
GROUND ROLL: SUPPRESSING IT WHILE MAPPING
LAYER THICKNESS

• A new idea, a new direction!

• It might be wrong.

• Easy to code and test.

• Opens the door for routine production.

• Theory goes into 3-D, maybe. Your prize?

Ground roll is pesky stuff. Historically, the only way the industry could get rid of
this stuff was frequency filtering to eliminate low frequencies and local receiver arrays
to effect a crude low-velocity dip filter. Nowadays with denser data sampling, better
low-velocity cutoff filters are possible.

But the best way to eliminate anything is to model it and then subtract it. Trouble
with ground roll is the modeling quickly demands many more parameters than we
care to estimate. And it’s frequency dispersive. The modeling parameters can change
pretty fast in both space and time. What we need is a simplified model that is
rapidly adaptive in time and space. I’m going to try for a ground roll modeling and
suppression program that has only two parameters,

v an LMO velocity H2O. On land your choice.
H(x) or H(x, y) effective layer thickness you will discover

My old book PVI applies a finite differencing stencil (∂x−p∂t) to data D(t, x). This
gives two planes ∂xD(t, x) and ∂tD(t, x). I combined them with a scale factor p and
minimized misfit, thereby finding a simple expression for stepout p. Mathematically,
I appear to have a different p value at each point in time and space, but in practice
we naturally expect to do smoothing to reduce noise. A delightful aspect of this
approach is that it is easy to window the (t, x)-plane with with whatever size and
shape 2-D smoothing windows we choose.

An alternate approach worth noticing is that I could have started with the 1-D
scalar wave equation: (∂x − p∂t)(∂x + p∂t)D(t, x) = 0. That would simultaneously be
fitting wave slopes with both ±p. But the application I had in mind expected only
one of the two slopes.

Begin from the scalar wave equation. We will specialize it to a thin plate of
thickness H. In the marine environment H will be roughly the water depth. It is not
exactly that because what is usually called “normal modes” have some penetration
into the subsurface. We will call H the “effective layer thickness”. Let us write the
dispersion relation for scalar waves in an infinite medium, then express the vertical
wave number kz in terms of vertical wavelength, kz = 2π/λz.
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)2
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The denominator chooses odd harmonics (integer n) because the layer top and bot-
tom, have opposite boundary conditions, one being free, the other rigid. In other
words, your first harmonic n = 0 is a half wavelength, the next one 3/2, etc. Now
we specialize to the n = 0 case, the “fundamental mode”. To avoid fractions, let us
switch from layer thickness H to thinness T = 4π/H. Thus 0 = k2

x + T 2 − ω2/v2.

We wish to separate this wave equation into two parts, one for each of the two
directions of propagation. Today’s study is analogous to 40 years ago when I wished
to separate up and down going waves in 2-D. In later years people always liked to do
the wave separation by choosing a sign kz = ±

√
(ω/v)2 − k2

x. But in earlier years I
got a good first approximation without the complications of a square root, simply by
identifying a small quantity and neglecting its square. I follow that approach now.
We transform to new coordinates moving along with the wave of interest. That’s
when kx ≈ ω/v. To get a feeling for this, look at the data in Figures 1 and 2. We
are looking near t = 0 after linear moveout. After LMO the horizontal wavelength
becomes long, k̃x = kx − ω/v is small. We will drop terms in k̃2

x.

0 = k2
x + T 2 − ω2/v2 (4)

0 = (k̃x + ω/v)2 + T 2 − ω2/v2 (5)

0 = k̃2
x + 2k̃xω/v + T 2 (6)

0 = 2k̃xω/v + T 2 (7)

0 = k̃xω + T̃ 2 (8)

Thus, the final equation for modeling ground roll has only one free parameter, a
revised expression for layer thinness T̃ 2 = T 2v/2. We haven’t completely removed
velocity from the analysis, since earlier we used it for linear moveout of the data. Let
us have a look at the convolution stencils we will place on D(t, x).

0 ≈

(
1

∆t∆x
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−1 1

1 −1

]
+

T̃ 2
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[
1 1
1 1

])
∗D(t, x) (9)

0 ≈ a + T̃ 2 b (10)

T̃ 2 = −(a · b)/(b · b) (11)

where the dot products in equation (11) would be taken over a small range around
t = 0 and in arbitrarily shaped windows that move around the x-axis (or, hopefully,
the (x, y)-plane).
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That’s it. You moveout your data with any chosen v and look only near t = 0
where you have approximately flattened your ground roll or normal mode of interest.
Then you slap these templates on your data, convolve, and choose thinness T̃ to
minimize energy.

What should we do first? I’m guessing. I don’t understand this equation at all.
What if we change the moveout velocity a little bit?

To build synthetics, start with a fat blob function on t at x = 0 (or the opposite)
and propagate it out into the (t, x) plane. I hope it is stable.

Making money in 3-D

And how will we make this a 3-D process? That is an interesting question! Figure 4
shows a sample of 3-D ground roll. Do conical moveout τ = t− v−1

√
x2 + y2 on that

and watch the spatial aliasing magically disappear. This next equation, does it help?

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
(12)

Oh, you want the back scattered and side scattered ground roll too? If you’ve got
the data density, I’ve got the equation.

Figure 1: Shallow water marine, moved out at water velocity, shows fundamental
mode with group velocity a bit slower than water velocity.
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Figure 2: Shallow water marine, moved out at water velocity, shows fundamental and
one higher mode.

IGNORE THIS ANCIENT WISDOM AT YOUR PERIL

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium do-
loremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis
et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem
quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ip-
sum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi
tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim
ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit
qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem
eum fugiat quo voluptas nulla pariatur?
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Figure 3: Classic Alberta land data. Notice 2-3 modes. Notice spatial alias. Will be
fun to see this after linear moveout.
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Figure 4: One shot, 6 parallel receiver lines. Ancient data from SA. Ground roll
travel time from the shot is the cone t =

√
x2 + y2/v. Slices of it, what you see

here, are hyperbolas. After using the moveout equation τ = t − v−1
√

x2 + y2, the
apparent hyperbolas would be flattened near τ = 0. Linear moveout would not flatten
these hyperbolas, but conical moveout does. Do we know a radially dependent finite
differencing star that estimates the effective layer thinness T (x, y)?


