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ABSTRACT

Being disturbed by the discrepancy between the Ricker
wavelet and minimum phase wavelets, we wondered if a
sparseness criterion could get us deconvolved data with
the event polarity being more clearly evident. Five data sets
found it does. The sparseness criterion we used is a hyper-
bolic penalty function. It ranged from l2 at small residuals to
l1 at large residuals. The main pitfall was that introducing
negative filter lags introduced a null space (obviously so for
Gaussian data). The null space demanded a regularization.
We found a formulation in the domain of the Fourier trans-
form of a log spectrum, in which a Ricker-style regulariza-
tion appeared. Curiously, this regularization eliminated the
leg jumps. A quasi-Newton solver was faster than that of our
earlier work, a combination of conjugate directions with a
Newton solver.

INTRODUCTION

This paper continues our quest started in Claerbout and Guitton
(2014) for the extraction of accurate wavelets from seismic data. In
that paper, we claim that the long-standing assumption in reflection
seismology that seismic sources are of minimum phase is not valid
(Sacchi and Ulrych, 2000): We should be seeing something closer
to a symmetrical Ricker wavelet (Ricker, 1953) resulting from
water-surface ghosts at the marine gun and hydrophone. To this
end, we present an analytical method in the lag-log domain (the
Fourier transform [FT] of the log spectrum, also known as ceps-
trum) that estimates a Ricker-like, more symmetrical wavelet by
suppressing the phase at small lags. Now, we introduce noncausal
filter coefficients (inverse source). These filter coefficients tend to
make the problem underdetermined, so we introduce a sparsity goal

hoping to determine the correct phase. Indeed, we are delighted to
find more plausible polarities in the deconvolved data.
Our earlier work (Zhang et al., 2011) often achieves this goal, but

not always. We experience leg jumps (and polarity change with half
leg jumps), in which the output spike locations changed with time.
It took us considerable time to recognize that regularization was
required and even more time to learn how to regularize. We did
eventually succeed in the lag-log domain. There, we can understand
that gently suppressing the phase at small lags amounts to gently
pushing a filter toward a symmetric (Ricker) filter near t ¼ 0, which
fully resolves the troublesome leg-jump issue.
To achieve sparsity, we move toward the l1-norm. To preserve

rapid solutions, we began using the hyperbolic penalty function
(HPF) (Claerbout and Fomel, 2014). It handles small residuals
in the usual l2-like manner but large residuals with an l1-like pen-
alty. We began fitting to the HPF by a mixture of conjugate direc-
tions and the Newton method, but then we found the quasi-Newton
method even simpler and faster.

LOG SPACE, SPARSITY, AND GAIN

Traditionally, filters are characterized as coefficients in the time
domain, and that is how we started. We experienced a mixture of
excellent results and frequent bizarre results (leg jumps) teaching
us that sparsity was not always sufficient to control and define phase.
We did not get control of the (nonlinear) problem until we cast it in
the frequency domain with the logarithm of the filter spectrum ex-
pressed back in the time domain. By allowing the filter both sides of
zero lag, we inadvertently introduced a null space that requires regu-
larization to manage. Because echoes weaken in time, residuals must
be appropriately scaled, so we take some care to do that correctly.

Inversion in the lag-log space

A minimum phase wavelet can be made from any causal wavelet
by taking it to Fourier space and exponentiating. The proof is
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straightforward: Let UðZÞ ¼ 1þ u1Z þ u2Z2þ · · · be the Z-trans-
form (Z ¼ eiω) of any causal function. Then, eUðZÞ is the minimum
phase. Although we perform such calculations in the Fourier do-
main, the easy proof is in the time domain. The power series for
an exponential is eU ¼ 1þ U þ U2∕2!þ U3∕3!þ · · · . Each term
of the series is causal because the powers of Un are convolutions of
the causal function UðZÞ with itself (the convolution of two causal
functions is causal). Likewise, e−U , the inverse of eU , is causal.
Thus, the filter and its inverse are causal.
We seek to find two functions, one strictly causal and the other

strictly anticausal (nothing at t ¼ 0):

Uþ ¼ u1Z þ u2Z2þ · · · ; (1)

U− ¼ u−1∕Z þ u−2∕Z2þ · · · : (2)

Notice that U, U2, etc., do not contain Z0. Thus, the coefficient of
Z0 in eU ¼ 1þ U þ U2∕2!þ · · · is unity. Thus, a0 ¼ b0 ¼ 1:

eU
þ ¼ A ¼ 1þ a1Z þ a2Z2þ · · · ; (3)

eU
− ¼ B ¼ 1þ b1∕Z þ b2∕Z2þ · · · : (4)

We define U ¼ U− þ Uþ. The decon filter is AB ¼ eU , and the
source waveform is its inverse e−U . Defining the FT of the data
dt as DðωÞ ¼ FTðdtÞ, the decon output (reflectivity) becomes

rt ¼ FT−1ðDðωÞeUÞ; (5)

where U is a Z-transform with coefficients parameterizing the filter.
We formerly had two causal time functions at and bt combined non-
linearly, whereas with ut, there is a single noncausal function to
be found.

The hyperbolic penalty function

For filter estimation, we try to sparsify the reflectivity (Taylor
et al., 1979; Chapman and Barrodale, 1983) by minimizing the
HPF. The HPF is convex and behaves like the l1-norm for high
residuals and the l2-norm for small residuals (Li et al., 2012;
Kazemi and Sacchi, 2014). Taking advantage of the l1 part, we
can obtain sparse residuals. The filter eU is parameterized by
UðωÞ. Expressing U in the time domain is a sequence of Z-trans-
form coefficients ut. To obtain these coefficients, we use linear al-
gebra, packing the ut coefficients into a vector u. The penalty
function to minimize is

fðuÞ ¼
X
t

HðrtÞ; (6)

where HðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

p
− R, and R is the l1∕l2 threshold param-

eter. We show in Appendix A the derivation of the gradient of equa-
tion 6 in the lag-log domain τ:

∇fðuÞ ¼
X
t

rtþτH 0ðrtÞ; (7)

where H 0ðrÞ ¼ softclipðrÞ ¼ r∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

p
. The gradient is the cor-

relation of the reflectivity with its softclipped self. Recall that
uð0Þ ¼ 0; therefore, ∇fðuÞ0 ¼ 0. For the minimization, we use
the L-BFGS method, which requires only the value of the penalty
function and its gradient to estimate quasi-Newton updates (Liu and
Nocedal, 1989).

Introducing gain functions

Seismic data are nonstationary: Their amplitude and spectra vary
with time and space. Here, we introduce a gain function gt that com-
pensates for only the time gain. We apply the HPF to the gained
residual qt ¼ gtrt and set out to sparsify qt. Therefore, we need
its derivative by the model parameters uτ. In Appendix A, we show
the following:

∇fðuÞ ¼
X
t

rtþτgtH 0ðqtÞ. (8)

Equation 8 says to crosscorrelate the physical residual rt with the
gained softclipped statistical residual. Notice that in reflection seis-
mology, the physical residual rt generally decreases with time,
whereas the gain gt generally increases to keep the statistical var-
iable qt roughly constant; therefore, gtH 0ðqtÞ grows in time. Our
default gain function is gt ¼ tpow, where pow ¼ 2 corresponds
to the standard geometric spreading correction augmented by con-
stant Q.

REGULARIZATIONS

As with any model-fitting problem, regularization defines the sol-
ution in which the data are unable to or where the model filter is
being overfit (very long lags). To this effect, we introduce two regu-
larization terms. First, we do not want the filter as long as a seismic
trace, so we penalize coefficients of u at long lags (beyond the ex-
pected bubbles) by a weighting function P that vanishes until we get
beyond those lags where it becomes unity. This weight is a function
of frequency (or of lag). The transition from zero to unity is gently
done with a sine squared. In operator form, we introduce the vector
rp as follows:

rp ¼ Pu: (9)

We occasionally see leg-jump-like behavior in which, after many
iterations, the phase of the wavelet changes rapidly. We attribute
this change to the null space we introduce by allowing the filter
to have extra coefficients before t ¼ 0. To control this null space,
we need a regularization. We choose to give the filter a slight push
toward the Ricker wavelet. Theoretically, the even part of u controls
the amplitude spectrum of the shot waveform, whereas the odd part
controls the phase. The near-zero lags in u control the near-zero lags
in the shot waveform and decon filter (Stoffa et al., 1974; Jin and
Rogers, 1983). The odd lags represent the phase. We want the odd
near-zero lags to be weakened because for the Ricker wavelet, they
are zero (Claerbout and Guitton, 2014). Therefore, this regulariza-
tion is to gently suppress the antisymmetric part of the near-zero
lags of u. Thus, for small lags, we want the following:

0 ≈ uτ − u−τ. (10)
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In operator form, this is 0 ≈ rm ¼ Ju, where the matrix J is defined
in the following in the ordering required by the periodic boundaries
found in FT codes:

0 ≈

2
666666666666666664

rmð1Þ
rmð2Þ
rmð3Þ

..

.

rmðτ∕2Þ
..
.

rmðτ − 1Þ
rmðτÞ

3
777777777777777775

¼

2
666666666666666664

0 0 0 : : : 0 : : : 0 0

0 þ1 0 : : : 0 : : : 0 −1
0 0 þ1 : : : 0 : : : −1 0

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

0 0 0 : : : 0 : : : 0 0

..

. ..
. ..

. . .
. ..

. . .
. ..

. ..
.

0 0 −1 : : : 0 : : : þ1 0

0 −1 0 : : : 0 : : : 0 þ1

3
777777777777777775

2
666666666666666664

uð1Þ
uð2Þ
uð3Þ
..
.

uðτ∕2Þ
..
.

uðτ − 1Þ
uðτÞ

3
777777777777777775

.

(11)

Note that the matrix is Hermitian J� ¼ J. We add a diagonal matrix
of weights W that allows us to smoothly incorporate this regulari-
zation on the small lags with a sin2 function:

rm ¼ WJu; (12)

where the diagonal elements are symmetric around lag zero and
equal to zero at τ∕2 (in effect, the zero-frequency component):

W ¼ diagð1; w1; w2; : : : ; 0; : : : ; w2; w1Þ: (13)

Putting everything together, we minimize the following functional:

fðuÞ ¼
X
t

HðrtÞ þ αkPuk2 þ βkWJuk2; (14)

where k:k2 is the l2-norm. The first regularization term tends to
limit the range of filter lags. The second term encourages symmetry
near t ¼ 0. The gradient search direction becomes

∇fðuÞ ¼
X
t

rtþτgtH 0ðqtÞ þ αP�rp þ βJ�W�rm. (15)

The regularization parameters α and β are selected by trial and error
starting from a value of zero (see the section “Parametrization of the
inverse problem” for details).

A PSEUDOCODE

A pseudocode illustrates how to find the best single filter for a
group of seismograms, in which the gradient is obtained by aver-
aging the contribution of all the traces to be deconvolved. For the
sake of clarity, we omit the regularization terms, but keep in mind
that they are used in practice. Lowercase letters are used for vari-
ables in time and space like d ¼ dðt; xÞ, r ¼ rðt; xÞ, g ¼ gðt; xÞ,
and q ¼ qðt; xÞ, whereas uppercase letters are used for functions
of frequency D ¼ Dðω; xÞ, R ¼ Rðω; xÞ, dR ¼ ΔRðω; xÞ, U ¼
UðωÞ, and du ¼ ΔUðωÞ. An asterisk (*) means to multiply within
an implied loop on t or ω.

D = FT(d)
U = 0.
Iteration –
dU =0
f(u)=0 # penalty function
For all x positions
r = IFT( D * exp(U))
q = g * r
f(u) = f(u) + H(q)
dU = dU + conjg(FT(r)) * FT(g*softclip(q))

Remove the mean from dU(omega)
du= IFT(dU)
du_update <- QuasiNewton(du,f(u))
u = u + du_update
U = FT(u).

EXAMPLES

Now, we illustrate our deconvolution method on one synthetic
and four field data sets. The results demonstrate the ability of
our technique to effectively estimate seismic wavelets, while unrav-
eling reflectivities. Note that the results we present herein are the
actual qt outputs (gained residuals). Some ringing in the decon-
volved sections is present because of the flatter spectra close to
the Nyquist frequency. This ringing is less troublesome on full-
screen displays.

A synthetic data example

In 2012, Chevron released a synthetic data set for testing model-
building tools. Shot gathers and a synthetic source waveform used
for the modeling were made available. Our goal is to deconvolve the
zero-offset section of this data set with our deconvolution in the lag-
log domain. Figure 1 shows a subset of the zero-offset section of
interest multiplied by the gain function gt ¼ t: Some familiar
events, such as a water-bottom, sedimentary layers, a top salt be-
tween 3.2 and 3.4 s, and even a bottom salt at 3.5 s and
x ¼ 65;000 m are visible. After deconvolution, the polarity of all
these events is clearly visible in the gained residual panel (Figure 1b).
Notice the strong top and bottom salt reflections with opposite
polarities.
The synthetic waveform provided by Chevron serving as a source

function for modeling is ghost free. To compare with our estimated
wavelet using inversion, we add the source and receiver ghosts to
this synthetic waveform (taking into account depth and offset infor-
mation) to form a “total” source function. Figure 2 displays the total
source and the estimated wavelet with deconvolution. In this plot,
the total source is displayed 5% above the estimated wavelet. They

Sparse log-decon WD13
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are remarkably close. Our deconvolution was able to find a very
accurate wavelet.

Four marine data examples

Our first field data example demonstrates that our deconvolution
method can estimate wavelets far removed from the minimum
phase. Figure 3a shows a subset of the near-offset section of a data

set from offshore California acquired in the 1980s (Fowler, 1988).
Apparently, this data set was gained before we got it, so we use
gt ¼ 1. There is a strong precursor at 0.05 s before the main
pop. The water bottom shows two reflections (a weak one above
a stronger one). After deconvolution with our method (Figure 3b),
the water-bottom reflection is reduced to one event, and the fre-
quency content has increased noticeably. The complex wavelet is
shown in Figure 4a. We notice the precursor at negative lags before
the main event arrives. It turns out that this data set was acquired
with a watergun source. Our estimated wavelet resembles quite well
the far-field pressure signatures of such sources seen, for instance,
in Safar (1985a) (e.g., his Figure 7) and Safar (1985b) (e.g., his
Figure 6). Also, the water gun invented for no bubble shows no
bubble.
Our second example is from the Gulf of Mexico. Figure 5a shows

a subset of the near-offset section that we wish to deconvolve with a
gain of gt ¼ t1.5 applied to it (and used in the inversion). On the
right side of the section, the top salt reflection between 2.2 and
2.4 s as well as the bottom salt reflection between 2.6 and 2.8 s
are visible. Inside the salt, the marine bubbles (120 and 240 ms
after the top salt reflection) are also quite strong. Deconvolution

Figure 1. A zero-offset section of the Chevron synthetic data set
(a) before gtdt and (b) after qt ¼ gtrt deconvolution. After decon-
volution, the resolution improves significantly and the polarities
are cleaner. The arrows show the top (TS) and bottom salt (BS)
reflections.

Figure 2. The total source and estimated wavelet for the data in
Figure 1. The total source is amplitude shifted by 5% above the
estimated wavelet for clarity. Both are remarkably close.

Figure 3. Near-offset section from offshore California (a) before
gtdt and (b) after qt ¼ gtrt deconvolution. The source waveform
is characteristic of a far-field pressure signature of a watergun
source (Safar, 1985a). The first-order water-bottom multiple (black)
is labeled WBM.
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(Figure 5b) clarifies the polarity. The water bottom and top salt are
white, whereas the bottom salt is black, showing the change of
impedance. The bubbles have also been attenuated inside the salt
(and throughout the section). The estimated wavelet is shown in
Figure 4b: The first and second bubbles appear clearly at the ex-
pected lags. Note also that the wavelet is not exactly symmetric:
The third lobe is larger than the first lobe.
Our third example takes us offshore Australia. Figure 6a shows a

subset of the near-offset section to be deconvolved with a gain of
gt ¼ t2 applied to it. Figure 6b displays the deconvolution result
(i.e., gained residual qt). The water bottom shows up as a strong
white reflection, and an unconformity at 1.9 s shows up as a strong
black event. Thanks to deconvolution, the amount of fine detail in
the shallowest part (less than 1.6 s) has increased. The estimated
wavelet is shown in Figure 4c. Compared with the previous exam-
ple, the marine bubble is very weak. Similar to the previous exam-
ple, the wavelet is not symmetric either: In this case, the first lobe is
slightly bigger than the third one.
Our final example comes from the Campos Basin, offshore Bra-

zil. Figure 7a shows a subset of the near-offset section to be decon-
volved, and Figure 7b shows the deconvolution result (gt ¼ t in this

case). Similar to our previous results, the deconvolution allows us to
see polarities of seismic events more clearly. Notice the detail at t ¼
3.2 s and x ¼ 10; 000 m, where two small events of opposite polar-
ities are well separated after deconvolution. The bubble is also lifted
off from the section as seen 100 ms below the water bottom. The
estimated wavelet in Figure 4d shows the strong bubble clearly. In
this case, the wavelet is quite asymmetric with a small first lobe and
two strong second and third lobes.
The synthetic and field data examples show how well our pro-

posed inversion strategy works. Now, we present some computa-
tional aspects of this method detailing our choice of parameters.

PARAMETRIZATION OF THE INVERSE PROBLEM

Each of the two regularization terms introduces two parameters
for the data analyst to determine. One parameter is physical, and the
other is the strength (α or β) of the regularization. Naturally, we
would like to do a better job of automating such decisions.
We iterate 400 times for all our results, and the computation of

each wavelet took less than 30 s on an Intel Xeon X5650 processor.
This computing time is fast enough to test different parameteriza-

Figure 5. A near-offset section from the Gulf of Mexico (a) before
gtdt and (b) after qt ¼ gtrt deconvolution. The polarity of seismic
events, such as the top and bottom salt, is highlighted after decon-
volution. The marine bubble is also lifted off everywhere, as seen
within the salt boundaries.

Figure 4. Estimated shot waveforms for the (a) offshore California
(Figure 3), (b) Gulf of Mexico (Figure 5), (c) offshore Australia
(Figure 6), and (d) Campos Basin (Figure 7) near-offset sections.
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tions. In our experience, the “Ricker” regularization term encour-
aging near zero-lag symmetry is the least needed. In all our exam-
ples, we have to use it only for the synthetic data set. Our
assessment comes from looking at strong events, e.g., water-bottom
reflections and seeing if the deconvolution reduces it to one phase.
Ricker regularization helps with data sets in which the wavelet
seems symmetrical but the deconvolution does not yield one pulse
and leg jumps. As with many regularization terms in any inverse
problem, these decisions are rather subjective and open to interpre-
tation. The regularization term attenuating long and negative lags is
needed often. It suppresses the tendency to “overfit” (fit a filter as
long as a trace). We always start with α ¼ 0 in equation 14 and look
at the results. This regularization is needed if some filter coefficients
grow abnormally at these unwanted lags. Then, we define the regu-
larization zone (where lags are attenuated) as being beyond the bub-
ble (if present) and before zero lag (with a smooth transition).
Having defined the regularization zone, we start increasing α keep-
ing everything else equal until all growth stops entirely. The next
parameter is the power involved in the gain function gt ¼ tpow. We
select the power that makes the input data the most identically dis-
tributed when multiplied with gt, in other words, when seismic am-

plitudes at all times are roughly equivalent. We keep the gain
function constant for all iterations. The last important parameter
is the one involved in the HPF, defining the transition zone between
the l1 and l2 regions. Our code defines this parameter as a percen-
tile of the input data. We always start with the 50th percentile, which
corresponds to the median of the data. Then, we change this per-
centile value by observing the results: More sparseness requires a
smaller value, less sparseness requires a bigger value. We keep this
value constant during the inversion.
Therefore, for our problem, the main parameters to set are those

affecting the regularization of long and negative lags, the gain func-
tion, and the l1-l2 behavior of the HPF. The number of iterations
can be set almost automatically (in all our results, 400 worked well),
and the Ricker regularization is seldom needed, but you know you
need it when you see a full-cycle jump or a half-cycle jump with a
polarity flip. For a long while, we believed that the nonlinearity was
causing the aberrant phase behavior, thus implying that a measured
near-field shot waveform might be helpful to improve the estimated
wavelet (Ziolkowski et al., 1982). But, we could start from a pretty
good filter and watch the iteration smoothly bring it away to a leg

Figure 7. A near-offset section from the Campos Basin, Brazil,
(a) before gtdt and (b) after qt ¼ gtrt deconvolution. Events labeled
B and W (for black and white) have clear polarity after deconvo-
lution. The source bubble is also gone.

Figure 6. A near-offset section from offshore Australia. After de-
convolution in panel (b), we can observe that many events are now
easily labeled “white” or “black.”
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jump. Therefore, we came to realize that the
problem is fundamental, not computational. It re-
sults wholly from the null space introduced by
the double-sided filter.

ROBUSTNESS TO NOISE
AND PHASE

First, we test the robustness of our method
with respect to the noise level present in the data.
To do so, we add Gaussian random noise to the
synthetic data set of Figure 1. Figure 8 shows the
deconvolution results for four different signal-to-
noise ratios (S/Ns) with the corresponding wave-
lets in Figure 9. Figures 8a and 9a are equivalent
to a noise-free result (S∕N ¼ 130). As the S/N
decreases, the noise levels in the deconvolved
panels of Figure 8b–8d increase as well. The
associated wavelets shown in Figure 9b–9d
deteriorate accordingly: Notice how the negative

lobe at t ≈ 0.2 s shrinks with the increased noise content. However,
the deconvolution results for S∕N ¼ 2.7 and S∕N ¼ 1.3 in Figure 8c
and 8d, respectively, prove that our method can still deliver satisfy-
ing results by removing most of the wavelet’s footprint. A more
thorough investigation, similar to the work of Kazemi and Sacchi
(2014), should be done to better understand the behavior of our
method with respect to the S/N.
Last, we briefly test the robustness of our method with respect to

phase. To do so, we rotate by 90° the Santos data in Figure 7a and
estimate a wavelet from it. Then, we compare the estimated wavelet
from the rotated data set with the original estimated wavelet of Fig-
ure 4d rotated by the same amount (i.e., 90°). We do not show the
deconvolution results because they are nearly identical to Figure 7b.
Figure 10a shows the rotated wavelet, whereas 10b shows the wave-
let from the rotated data set. Both are remarkably close: This test
indicates that our method delivers consistent phase estimates.

Figure 8. Subsets of the synthetic data set in Figure 1 showing deconvolution results for
decreasing S/N.

Figure 9. Estimated wavelets for the deconvolutions results of
Figure 8.

Figure 10. A phase-consistency experiment using the Santos data
set. (a) The same as in Figure 4d but rotated by 90° and (b) estimated
wavelet from the rotated Santos data set.
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CONCLUSION

In practice, the theory works. On each of the five data sets ex-
amined, seismogram polarity becomes more apparent. The source
wavelet on the watergun data set is far from the minimum phase
with a large precursor, but our method nicely compresses the water
bottom and its multiple to pulses of opposite polarity. Results with
the Gulf of Mexico and the Australia data sets are particularly grati-
fying with many events acquiring clear polarities. However, the es-
timation of the fitting parameters remains challenging.
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APPENDIX A

DERIVATION OF GRADIENTS

We present the gradients of equation 6, with and without gain gt

Gradient without gain

To better understand the gradient derivation, we first assume that
there is only one unknown variable u3 giving a single regression
equation (the extension to all variables is straightforward):

∇fðuÞ ¼
X
t

∂H
∂r

∂r
∂u3

; (A-1)

∇fðuÞ ¼
X
t

�
FT−1DðωÞ ∂

∂u3
eUðZÞ

�
t
H 0ðrtÞ; (A-2)

∇fðuÞ ¼
X
t

ðFT−1DðωÞZ3eUðZÞÞtH 0ðrtÞ; (A-3)

so the deconvolution output selected at time tþ 3multipliesH 0ðrtÞ.
Now, if we had another unknown variable u4, we would find an
analogous expression this time shifted by Z4 instead of Z3, and
so on. This shifting is nothing other than a correlation of rt with
H 0ðrtÞ. Thus, the gradient for all nonzero lags is

∇fðuÞ ¼
X
t

rtþτH 0ðrtÞ; (A-4)

where τ measures the filter lag. Actually, equation A-3 is wrong as it
stands: We also need to have ∇fðuÞ at zero lag set to zero because we

have no interest in uniformly scaling the filter. More simply, the mean
can be removed in the Fourier domain (as shown in the pseudocode).

Gradient with gain

Now, it is the gained residual qt ¼ gtrt that we are trying to spar-
sify. Therefore, we need its derivative by the model parameters uτ:

qt ¼ gtrt ¼ rtgt; (A-5)

dqt
duτ

¼ drt
duτ

gt ¼ rtþτgt: (A-6)

To find the update direction at nonzero lags, take the derivative of
the HPF

P
tHðqtÞ by uτ:

∇fðuÞ ¼
X
t

dHðqtÞ
duτ

τ ≠ 0; (A-7)

∇fðuÞ ¼
X
t

dqt
duτ

dHðqtÞ
dqt

; (A-8)

∇fðuÞ ¼
X
t

rtþτgtH 0ðqtÞ τ ≠ 0. (A-9)

This last equation says to crosscorrelate the physical residual rt with
the statistical residual gtH 0ðqtÞ.
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