
Entropy in Seismology:

● Remember the “wavefront healing” movie.
● Like tomography but with overwhelming multipathing.
● Complexity grows as entropy grows.
● We will see probability based inverse theory.

Data space residuals want maximum entropy, minimum sparsity.
Blocky models want minimum entropy, maximum sparsity.

(very different from the L1-norm).

Can we extract velocity from wavefield entropy?



● Remember the “wavefront healing” movie.
● Like tomography but with overwhelming multipathing.
● Complexity grows as entropy grows.
● We will see probability based inverse theory.

Multipathing

If going backwards the 
complexity decreases.

From FGDP
page 213



If you have SEPLIB at SEP, view this 
tube ~prof/bei/fdm/Fig/heal.v3  

If you don’t have that, slide back and forth over this range (1:00)-(3:00)
http://sep.stanford.edu/sep/jon/WavefrontHealing.mp4

Multipathing

If going backwards the 
complexity decreases.

From FGDP
page 213

http://sep.stanford.edu/sep/jon/WavefrontHealing.mp4


● Seismic Q:  Caused by (1) heat flow, (2) inner-bed multiples, or (3) extravagant multipathing?
● Do any of you have computer code to model constant-Q propagation?

● We seismologists think we know the heart of statistics, but
statistical Mechanics gives rise to Thermodynamics, and
you have forgotten how a propane refrigerator works.

● Energy is always conserved, but it is made up of kinetic, potential, and thermal.

● Entropy increases, but what is it?
● Entropy and Energy are extrinsic.   Temperature is intrinsic.
● The more the volume, the more energy and more entropy.

● To work backwards from nature we should minimize the ratio Entropy/Energy
● Not the same as minimizing L1/L2 but it does have a sparseness goal for model space.

Background



A bar suspended from its midpoint by a spring.
      It can (1) bounce up and down or (2) rotate.

First it bounces up and down for a while and later it rotates 
back and forth, then later it bounces again.

It is like two normal modes that are coupled.

The time averaged energy is the same for each mode (?)

These thoughts lead to astronomy where each normal mode 
is a planetary rotation, mostly independent, but actually 
coupled to all the other normal modes.

The coupling may be linear or nonlinear.



You have a rock in a vacuum suspended by a thread.
The rock has infinite Q.
You strike the rock.
Internally, P waves convert to S, and S converts to P.
Perform a time average of 

Energy in P
Energy in S

What is the ratio of the two energies?

Old theoreticians published a paper on that.
I didn’t understand it, but I do remember the two energies were different.

Look up “equipartition in an elastic solid”



Specific heat of monatomic and diatomic gases
(Specific heat == the ratio of temperature change to energy change)

Randomly colliding monatomic gas molecules have three degrees of freedom meaning 
that each atom has momentum in the three (x,y,z) coordinates.

Diatomic gases like H2, O2, N2 have three degrees from translation and, three 
degrees of freedom from vibration and two degrees from two possible rotation angles.

Diatomic gases at very low temperature (because of quantum effects) can no longer 
vibrate so the specific heat loses three degrees of freedom.



Butterfly effect
Atmospheric equations are ultrasensitive to precision...

even when the PDEs are simplified to several non-linear ODEs

This discovered by Ed Lorenz at MIT 
(while I did my MS degree one flight above him.)

This discovery limits the prospects of weather forecasting.
Some say this discovery led to Chaos Theory.

((Iterating towards minimum entropy might be fundamentally limited.))



A Sparsity Example
A pragmatic way to achieve sparsity is to minimize L1/L2, a pseudo entropy.

In my booklet DFNS, the chapter on 
multichannel spectral factorization 
(Kaiwen) faces the problem of scaling 
the PEF.  Any unitary scale factor does 
not change the spectrum (conserves 
energy).

For multichannel signals, the scale 
factor is a unitary matrix.

The vector (0,1) is more sparse than the 
vector (sin,cos).  At 45 degrees

  | sin |   + | cos |    = sqrt(2)
sqrt(2)/2+sqrt(2)/2 = sqrt(2) > 1

0
1

H
V



Which convex function shall we play with?
L1/L2 is cheapo entropy.
From where comes   p log(p) ?
grad (p log p) = 1 +  log p
grad(log(p))=1/p,  reminds of AGC and PEF.
Which:   p=energy   or   p=probability  ?
Hyperbolic penalty function

Internet:   Entropy is “the lack of order or predictability.”
Wikipedia:   In statistical mechanics, entropy is an extensive property of 
a thermodynamic system. It is closely related to the number Ω of 
microscopic configurations that are consistent with the macroscopic 
quantities that characterize the system. 

More formal documentation:
      To utilize all brightness levels equally see SEP 152 in 2014 or
      “Jensen inequalities” article and video at   http://sep.stanford.edu/sep/jon/

http://sep.stanford.edu/sep/jon/


Physics 7-dimensional space
      position, momentum
m( t, x, y, z, px, py, pz)
    t, space,  stepout

AGC and PEF boost the entropy.

                                              Nuclear Physics has also spin.       
We have vector-valued wave signals, images, volumes.

My wavefront healing images eventually fill space and have all dips,
but each point in space has only one dip.

Equations of  Quantum Physics are not physical laws, they are probability estimates.



If you have SEPLIB at SEP, view this 
tube ~prof/bei/fdm/Fig/heal.v3  

If you don’t have it, scan parts of this video
http://sep.stanford.edu/sep/jon/WavefrontHealing.mp4

http://sep.stanford.edu/sep/jon/WavefrontHealing.mp4


I want a toy to play with a two-lens model.
Thin lens is a simple time shift.

Plane wave
Impulse or white noise.

Steps in exp ( i k^2/omega dz)

First thin lens = exp( i omega tau(x) dz)

 (want zero tau response between lenses)

Second thin lens 

Vision:  How to estimate tau(x,z)?
Let us back propagate while minimizing the 
entropy.

Thickness = tau1(x)

tau2(x)



IID = Independent and Identically Distributed   
IID = PEF & AGC  seem to maximize entropy

 - Entropy  =  Negentropy = Sparseness = many amplitudes vanish
many dips vanish

“Jensen inequalities” article and video at   http://sep.stanford.edu/sep/jon/

(From the (1+epsilon) norm I got this idea in 1977 SEP 13
http://sep.stanford.edu/data/media/public/oldreports/sep13/13_01.pdf

Stew guided me to the Jensen inequality literature in my book PVI.
I tested an application to replace our “pclip” in 2014

but it never got installed at SEP for routine work.)

http://sep.stanford.edu/sep/jon/
http://sep.stanford.edu/data/media/public/oldreports/sep13/13_01.pdf


Hyperbolic
penalty

Soft Clipped 
residual

L1

L2
Residual

Define  g = 1/bar(r)  so
g  is a gain applied to the residual
q = g r

g  defines the L1 to L2 transition.



AUTOMATIC DEFAULT FOR HYPERBOLIC SOFTCLIP
SEP 152

We will learn that finding g amounts to letting the residuals choose the penalty function!
(Mostly people choose L1 or L2.) 

Idea:  Plot h’(d(t,x))
 instead of    d(t,x)



Softclip applied to field data.
It is a nonlinear data-value stretch
into the range -1 to +1.

Softclip is the derivative of the hyperbolic 
penalty function.

Softclip has a parameter g
that chooses the L1/L2 threshold.
Here I chose g at 75th percentile.

I made this choice of g subjectively.  Then I 
wondered how to choose  g  objectively.

Here’s how I did it:  
“The best g tries to use all 
brightness levels in equal amounts.”

q=SoftClipped(g,r)                             Input r



Best

Best

-1                         0                       +1
   Black                                           White                            

Value of softclipped data

Bin count

SEP’s
default pclip

HardestSoftest

Softest

Hardest



Best

Best

-1                         0                       +1
   Black                                           White                            

Value of softclipped data

Bin count

HardestSoftest

Softest

Hardest

AGC     flattens residuals in physical space
PEF      flattens residuals in dip space
Softclip flattens residuals in probability  ---  That’s maximum entropy, I think.



Automatic Default for Hyperbolic Softclip (SEP 2014)
(a.k.a. My Jensen paper)

Here is how I found the best g, the location for the L1 to L2 transition.
Let    r = residual or data.  
Let    q =  softclip( g r)  
Find  p=bins containing counts of  q  values.
Evaluate many g values to best uniformize the counts in the bins.  (I will soon define “best uniform”.)

Allowing negative subscripts, take  p(-15:15) to be 31 bins.

Given:  q(i) = softclip( g, r(i))            #    -1. < q(i) < +1.   by the definition of softclip.
Do i= 1, 80000 {

p(15.9*q(i)) += 1                    # This accumulates to the 31 probability density bins.
}

WE WILL SEE THAT:
      The best  g  will minimize the Jensen inequality of the convex function (p log p).
      The Jensen inequality will define the intrinsic Entropy.
      Minimum Entropy attempts to cluster the values of  q. 

To find this paper and video, open http://sep.stanford.edu/sep/jon/ and search for Jensen.

http://sep.stanford.edu/sep/jon/


Amplitude binning is similar to operators we are familiar with.

1. Amplitude bin counting
2. Scatter-gather
3. AGC
4. TV-Decon

These operators have adjoints that are easy to code, but
These operators tend to be non-linear.
These operators change if you change the data upon which they were built, but
they become quasi-linear for large statistical windows and small  g  values.

 
A conceptual probability function estimate:
     Take all the non-sorted data values and replace each by the index of its sorted counterpart.  
     This is extremely nonlinear but it should resemble the hyperbolic stretch of best g.



(This page might be baloney.)
Now that we understand binning,
we might suspect that a blocky model has sparse bins.

Depth z

Velocity v(z) = (5,5,5,5,9,9,9)

P = bin(i) = (0,0,0,0,4,0,0,0,3,0,0,0,0)

Large entropy would fill bins about equally.
Small entropy fills bins sparsely, I am guessing.

5         9

Want large entropy in residual space.  (like AGC & PDF)
Want small entropy in model space?
Entropy is unchanged when layers are intermingled.
Good for a water bucket full of marbles:  Only two densities, water and marbles.  Sand and shale.



On this slide p(i) 
is the count in the 
i-th bin.  So it is 
the probability of 
the ordinate of 
the bin.

I tried this one for 
many values of g.  
The chosen g comes 
from minimum S.

Bigger on later slide.



Compare Jensen inequalities.  Why choose  p log(p) ?

(Applications might apply them to amplitudes, energies, probabilities, all, or ML.)

1. p log(p) allows p=0 elements.  (Geometric and Harmonic blow up at p=0.)

2. p-squared is very insensitive to small  p.   (Arithmetic inequality)

3. p log(p) respects small p-values although it does attend more to large ones.

4. The Kulback-Leibler Divergence  P log(P/Q)  found in t-SNE of machine 
learning is a minor restatement of p log(p) where  Q  is a prior density.



Specify a thin lens with 200 yet-unknown coefficients, say tau(x).
Now we want the entropy gradient, its derivative by tau(x).

From data r(t,x);   q=SoftClip |gr|;   p(i) = probability(q) = bincount(q)

Once we have the gradient of  S  w.r.t lens thickness tau(x),
we can try various-sized jumps to reduce intrinsic entropy.



Random thoughts about  p log(p) 

● Physics books often take P as probability.

○ Why?  Because they often assume Gaussian probability.  Then the most probable is 
where the derivative vanishes.  Most probable implies minimum variance = least 
squares.

● The Kulback-Leibler Divergence  Sum P log(P/Q)  found in t-SNE of machine learning is a 
minor restatement of Sum( w p log(p)) where  Q  is a prior density and weights w=Q.

● Outside the space of our study, we pad with  |r(i)|=0.    Does this affect results?

● I never showed you the gradient of the intrinsic Jensen inequality for p log(p).   You can 
do it.  Or ask Mathematica to help you.  Haha.     dS/dg = dS/dp dp/dg



I want to play with a two-lens model.
Thin lens is a simple time shift.

Plane wave
Impulse or white noise.

Steps in exp ( i k^2/omega dz)

First thin lens = exp( i omega tau dz)

 (want zero tau response between lenses)

Second thin lens 

Observation.  How to estimate tau?
Let us back propagate while 
minimizing the entropy.

Thickness = tau1(x)

tau2(x)



In Physics, entropy is said to be a rough function
We want to minimize it?

We better smooth?
Entropy

time

While finding the best g, I was maximizing.  I 
never computed a gradient.  I simply evaluated 
the entropy at significantly spaced intervals and 
chose the g of the largest entropy.

If our unknown is a vector or an image, the 
roughness might be a problem.  Who knows? This 
is science!



Are there any easier applications to think about? 

1. So far, what Jon did was easy:  Jon found  the L1/L2 transition  g  on the hyperbolic penalty.  You 
might look for simple applications such as 1-D.   What holds back mathematicians is that they seek 
problems with solutions.  For the  P log(P)  method, all we need is the gradient.  We can find step 
sizes by experimentation --- just the same way mathematicians tell us to find epsilon. (Haha)

2. Antoine and Jon worked out a sparseness decon and got very happy results on all 5 datasets tried. 
Could we repeat that performance with  p log(p) binning --- a wholly different approach?  

3. In the presence of multiple reflections, the Dix method for interval velocity suddenly becomes very 
complicated.  This binning approach seems ideal for clustering.  But, can we build a demonstration?

4. What is the relationship between machine learning and  p log(p) ?

5. Have you any ideas?



Research is a strenuous and devoted attempt to force nature into 
the conceptual boxes supplied by professional education.

~Thomas Kuhn, The Structure of Scientific Revolutions



An environment for cultivating creativity emerges through

● Projects

● Peers

● Play

● Passion

--- Mitchell Resnick   
                    Inventor of MIT Scratch



An environment for cultivating creativity emerges through

● Projects

● Peers

● Play

● Passion

--- Mitchell Resnick   
                    Inventor of MIT Scratch

Want to explore some toys?   
Go to scratch.mit.edu.    There select explore, then search for Machine Learning.











Recall Kjartansson from IEI






