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= FT−1 D(Z) Zτe···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= rt+τ
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rt = FT−1 D(Z) e···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= FT−1 D(Z) Zτe···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= rt+τ You think you have seen this before....?
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rt = FT−1 D(Z) e···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= FT−1 D(Z) Zτe···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= rt+τ

Residual orthogonal to fitting function
becomes

Residual orthogonal to itself 

No, you likely saw dt+τ .
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Physical output gradient
w.r.t. lag-log variable

Statistical gradient

amazing result coming
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rt = FT−1 D(Z) e···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= FT−1 D(Z) Zτe···+u2Z2+u3Z3+u4Z4+···

drt

duτ
= rt+τ

qt = rt gt

dqt

duτ
=

drt

duτ
gt = rt+τ gt
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A crosscorrelation:  Compute it in the Fourier domain.
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∆uτ =
�

t

dH(qt)
duτ

τ �= 0

=
�

t

dqt

duτ

dH(qt)
dqt

∆uτ =
�

t

(rt+τ ) (gtH
�(qt)) τ �= 0

Jon’s favorite theory slide.

the step
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∆uτ =
�

t

dH(qt)
duτ

τ �= 0

=
�

t

dqt

duτ

dH(qt)
dqt

∆uτ =
�

t

(rt+τ ) (gtH
�(qt)) τ �= 0

the step

A crosscorrelation:  Compute it in the Fourier domain.

Jon’s favorite theory slide.

the softly c
lipped residual
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∆uτ =
�

t

dH(qt)
duτ

τ �= 0

=
�

t

dqt

duτ

dH(qt)
dqt

∆uτ =
�

t

(rt+τ ) (gtH
�(qt)) τ �= 0

the step

A crosscorrelation:  Compute it in the Fourier domain.
At convergence this is a delta function.

Special case:  stationary L2 then r(t) is white.
Amazing generalization to 

(1) non-causal, (2) gain, and (3) sparsity!
Jon’s favorite theory slide.

the softly c
lipped residual

Thursday, May 24, 2012



From ∆u to ∆r
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Skipping lots of algebra
(including a linearization)
given the gradient step ∆u = (∆uτ )
and the residual r = (rt),
the residual perturbation is ∆r = r ∗ ∆u.
(“∗” is convolution)
and the sparsity perturbation is
∆qt = gt ∆rt.
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Minimizing H(q + α∆q)

At each qt fit hyperbola to parabola (Taylor series).
A sum of parabolas is a parabola. Easy getting α.

α = −
�

t ∆qtH
�
t�

t(∆qt)2H ��
t

Update the residual q and unknowns u.
Form new Taylor series and iterate.

Recall stationary �2: α = − (∆r · r)/(∆r · ∆r)

 Newton’s method.
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Quick peek at the algorithm:
math to code key

Lower case letters for variables in time and space
like d = d(t, x), dq = ∆q(t, x), u = uτ .

Upper case for frequency domain like
R = R(ω, x), and dU = ∆U(ω).

Asterisk ∗ means multiply within an implied loop
on t or ω.
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The algorithm is brief. 
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D = FT(d)

U = 0.

Remove the mean from U(omega).

Iteration {

dU = 0

For all x

r = iFT( D * exp(U))

q = g * r

dU = dU + conjg(FT(r)) * FT(g*softclip(q))

Remove the mean from dU(omega)

For all x

dR = FT(r) * dU

dq = g * iFT(dR)

Newton iteration for finding alfa {

H’ = softclip( q )

H’’ = 1/(1+q^2)^1.5

alfa= - Sum( dq * H’ ) / Sum( dq^2 * H’’)

q = q + alfa * dq

U = U + alfa * dU

}

}
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Instability!  Yikes!

Sometimes there are time shifts.
Sometimes the polarity is wrong.

I’m going to work on velocity instead.
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Instability!  Yikes!

Try preconditioning.
Try regularization.

I tried them.
I’d rather do Q tomography.
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Instability!  Yikes!
Masking the gradient fails.
Here are the sample histories
you asked for.

I’m going to Houston.
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Instability!  Yikes!

Antoine!   Help!
22
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Instability.   Yikes!

A

B

C
Antoine:   I changed the gain
by 10% and the spike jumped
from B to C.

Jon:   Awful!  I thought I had
a great starting solution at B

Jon:  Make me a movie as a
function of iteration.

23
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Instability.   Yikes!

A

B

C
10 iterations:
good spike at B,
A&C small

200 iterations:
maybe spikes at A
maybe spikes at B
maybe spikes at C
others small

with Antoine and Qiang Fu
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“But when it’s good, it’s really good!
Let’s look at some of the results.”

We’ll return to the stability problem later.
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Bubble

white

white

black

black

Ricker Gain after filterGain before filter

26 first seen by Yang Zhang
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Prepare to compare
gain before with gain after

data          t-squared gain              decon

data          new decon         t-squared gain
qtrt
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Compare

Gain after decon.

Gain before decon.
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Scale up by 10x

Estimated shot
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Gain after decon.

Gain before decon.
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Scale up by 5x

Scale up by 5x

Thursday, May 24, 2012



Gain before filter

Low frequency
precursor

Clean

bubble

Produced by Antoine
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Instability.   Yikes!

A

B

C
10 iterations,
spikes at B,
A&C small

200 iterations,
maybe spikes at A
maybe spikes at B
maybe spikes at C
others small

Nonlinearity?

with Antoine and Qiang Fu
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Instability.   Yikes!

A

B

C
10 iterations,
spikes at B,
A&C small

200 iterations,
maybe spikes at A
maybe spikes at B
maybe spikes at C
others small

Nonlinearity?

Null space!!

with Antoine and Qiang Fu
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Nobody has proven it is a null space problem.

But I think it is, 

so I must come up with a regularization.
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Basic Regularization
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0 ≈ wτ (uτ − ūτ )
weights

prior model

But how to choose them?
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Fancier Regularization

0 ≈
�

t

�
k wk,τ (uτ − ūτ )

0 ≈ W(u− ū)

but what to choose for W and ū ?

35

unknown matrix
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Intuitive Regularization

Reduces the phase near t=0,
 more like Ricker there.

36the happy discovery slide

0 ≈ wτ (uτ − u−τ )

Choose big wτ where |τ ≈ 0|.
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0 ≈





rm(1)
rm(2)
rm(3)
rm(4)
rm(5)
rm(6)




= W





0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 +1 0 −1 0
0 0 0 0 0 0
0 0 −1 0 +1 0
0 −1 0 0 0 +1









u(1)
u(2)
u(3)
u(4)
u(5)
u(6)




= WJu

Regularization
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FFT notation in matrix,
Fortran notation in vectors.
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Report deadline

Only Antoine has seen the results

(if he hasn’t been too busy at work).

Any student had too much synthetic data?
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Theory innovations

• Two-sided filters escape minimum phase.

• Use sparsity goal instead of whiteness.

• Apply gain and mute AFTER filtering.
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Conclusions from testing

• Value of gain theory confirmed by two 
examples.

• Sparsity is not powerful enough to ensure a 
“best’’ phase.    Regularization is needed.

• A long-needed regularization is identified.
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The end
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