
GEOPHYSICS, VOL. 69, NO. 1 (JANUARY-FEBRUARY 2004); P. 275–285, 9 FIGS., 3 TABLES.
10.1190/1.1649395

Relative performance of moveout-based multiple-suppression methods
for amplitude variation with offset (AVO) analysis
and common midpoint (CMP) stacking

Gabriel Alvarez∗ and Ken Larner‡

ABSTRACT

We apply three moveout-based methods for mul-
tiple suppression to simple synthetic common mid-
point (CMP) gathers and compare their performance
in terms of level of multiple rejection and, more im-
portantly, in terms of (1) suitability of processed output
for use in analysis of amplitude variations with offset
(AVO), (2) primary-to-multiple amplitude (p/m) ratio
of the data after CMP stacking, and (3) preservation
of primary wavelet shape and amplitude on the stack.
The three approaches are filtering in the frequency–
wavenumber f –k domain, the Hampson method of fil-
tering in the parabolic Radon transform domain, and a
hybrid method that improves upon Hampson’s approach
by using a variation of Harlan’s statistical pattern recog-
nition approach to separate primaries from multiples in
the parabolic Radon transform domain.

The f –k approach is unsuitable prior to AVO analysis;
moreover, it is little better in suppressing the multiples
than the CMP stack itself. Hampson’s method performs
considerably better and is suitable for both purposes,
although it can yield distorted AVO response where
multiples are relatively strong on input. At about 50%
additional computation effort over that of Hampson’s
method, the hybrid approach has superior treatment
of amplitude behavior with offset. For many situations,
the hybrid method yields up to twice the primary-to-
multiples amplitude ratio on the CMP stack.

INTRODUCTION

Prestack multiple-suppression methods enhance the
primary-to-multiples amplitude (P/M) ratio, preserve signal
quality on stacked common midpoint (CMP) or common-
reflection-point data, and improve data for amplitude versus
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offset (AVO) analysis by suppressing the multiples while pre-
serving primary signal amplitude. Multiples, the seismic waves
that bounced downward at least once before being recorded
at the surface of the earth, are generally unwanted because
their traveltimes do not fit time–distance relationships used to
image the subsurface with primary reflections. Wave-theory–
based methods for suppressing free surface-related multiples
and internal multiples, where the data are used as prediction
operators, hold promise for attacking multiples independent
of knowledge of subsurface velocity or structure, provided
data-set consistency requirements are met (Verschuur et al.,
1992, 1995; Verschuur and Kelamis, 1997; Weglein et al., 1997;
Dragoset, 1999). Meeting these conditions, especially for land
data, is difficult at best; suppression, particularly of internal
multiples, remains problematic in practice.

Traditional moveout-based methods have limitations as well;
in particular, the subsurface must be relatively simple so the
moveout of primaries and multiples can reasonably be con-
sidered hyperbolic and symmetric about zero offset, with rel-
atively mild amplitude variations. Also, the performance of
these methods decreases when the differential moveout be-
tween primaries and multiples becomes small. Still, moveout-
based approaches are the workhorse of multiple suppression
with land data.

Of moveout-based approaches, perhaps the most unsung,
and yet powerful and universally applied, process for suppress-
ing multiples is the CMP stack and its counterparts, stacks of
dip-moveout (DMO) processed or prestack-migrated data.
A key drawback of the stack [including stacking with
trace weights designed for optimum suppression of multiples
(Schoenberger, 1996)], however, is that the multiple suppres-
sion is achieved only upon stacking the data, so the process
is of no help in suppressing multiples prior to AVO analysis
or key data-quality–dependent processes such as velocity esti-
mation, statics estimation, and deconvolution. Moveout-based
methods for suppressing multiples on unstacked data can en-
hance not only the quality of AVO analysis and other prestack
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processing but also the level of multiple suppression on the stack
beyond that which could be achieved with CMP stacking alone.

Prestack moveout-based methods consist of three main
steps: (1) application of an invertible transformation—
frequency–wavenumber ( f –k) or parabolic Radon (τ–q)—to
map the primaries and multiples to separate regions in those
domains, (2) application of a suitably tapered mute to suppress
the multiples while ideally preserving the primaries, and (3) in-
verse transformation to return the multiple-suppressed data to
the time domain. The level of multiple suppression with these
methods depends on the ability of the chosen transform to
separate the primaries and multiples. The quality of this sep-
aration in turn depends on the moveout difference between
primaries and multiples on the original CMP trace gathers. Be-
cause that moveout differential is a function of source–receiver
offset, among other things, and because each of the multichan-
nel prestack approaches introduces its particular end effects
on the CMP trace gathers in the offset–time (t–x) domain,
each has the potential shortcoming that multiple suppression
and primary preservation will be offset dependent, thus posing
problems for AVO analysis of the processed data.

It is of interest to assess the performance of moveout-based
prestack multiple suppression methods in terms of their ability
to (1) preserve signal amplitude variation for AVO analysis,
(2) enhance P/M ratio on the stack, and (3) preserve primary
wavelet phase on the stack. Here, we compare these measures
of performance for f –k filtering and for the τ–q approach of
Hampson (1986) applied to simple synthetic CMP trace gathers
containing moveout-corrected primaries and undercorrected
multiples. Moreover, we introduce a third moveout-based ap-
proach into the comparison. This hybrid approach combines
strengths of the Hampson method and a variation of the
method of Harlan et al. (1984) that uses a statistical scheme to
further suppress multiples while the data are in the τ–q domain.

We begin by reviewing the three methods, detailing the hy-
brid method. We then introduce the model data and show the
results of multiple reduction with each method on a sample
of the model data. The next two sections analyze these results
from the perspective of AVO preservation and the quality of
the CMP stack. We conclude with a qualitative ranking of each
method as they relate to characteristics of the data, in terms of
relative P/M ratio and AVO.

OVERVIEW OF MOVEOUT-BASED PRESTACK METHODS

f –k filtering

The f –k filtering approach to multiple suppression is a mul-
tichannel method that operates on successive CMP gathers.
After a CMP gather is NMO corrected and 2D Fourier trans-
formed, primary and multiple events ideally occupy different
portions of the f –k domain, so application of some form of
muting of the portion containing the multiples, followed by in-
verse Fourier transformation, should yield a CMP gather with
multiples suppressed. A taper of amplitudes between the pass
and reject zones reduces the artifacts of Gibb’s phenomenon,
which can distort the signal obtained after the data are inverse
transformed back to the t–x domain.

Unfortunately, because residual multiple events have nei-
ther linear moveout nor constant amplitude with offset, it is
impossible to simultaneously suppress the energy of the mul-
tiples and preserve the energy of the primaries at the short

offsets, so offset-dependent distortion in the amplitudes of the
processed primaries is unavoidable.

Parabolic τ–q filtering (Hampson’s method)

In Hampson’s method, the NMO-corrected CMP gathers
are transformed to the τ–q domain using a discrete parabolic
Radon transform (Beylkin, 1987). Ideally, this process trans-
forms constant-amplitude events with parabolic moveout,

t(x) = τ + qx2,

in CMP gathers into amplitudes at isolated points in τ–q space.
Conversely, points in the τ–q domain are mapped, ideally, into
constant-amplitude parabolas in t–x space.

Because they are nearly horizontal after the NMO cor-
rection, the primaries in the trace gathers are mapped near
the q= 0 line, whereas the multiples, which remain under-
corrected with a moveout close to parabolic, are mapped away
from that line. A suitable attenuation factor (so-called tapered
mute or, simply, mute) is applied in the τ–q domain to suppress
the energy in the region corresponding to the multiples, and the
resulting data (primaries, one hopes) are inverse transformed
to the t–x domain.

In practice, to minimize an artificial appearance in the result-
ing primary data, the method is often implemented in a slightly
different way: the primary energy region is suppressed first so
the inverse transform actually recovers the multiples. Subtract-
ing the multiples-only data from the original data back in the
t–x domain then yields the primaries-only estimate.

Further issues—spatial sampling and aliasing in the trans-
form domain, degree of focusing of primaries and multiples,
and truncation artifacts—must be addressed in the practical
use of the method (Alvarez, 1995). Aliasing, a problem with
the Radon transform as it is with any transform that deals
with discrete data, tends to introduce noise in the τ–q do-
main that introduces artifacts back in the data space. Condi-
tions for avoiding aliasing in either the data space or the model
space (parabolic Radon transform) are given in Hugonnet and
Canadas (1995). To satisfy these aliasing conditions, the data
may have to be high-cut filtered or the offset range restricted.
An alternative is to use a q sampling that is inversely propor-
tional to the temporal frequency (Schonewille and Duijndam,
2001). Some irregularity in spatial sampling of the data can be
accommodated in Hampson’s method if the τ–q transform is
computed using Beylkin’s f –x discrete Radon transform by
defining the forward operator as going from the model to the
data space (Beylkin, 1987; Foster and Mosher, 1992).

Provided a perfect NMO correction of primaries, and within
the validity of the approximation of the parabolic residual
moveout of the multiples, Hampson’s method would yield vir-
tually perfect results if the range of offsets in a CMP gather
were infinite and the data exhibited no spatial aliasing. For
gathers with a finite range of sampled offsets, however, τ–q
transformation introduces two distinct problems: (1) trunca-
tion artifacts and (2) imperfect focusing of the primaries. The
first problem is particularly serious at the near offsets where
the moveout discrimination between primaries and multiples is
relatively poor. Truncation artifacts appear as horizontal lines
in the τ–q domain (Alvarez, 1995; Kabir and Marfurt, 1999)
and as noise in the inversely transformed data (Alvarez, 1995).
The second problem manifests itself as primary energy leaking
into the multiple region and vice versa.
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Under ideal conditions, so-called high-resolution parabolic
Radon transform approaches are effective in concentrating
both the primaries and the multiples to small regions of the τ–q
domain. Sacchi and Ulrych (1995) use a nonlinear sparseness
algorithm in the frequency domain with a minimum-entropy
model constraint in the q-direction and show that fewer q-
values are required to represent the data correctly, in addition
to increasing resolution of hyperbolic events in the velocity
space. Herrmann et al. (2000) propose a noniterative,
dealiased, high-resolution Radon transform that they claim
can accommodate small spatial aperture, insufficient spatial
sampling, and small moveout difference between primaries
and multiples. Their method exploits sparseness and the use
of local windows in the τ–q domain. The increased focusing
of both primaries and multiples in the τ–q domain is attrac-
tive because it decreases the contamination of primaries with
residual multiples. Problems arise, however, where amplitude,
or—worse—the polarity of the primaries varies with offset and
residual moveout departs from being parabolic. These realities
of field data can compromise the focusing power of any of these
transform approaches. Therefore, whether or not use of high-
resolution approaches translates into a more faithful amplitude
preservation of recovered primaries in field data remains an
open question.

A hybrid method

To address the problem of leakage between the primaries
and multiples portions of the τ–q domain, we combine
Hampson’s method with the S/N separation algorithm of
Harlan et al. (1984).

Harlan’s method uses a statistical approach to separate sig-
nal from noise on the basis of their difference in moveout pat-
tern. This difference is exploited by applying to the data (signal
plus noise) an invertible linear transformation that focuses or
concentrates the signal, but not the noise, in the transformed
domain. By focusing, we mean increasing the sparsity of the
model representation of a given event. For example, a linear
event across many traces in a stacked section in principle re-
quires only two parameters in the slant-stack (τ–p) domain:
the slope p of the event and the time intercept τ at some refer-
ence midpoint. Therefore, we say the event has been focused by
the linear τ–p transform. Nonlinear events cannot be similarly
described by only two parameters after applying of a linear
τ–p transform; thus, they are not as well focused by that par-
ticular transformation. A different transformation (such as a
parabolic Radon transform where the event is parabolic in the
t–x domain) can accomplish the desired focusing. Then, in the
transformed domain the signal and the noise can be identified
and separated based on some measure of focusing. The details
for specific focusing measures are described at length in Harlan
(1986, 1988) and Alvarez (1995).

In Harlan’s method, a sample of data d is taken to be the
sum of signal s and noise n; that is,

d = s+ n. (1)

Under the assumption that the signal and the noise are statis-
tically independent, random variables, their probability density
functions ps(x) and pn(x), satisfy (Papoulis, 1965)

pd(x) = ps(x) ∗ pn(x), (2)

where the asterisk denotes convolution and pd(x) is the prob-
ability density function (pdf) for the data. Given this assump-
tion, by knowing of any two of the probability density functions,
we can compute the other. In particular, the signal probabil-
ity density function can be computed from the data and noise
probability density functions. This is achieved with a deconvo-
lution that satisfies the constraints that the samples of ps(x)
are nonnegative and the area under the curve of ps(x) for all x
is unity. Harlan (1988) computes ps(x) by posing an optimiza-
tion problem to find the signal probability density function
that minimizes the difference between pd(x) and pn(x) ∗ ps(x)
in the least-squares sense, subject to the above-mentioned
constraints.

The data probability density function pd(x) can be estimated
directly from the data samples, but the noise probability den-
sity function pn(x) cannot. One can obtain a pessimistic es-
timate by assuming all samples in the model domain [where
ps(x) is to be estimated] consist entirely of noise. This can be
done by destroying the spatial coherency of the data in the t–x
domain—for instance, by randomly reversing the polarities of
the traces (Harlan et al., 1984)—and then taking the parabolic
τ–p transform of this altered data set. Assuming that all sam-
ples in the model domain are noise is more realistic than it
may seem since we choose the transform to focus the signal
to small regions of the model domain. Therefore, most of the
model-based samples correspond to background noise (events
unfocused by the transformation.) The question remains as to
when, if ever, the assumption of statistical independence be-
tween signal and noise is warranted. This is debatable, but it is
a basic assumption that seems to be satisfied by most data sets.

In applying Harlan’s algorithm, we choose the key param-
eter for identifying the signal component of the data in the
transformed domain as the reliability indicator, an indicator of
the accuracy in the statistical identification of the signal. Specif-
ically, Harlan defines it as the conditional probability that the
estimated signal is within a certain percentage of its true (un-
known) value:

reliability ≡ P[(−cŝ< s− ŝ< cŝ)|d]

=
∫ ŝ+cŝ

ŝ−cŝ ps(x)pn(d − x)dx∫∞
−∞ ps(x)pn(d − x)dx

, (3)

where P[x|d] is the conditional probability of x given d, s is the
signal amplitude (unknown), ŝ is the estimated signal ampli-
tude, d is the data amplitude (signal plus noise), and c governs
the uncertainty that can be accepted in estimating the signal
[typically c<5%; see Alvarez (1995)]. For a given value of c, we
compute the reliability indicator for every sample in the trans-
formed domain. We then associate high values of the reliability
indicator with signal samples and low values with noise sam-
ples. The user supplies a reliability threshold such that samples
with a computed reliability indicator less than the threshold
value are interpreted as noise and attenuated. Thus, through
our choice of the reliability threshold value, we trade off noise
rejection and signal preservation.

This pattern recognition is based not on some shape in the 2D
transformed domain but, rather, on the presumption that fo-
cusing the desired feature (signal) causes its amplitude to stand
out relative to that of noise. Thus, Harlan’s method suppresses
background noise (unfocused events), leaving unchanged the
amplitudes of coherent (focused) events in the transformed
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domain. The method differs from conventional noise-filtering
algorithms in that the signal and the noise need not be mapped
to different regions of the transformed domain; rather, the
signal must be concentrated with high amplitude in a rela-
tively small region, whereas the noise is spread—typically with
weaker amplitude—over a large region. Here, noise means
anything not focused by the transformation.

Harlan’s method cannot be used directly to suppress multi-
ples on a CMP gather because both the primary and the multi-
ple reflections generally have approximately hyperbolic move-
out; therefore, the parabolic Radon transform that focuses the
primary reflections, based on their residual parabolic moveout
after NMO correction, will also focus the multiples.

Our hybrid approach combines strengths of both Hampson’s
τ–q filtering method and Harlan’s statistical S/N separation al-
gorithm. For the parabolic Radon transform used here, q, which
characterizes the curvature of the parabolic moveout, is mea-
sured as the moveout (in milliseconds) at the largest source–
receiver offset (2970 m in our tests). The first step is to apply
Hampson’s method: the data in the CMP gathers are NMO
corrected with the velocity of the primaries, such that the pri-
maries become horizontal (or nearly so) across each gather,
while the multiples remain under-corrected with a residual
moveout close to parabolic (Hampson, 1986). A horizontal
event can be considered as a parabola of zero curvature, so
a discrete parabolic Radon transform applied to the NMO-
corrected CMP gathers will concentrate the energy of the pri-
maries in a small region of the τ–q plane near the line of zero
moveout or curvature (i.e., q= 0). The multiples, with their
nearly parabolic residual moveout, will also be focused, but
in a different region of the τ–q domain. In accordance with
Hampson’s method, we apply a tapered mute to suppress the
most identifiable multiple energy (the portion that does not
overlap the primary region). Where multiples are considerably
stronger than primaries, a portion of the multiple energy (we
call it residual multiple energy) is mapped to or near the re-
gion occupied by the primaries. Because the residual multiple
energy is not well focused (although the bulk of the initial mul-
tiple energy is), this residual multiple energy that has leaked
into the primary region (see Figure 4, below) becomes the tar-
get for applying a version of Harlan’s statistical S/N separation
algorithm. Truncation artifacts are not focused by the trans-
formation and therefore contribute to the noise we wish to
suppress. Finally, we apply an inverse τ–q transform to bring
the data back to the t–x domain.

The additional forward τ–q transform required to estimate
the pdf of the noise and the 1D inversion needed to compute
the pdf of the signal increases the total computation time by
about 50% over that of Hampson’s method. A computer imple-
mentation of the method in C language is available as module
suharlan of the SU package developed at Colorado School of
Mines (Cohen and Stockwell, 2002).

MODEL DATA

To compare the performance of the different methods, we
create four data models simulating CMP gathers, each contain-
ing four primaries and four multiples. NMO correction with
the primary velocities results in gathers with primaries per-
fectly aligned and multiples undercorrected. The four models
differ in the relative amplitudes of primaries and multiples,

and in the offset dependence of these amplitudes. In model 1
(Figure 1), the amplitudes of all primary events are the same
and do not vary with offset. The P/M amplitude ratio for all
traces in this model is small—1:4—and, as in all four models,
two of the multiples are time coincident with primaries at zero
offset and the other two are not. The time-coincident events
simulate contamination of primaries by residual multiples, and
the noncoincident ones are included to assess distortion of un-
contaminated primaries that arises after attempts at multiple
suppression. At the largest source–receiver offset (2970 m), the
moveout difference between primaries and multiples is, from
early to late events, 160, 120, 90, and 80 ms.

Model 2 is the same as model 1 except that the P/M ratio
increases to 1:1. Comparing the relative performance of the
various methods for these two models gives an idea of the
robustness of these methods in preserving primaries while re-
ducing multiples.

Model 3 differs from model 1 in that amplitude decreases
linearly with offset for both the primaries and the multiples,
such that the amplitudes on the far trace are only half those on
the near trace. The purpose of this model is to test the ability
of the various methods to suppress multiples where the data
have been imperfectly corrected for offset-dependent variation
in amplitude, such as in imperfect correction for geometrical
spreading or absorption.

Model 4 introduces an even stronger decrease of amplitude
with offset, such that the amplitudes on the far trace are −0.5
times those on the first trace; that is, the longer-offset traces
are polarity reversed. Phase changes for primaries are likely to

FIG. 1. Simulated NMO-corrected CMP gather for model 1.
The peak amplitude of the multiples (M) is four times that of
the primaries (P). Neither the primaries nor the multiples have
any offset-dependent amplitude variation.



Moveout-based Multiple Suppression 279

occur in practice when the elastic parameters exhibit a strong
change across an interface, although the situation in model
4 is more extreme than might be encountered in practice in
that the multiples vary similarly with offset. This model data
set is intended to compare the performance of the methods
under particularly adverse conditions. Table 1 summarizes the
characteristics of the four model data sets.

SAMPLE RESULTS OF MULTIPLE SUPPRESSION

We applied each of the three methods— f –k, τ–q, and the
proposed hybrid method—to the unstacked data for each of
the four models. Here, we detail the results for model 1 and
only summarize the results for the other data sets.

f –k filtering

Figure 2 shows the output from the f –k filtering method for
model 1 (P/M ratio of 1:4, with the same primary amplitude
on all traces). Primaries are largely unchanged, but substantial

Table 1. Characteristics of the four data sets used to compare
the performance of the multiple suppression algorithms.

Model P/M AVO Polarity change

1 1/4 No No
2 1/1 No No
3 1/4 Linear decrease No
4 1/4 Linear decrease Yes

FIG. 2. The f –k multiple suppression of the data in model 1
leaves substantial residual multiple energy, particularly on the
shorter offset traces. Where the multiple (M) overlaps a pri-
mary (P), one might incorrectly infer that the amplitude of the
primary changes with offset.

energy from the multiples remains. As expected, at short offsets
the multiples are poorly suppressed because the difference in
moveout between the multiples and the primaries approaches
zero for those offsets. Although multiple suppression in the
f –k domain can be applied in any of several different ways
and with different choices of parameters that govern action in
the pass and reject portions of the f –k space, the performance
seen in Figure 2 is representative of results that can be expected
with f –k filtering approaches.

Parabolic Radon transform method

Multiple suppression by Hampson’s parabolic Radon trans-
form approach (Figure 3) is significantly more effective than
that by the f –k method.

The earliest multiple in Figure 3 is well suppressed because
this multiple and the primary exhibit enough differential move-
out to allow a clear separation between the two (see Figure 1).
Because their moveouts are closer to those of nearby pri-
maries, causing overlap of amplitudes in τ–q space, the multi-
ples at later zero-offset times are less completely suppressed.
The presence of the residual multiple at zero-offset time 2.5 s
appears as an increase in apparent amplitude of the primary
for the short-offset traces. Figure 4 shows the τ–q transformed
data; note in particular the tails of multiples that overlap the
primary region in τ–q space and the horizontal artifacts caused
by truncation of the near-offset portion of the data. These tails,

FIG. 3. Result of multiple suppression with Hampson’s ap-
proach applied to the data of model 1. The residual multiple
energy evident on the edges of the section may cause one to
misconstrue the amplitudes of primaries as changing with off-
set, but not so severely as when the f –k method is used for
multiple suppression.
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which are attributable to the small moveouts on the short-offset
traces, cannot be successfully muted in Hampson’s method
since they overlap the primary region.

Hybrid method

The hybrid approach (Figure 5) reduces the residual mul-
tiple energy that leaked into the primary region in the τ–q
domain. As a result, the multiple suppression is excellent on
all offsets and for all events. The effectiveness of the noise-
separation step in attenuating the residual multiple energy can
be assessed by referring to Figure 6, which shows the τ–q trans-
form of the data in model 1 after the multiple suppression. The
first step, the mute, removes most of the multiple energy (with
moveouts larger than those governed by the slanted dashed
line in Figure 4). Then, Harlan’s noise-separation algorithm
attenuates the residual multiple energy in the tails that leak
into the primary region. In this case (model 1), the suppression
process results in a slight decrease in signal amplitude. Since
in this model the input multiples are four times stronger than
the primaries, the residual multiple energy is strong enough
to compete in amplitude with portions of the primary en-
ergy, especially the reflection for the deepest reflector (see
Figure 4), for which differential moveout between primaries

FIG. 4. The τ–q transform of NMO-corrected data in model 1.
To the right of the slanted dash line is the multiple-energy re-
gion; to the left of the vertical dashed line is the primary region.
The region between the dashed lines is the taper zone. Because
of the large relative strength of the multiples, substantial resid-
ual energy from the multiples (the tails of the main energy) is
mapped to the q-region of the primaries. Here, q is expressed
as moveout on the trace with offset 2970 m.

and multiples is smallest. The noise-separation step therefore
has limited capability for distinguishing between residual mul-
tiple energy and primary energy on the basis of amplitude.
Here, our choice of the reliability threshold favors reducing
the residual multiple at the expense of some loss of signal
amplitude.

As noted below, the small decrease in primary amplitude is
likely acceptable for AVO analysis because the reduction is
uniform across offset. If this small decrease of primary ampli-
tude is considered excessive, the reliability threshold can be
adjusted to allow more samples to be identified as signal.

IMPLICATIONS FOR AVO

To compare quantitatively the performance of the three al-
gorithms from the standpoint of their value for AVO studies,
we plot the amplitude of the primary reflections, after mul-
tiples have been suppressed, as a function of offset for each
model and each multiple-suppression method. The amplitudes
are measured as the peak of the wavelet at the two-way trav-
eltime corresponding to each input primary, which, at times,
may be contaminated by residual multiple. In Figure 7, a solid
black line denotes the amplitude of a primary in the absence
of multiples in the input data for model 1 (Figure 1). Any dif-
ference between this curve and one of the curves of appar-
ent primary amplitude after multiple suppression indicates er-
roneous AVO. That variation could be a combination of the

FIG. 5. Model 1 after the multiple energy has been attenuated
by the hybrid method. The bulk of the multiple energy (i.e., to
the right of the slanted dashed line in Figure 4) was suppressed
by the mute, and the residual multiple energy that leaked into
the primary region (to the left of the vertical dashed line in
Figure 4) was attenuated by the S/N separation algorithm.
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amplitude variation of the output primary and contamination
of the primary by residual multiples. A thin dashed line in
Figure 7 indicates the apparent amplitude of the primary in
the input data contaminated by overlapping multiples. For pri-
maries not coincident with multiples at zero-offset times, this
curve coincides with the solid black line. The caption describes
the other curves in the figure.

Where primaries are contaminated by multiples (Figures 7a
and 7c), the contamination is so severe that AVO analysis us-
ing the input data would be meaningless. The f –k filtering
(dashed black line) has failed to suppress the strong multiples
sufficiently on the smaller offset traces for those primaries;
therefore, those f –k filtered events are also useless for AVO
study. For those primaries that are not coincident with multi-
ples (Figures 7b and 7d), the f –k filtered primary amplitudes
are closer to the ideal behavior but are still distorted at the
short and long offsets because of edge effects of the f –k filter
process. In any case, the f –k algorithm is unsatisfactory when
the goal is to analyze AVO behavior.

Hampson’s approach (solid gray line) performs considerably
better for all primary events, but amplitudes depart from the
true amplitude for long offsets and, more importantly, short
offsets. Although not as severe as the departures when the f –k
filter approach is used, the amplitude variations at short offset

FIG. 6. The τ–q transform of data in model 1 after the multiple
energy has been attenuated by the hybrid method. The bulk
of the multiple energy (i.e., to the right of the slanted dashed
line in Figure 5) was suppressed by the mute, and the residual
multiple energy that had leaked into the primary region (to the
left of the vertical dashed line in Figure 5) was attenuated by
the S/N separation step.

can nevertheless distort AVO analysis. For the third primary
(Figure 7c), for example, the departure from the true ampli-
tude at zero offset is almost 50%. More importantly, a strong,
roughly linear AVO is present for offsets between about 800
to 1600 m. The results in Figures 7b and 7d indicate that the
primary amplitudes at near offset were reduced in the process
of suppressing the multiples, likely from rejection of tails of the
primaries at high q-values in the τ–q transform. The increase in
amplitude for short offsets for the other two reflections is not
because of a change in actual primary amplitude but rather
because of the contamination by the residual multiples. The
variations are relatively small, so these results are likely ac-
ceptable for AVO analysis over a large range of shorter offsets.

Because the level of residual multiples present is much
smaller than that for the other two methods, the hybrid ap-
proach performs the best of the three methods where primaries
are contaminated by the multiples. For those primaries not co-
incident with the multiples, use of the algorithm resulted in
a general reduction in amplitude, which, however, is more or
less uniform for all offsets, much as happened with Hamp-
son’s method; that is, the curves from these two methods are
roughly parallel. Since AVO analysis depends on the relative
variation of AVO rather than on the absolute amplitude val-
ues, the performance of the hybrid method for AVO analysis
is at least comparable to that of Hampson’s. Neither of these
algorithms did well for the far offsets, for which the departure
from the true amplitudes varied rapidly to values as high as
50% in Figure 7c—probably the result of an edge effect of the
parabolic τ–q transform.

Although not shown, similar results were obtained for the
other three data sets (Alvarez, 1995), indicating that the f –k
filtering approach, despite its conceptual simplicity and low
computational cost, is clearly unacceptable for multiple sup-
pression where AVO analysis is subsequently to be performed.
Hampson’s and the hybrid approach perform about the same,
giving good results, except when the variation of AVO in the
data is so severe that a polarity inversion occurs. The polar-
ity inversion severely decreases the focusing power of the τ–q
transform to a point that renders the subsequent application
of the noise-separation algorithm useless, since it depends on
focusing the signal (primaries) while leaving the noise (resid-
ual multiples) unfocused (see Figure 8). In that situation, per-
haps some other method, such as that of Lumley et al. (1995),
which claims to be tailored specifically to AVO preservation,
might prove effective. Local transforms (Hermann et al., 2000;
Hugonnet et al., 2001) may also prove helpful in that case, as
may wave theory-based approaches if the change in amplitude
and phase with offset on the input data is consistent with wave
theory.

QUALITY OF THE CMP STACK

We now compare the ability of the three multiple-
suppression methods to improve the P/M ratio on stacked
data, apart from any distortion in shape of the stacked pri-
mary events. In Figure 9, stacked traces of NMO-corrected
data are plotted in the following order: trace 1, stack of the in-
put data; trace 2, stacked primary-only input data (ideal); and
traces 3–5, stacked multiple-suppressed output from the f –k
filtering method, Hampson’s τ–q method, and hybrid method,
respectively.
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The stacked traces in Figure 9 are results for model 1. From
this figure and similar ones for the other models, we measure
the P/M ratio for the stacked traces after applying each of the
multiple-suppression methods. The P/M ratio is computed as
the ratio of the peak-to-trough amplitude of the output pri-
mary to that of the residual multiple. For primaries coincident
with multiples, the amplitude of the residual multiple is esti-
mated as the difference of the amplitude of the primary (which
has a contribution from the multiple) and the amplitude of an
adjacent primary with no contribution from multiples.

The computed P/M ratios are collected in Table 2. The CMP
stack itself yields an improvement factor of up to four in P/M
ratio for all models with the exception of model 4 (polarity
reversal), for which the improvement is small.

FIG. 7. AVO for primaries in model 1. (a)–(d) results for the primaries from the shallowest to the deepest events. Amplitudes are
measured as the peak of the wavelet at the two-way traveltime of each input primary. The solid black line is the amplitude of the
input primary in the absence of multiples; the thin dashed line is the apparent amplitude of the input primary in the presence of
multiples; and the dashed black, solid gray, and dashed gray lines are the primary amplitude after multiple suppression with the f –k,
Hampson, and hybrid approaches, respectively. The dashed vertical line shows where offset equals depth of the reflector. Offsets
larger than this value are normally ignored in AVO analysis.

The f –k filtering approach yields only marginal improve-
ment in P/M ratio over and above that which the CMP stack
itself provides. (Recall that the f –k filter approach is best at
suppressing multiples on the longer offset traces—the same
ones for which CMP stacking is most effective.)

Hampson’s τ–q method yields an improvement in P/M ratio
over that of the CMP stack, which ranges from about 3:1 for
model 4 to more than 5:1 for model 1. For all of the data sets
tested, the improvement in P/M ratio was significant.

The hybrid approach further improves P/M ratio for the first
and second data sets (those for which the trace-to-trace ampli-
tudes were constant) because the focusing power of the trans-
form is high for these models. The linear decrease of amplitude
with offset in model 3 diminishes the focusing power of the
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transform. Consequently, the result obtained with the hybrid
approach is only marginally better than that of Hampson’s. For
model 4, the polarity reversal reduces the focus of the primaries
even further. The increased smearing of both the primary and
multiple energy in the τ–q domain reaches a point where the
algorithm cannot discriminate between the primaries and the
residual multiples; as a result, the performance of the hybrid
method is actually poorer than that of Hampson’s method. As
mentioned previously, it remains to be seen whether methods
such as those of Lumley (1995) and Herrmann et al. (2000), or
a wave-theory-based method, might be more successful in this
situation.

DISCUSSION

Qualitative measures of the relative performance of the dif-
ferent multiple-suppression methods, in terms of AVO behav-
ior and CMP stack quality, are summarized in Table 3. In the
table, we offer qualitative grades of very good, good, fair, and
poor based on analyses in the previous two sections. Recall
that the first and third primaries in each data set are each con-

Table 2. P/M ratio in CMP-stacked traces for the ideal primaries-only data, input multiple-contaminated data, and results of
the three multiple-suppression methods. The numbers show the ratio of the peak-to-trough amplitude for primaries to that for
multiples.

Model Input Stack f –k Hampson Hybrid

1 0.25 1.0 1.0 5.5 10.2
2 1.0 4.0 4.3 18 40
3 0.25 0.8 0.85 3.9 4.4
4 0.25 0.31 0.33 0.9 0.87

FIG. 8. Detailed comparison of the τ–q transform for the shallowest primary in (a) model 1 (without polarity reversal) and (b)
model 4 (with polarity reversal). The polarity reversal severely decreases the focusing power of the transform, rendering subsequent
application of the noise-separation algorithm ineffective.

taminated by a multiple, whereas the second and fourth are
not.

The results indicate that for model 1 (1:4 P/M ratio) the hy-
brid algorithm is preferred unless computation cost is the over-
riding consideration.

From the results of the previous two sections, the coinci-
dence of primaries and multiples at zero-offset time, or lack
of it, might seem to govern the choice of multiple-suppression
approach to use prior to AVO analysis. In field data, however,
from one primary reflection to another, the zero-offset time
and polarity of nearby multiples will differ from those of pri-
maries in a generally random fashion. This circumstance tends
to favor use of the hybrid approach.

Despite its 50% greater cost, the hybrid approach is favored
over Hampson’s method wherever the goal is maximum degree
of multiple rejection in the stacked data, particularly where
the primaries are severely contaminated by multiples and the
primary wavelet does not reverse polarity across the range of
offsets. In contrast, when the overriding concern is AVO and
some residual multiple energy can be tolerated in the stack,
then the less costly Hampson approach is a competitive choice.
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Both the Hampson and hybrid methods yield some variation
of apparent primary amplitude, but the processed data are far
superior to both the unprocessed data and the f –k filtered
output for AVO analysis.

Admittedly, the model data used for this study are simplistic
and idealized. Strong NMO stretch for shallow, low-velocity
reflections; trace-dependent variations in amplitude of both
primaries and multiples, such as those associated with variable
source and receiver coupling into the earth; and departures
of primary moveout from being hyperbolic are complications

Table 3. Performance comparison for the three methods of
multiple suppression. Models 1 and 2 have no variation of pri-
mary amplitude with offset, model 3 has linear decrease of
amplitudes with offset with no polarity reversal, and model 4
has linear AVO and polarity reversal.

AVO Quality of
Models Method Preservation CMP Stack

f –k filtering Poor Poor
1, 2 Hampson Good Good

Hybrid Good Very Good
f –k filtering Poor Poor

3 Hampson Fair Good
Hybrid Fair Good

f –k filtering Poor Poor
4 Hampson Poor Fair

Hybrid Poor Fair

FIG. 9. CMP stacked traces for model 1. The first trace is the
stack of the NMO-corrected input data; the second is the stack
of the NMO-corrected, primaries-only input data; and the last
three traces are stacks of the multiple-suppressed results of f –k
filtering, Hampson’s method, and hybrid method, respectively.

that should be investigated. These complications compromise,
to various extents, the focusing ability of the parabolic Radon
transform, possibly limiting the additional value of the hybrid
method. However the deterioration in focusing seen for model
4, with its polarity change across the CMP gather (and for
model 3 as well), is likely much greater than the degradation
that can be expected from variations in coupling of sources and
receivers.

Practitioners in seismic data processing are aware of the lim-
itations of moveout-based approaches in suppressing multiples
where the subsurface is complex and moveout is thus not hy-
perbolic and where differential moveout between primaries
and multiples is relatively small. Likely, the smaller the differ-
ent moveout, the more promising the hybrid approach, which
exploits characteristics of data in the Radon-transformed do-
main that are not dependent solely on differential moveout.
Where differential moveout between primaries and multiples
is relatively small, the high-resolution approaches of Herrmann
et al. (2000), Cary (1998), and Sacchi and Ulrych (1995) and
our hybrid method offer alternative approaches to address-
ing leakage in the τ–q domain. The high-resolution methods,
however, are considerably more costly. Moreover, their ability
to reduce the leakage problem is compromised where resid-
ual moveout is nonparabolic and amplitude varies with off-
set. This suggests potential added value in building a hybrid
approach that combines a high-resolution technique with the
Harlan pattern-recognition method.
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