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ABSTRACT

Analogous to bandpass filters, Jon provides a two-parameter definition of a com-
pact pulse with a sharp onset and a slow decay. Its decay/risetime ratio defines
the pulse skewness. The immediate application is for modeling and image esti-
mation. Since pulse skewness is occasionally observable on field data we should
design a nonstationary process to highlight it in hopes of identifying an inter-
pretive value. Marine sources always have an inherent low cut. This low cut is
in addition to the low cut that is coming from a source ghost, possibly also a
receiver ghost, and inherent low cut in the transfer functions of hydrophones and
geophones. One way to produce such inherent low cut is to take the difference
between two skewed wavelets. The two skewed wavelets are normalized so they
would have the same area, so their difference has no zero zero frequency (“DC”)
content.

INTRODUCTION

Wavefield modeling requires a source waveform. It is commonly taken to be a band-
limited impulse. The method of band-limitation is rarely given much thought. Most
often the resulting signal is simply taken to be time-symmetric. Such a choice is of-
fensive to elder geophysicists like Jon who commonly observe “innovation functions”
being non-symmetric. Besides use for modeling, pulse non-symmetry might have di-
agnostic power on signals which resemble the sound of boiling water, volcanic tremor,
signals like fracking generated microseisms, and signals like earthquake codas.

JON SAYS: SKEWED HIGH CUT

Futterman

A compact and causal function (one that vanishes before t = 0) is the Futterman
function (or Futterman wavelet). Over many decades in frequency, laboratory studies
have shown that seismic wave amplitudes generally dissipate strength in proportion
to frequency. The presumption that this be strictly true is called the constant-Q me-
dia assumption. The wavelet is defined by the two ideas that it should emerge from
a constant-Q medium and it should be causal—it should vanish at negative lags.
Spectra from more distant reflectors trend to lower frequencies so this function is a
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propagation phenomenon, not a source waveform. The wavelet depends on the mea-
surement location. Never-the-less, nearby any travel-time distance t0 the Futterman
wavelet remains a suggestion for a local shot waveform.

A notable aspect of the Futterman wavelet is that it has a rapid onset with a
slower decay. Low frequencies appear to travel slower than high frequencies simply
because it is impossible to stuff low frequencies into a single t0 location.

After propagating a distance of z in a medium of velocity v and quality Q, high
frequencies are diminished in proportion to exp(−|ω|z/(vQ) = exp(−|ω|t0/Q). The
corresponding time-domain function is called the Futterman wavelet.

Figure 1: Kolmogoroff Spectral factorization. (From GIEE section 4.2) [NR]

Figure 2: The Futterman function and its second derivative (From NSDF chapter 1.)
For practical purposes, the second derivative is a two-lobed wavelet. [NR]

The computation of the Futterman wavelet is 20th century mathematics. It is
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abstract, compact, efficient, and subtle. Complete code for it is found in my free book
GIEE in the section named Kolmogoroff Spectral Factorization. (Unfortunately, this
wavelet seems impossible to create using differential equations in t.)

Hubbert’s Pimple

As an alternative to the Futterman wavelet, we begin from a function known in
Geophysics as Hubbert’s Pimple. M. King Hubbert devised this function to predict
the ultimate decline in worldwide petroleum production. Hubbert’s pimple is the
specialization of Equation (1) to α = β. However, of interest here is the skewed case
when α < β.

s(t) =
4

(e(t0−t)/α + e(t−t0)/β)2
(1)

This paper advocates Equation (1) as an appealing impulse that should be widely
used to represent source functions. At large |t− t0| the function damps exponentially
both before and after t = t0. For α < β the function rises more rapidly in time
and then decays more slowly. (At large positive t − t0, we may ignore α. At large
negative t− t0 we may ignore β. At large positive t− t0, s(t) tends to 2/(e(t−t0)/β)2 =
2/e2(t−t0)/β = 2e−2(t−t0)/β.)

In this paper we are concerned with the meaning of α and β and choosing (or
estimating) numerical values for them.

Hubbert attacked the important problem of predicting the decline of petroleum
production. Sadly, his predictions are fairly worthless because he did not recognize
his unwarranted presumption that future decay β numerically matches that of past
growth α. Francis Muir and I meticulously derived Hubbert’s pimple in its four
different forms related to petroleum production data fitting. That development is
found in SEP report 136.

Defining skewness

The rise time is specified by α while the decay time is specified by β. In the frequency
domain we might deal with a high-frequency cutoff and a low-frequency cutoff. Here
in the time domain α resembles the (inverse) high-frequency cutoff (short wavelength)
while β resembles the low frequency (long wavelength) cutoff.

In music, one octave represents a range of a factor of two in frequency, likewise a
factor of two in wavelength. The more octaves, the more spectral bandwidth.

skewness = σ = β/α = 2octaves (2)

Bandwidth is a difference of two frequencies. Skewness is a ratio of two frequencies.
Natural science doesn’t seem to offer units for measurement of skewness, however in
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mechanical gear shifting for bicycles, I have seen both percent and degrees as units for
measuring gear ratios. I favor percentage. It gives the road-distance ratio of a high
gear to a low gear. I’m admiring a bicycle (Gazelle c380 HMB) in which the highest
gear goes nearly four times as far as the lowest one, 380% to be exact.

Figure 3: Asymmetric pulses of common short wavelength risetime with three different
long-wavelength cutoffs. At t = 0 all plots take the numerical value 1.0. Signals for
∆t = .002ms, α = 8ms, β = (24, 64, 128)ms for skewnesses of σ = (3, 8, 16). [NR]

In reflection seismology, one might say that we have a frequency range going from
8 to 128 Hz. We can write this as (8 : 128) = 8 × (1 : 16) = 8 × (1 : 2 × 2 × 2 × 2).
Since each 2 corresponds to an octave, such reflection data has a bandwidth of 16,
namely 4 octaves. While that might characterize marine data, land data has more like
3 octaves. Land data has a skewness (or inverse frequency range) of 800%. Inversion
code testers struggling with 3-D space might work with two octaves, 400%.

The second time derivative

Imagine a sharp Gaussian impulsive source slightly below the ocean surface and a
receiver nearby. Reflections from the surface effectively form a second derivative of
the Gaussian creating a downgoing wavelet called the Ricker wavelet which would be
a three-lobed wavelet of high frequency. As soon as that wave enters the sea floor
sediment, the earth’s Q causes a severe reduction in the high-frequency content and
the wavelet becomes the convolution of the sharp Gaussian, the second difference,
and the Futterman. Practically speaking, that’s a two-lobed wavelet.

Theoreticians and modelers like to take as a source the Ricker wavelet, a three-
lobed wavelet. Observationally, we do expect the three-lobed Ricker wavelet from
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Figure 4: Spectra of S(α, β) all with the same α and varying β. SHUKI: At low
frequency there is actually no cutoff because the wavelets all contain zero frequency
(“DC”). They all do have a high-cut. It depends mainly on the smaller between α
and β so there little difference between β = 64 and β = 128. The Nyquist frequency
for 2 millisecond data is 250 Hz. At the Nyquist frequency, β = 128 is 45 dB stronger
than β = 64 because the time length of the wavelet was 400 milliseconds. JON: At
low frequency β = 128, red, the time domain curve has more area so in frequency
the red curve is higher. At high frequency β = 24, green, there is a little more high
frequency because of the sharper curvature at the top of the time function. [NR]
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the water bottom but we expect the two-lobed Futterman 2nd derivative from the
basement, from the top of salt, and from each one of the distinguishable layers.

Figure 5 tells us that for 2nd derivatives, the skewed Hubbert wavelet resembles the
Futterman wavelet except for the fact that the t = t0 location on the 2nd-derivative of
the Futterman is at the wave onset while for the skewed Hubbert, the t = t0 location
lies between the two lobes near 0.5 ms.

Figure 5: The second time derivative of skewed Hubbert pulses. Fixed short wave-
length risetime for three long-wavelength cutoffs. Curves range from the somewhat
unskewed (narrowband) triplet toward the two strongly skewed (broadband) doublets.
∆t = .002, α = 8 ms, β = (24, 64, 128) ms for skewnesses of σ = (3, 8, 16). [NR]

Estimating skewness

Is skewness σ something that can be observed in field data? It should be easy when-
ever the pulses are not too close together but it must be more difficult where pulses
overlap. Might this skewness be measureable in the sound of boiling water, volcanic
tremor, signals like fracking-generated microseisms, and signals like earthquake co-
das? We need to try.

Sometimes we recognize signal skewness in some areas of shot gathers and sec-
tions. Skewness may be widely present but not dominantly so. We should cook up a
nonstationary estimator of skewness σ as a function of time and space.

How might we pose a nonstationary estimator? How should we pose it?

Or perhaps these days we are supposed to forget about statistical-estimation the-
ory and simply produce a huge volume of synthetic data for machine learning? Haha.
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Figure 6: Spectra of the second derivative of S(α, β) all with the same α and varying
β. The second derivative introduces a low-cut. Interestingly, there is more difference
between β = 64 and β = 128 in the low-cut than in the high-cut. However, in this
example, it is all happening in the sub-Hz range. [NR]

Bandpass specification: in f? in t?

Suppose we want a bandpass filter but we are less interested in sharp frequency cutoffs
than we are in having a compact filter. Instead of cutoff frequencies, we might specify
cutoff wavelengths. Given a wavelength cutoff filter, what would it look like compared
to its corresponding frequency domain box? Show both filters in both domains. We
might be disappointed and find a clear reason to drop this idea.
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SHUKI SAYS: WATCH THE LOW CUT

Seismic wavelets are inherently band limited. Marine Seismic sources are machines
that displace water. Chemical explosions create a bubble of CO2 and steam. Airguns
create bubbles of air. Marine Vibroseis usually displace water with a moving piston.
The acoustic wave that is radiated from the displaced water is proportional to the
second time derivative of the volume of the displaced water. The second derivative
is an inherent analog- or physical- low-cut of 12 dB/octave. These include chemical
explosives, airguns, and vibes. They can never emit zero frequency. In addition to
this inherent 12 dB/octave low-cut, the ghost of the source is approximately a first
time derivative that adds 6 dB/octave more to the physical low-cut. If the receiver
is on a streamer, then the receiver ghost adds 6 dB/octave more. In addition to the
above, hydrophones have a transfer function that includes 6 dB/octave more. All the
above physical low cut filters total 24 dB/octave for ocean bottom nodes hydrophone
data and 30 dB/octave for streamers. The second derivative in the frequency domain
is multiplication by the square of the frequency which in the language of engineers
is 12 dB per octave because an octave and 6dB mean the same thing—a factor of 2.
They are best modeled by wave-equation modeling and not via the wavelet used in the
modeling. When writing modeling code, it is important to include the inherent low-
cut. The effects of the ghosts should be added during the wave equation modeling.
The following figure shows a modification to the asymmetric inverse cosh wavelet that
generates band limited wavelets. The ghosts are angle dependent.

double JFCW(double t, double beta,double alpha)

{

double a = exp(-t/beta) + exp(t/alpha); // Asymmetric COSH

return 4.0/a/a;

}
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Figure 7: Band Limited JFCW (t,alpha1,alpha2,beta1,beta2) = Normal-
ized(JFCW(t,beta1,alpha2)) - Normalized(JFCW(t,beta2,alpha2)) [NR]

Figure 8: The band limited wavelet in the frequency domain. Red is without ghost.
Green is with a ghost for a source deployed at a depth of 15 meters and at an angle
of 90 degree down. Note the ghost notches at 0 Hz, 50 Hz and 100 Hz. Blue is with
a ghost for a source deployed at a depth of 15 meters and at an angle of 45 degree
down. Note the ghost notches at 0 Hz, 71 Hz and 142 Hz. [NR]
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