Imaging of complex structures by 3-D reflection seismic data

Biondo Biondi

Stanford Exploration Project Stanford University

IPRPI Workshop on Geophysical Imaging

An example of imaging complex structures...

1) Extendials of wavefield-condinuation methods can be fulfilled only if we use mVA methods based on:

> Wavefield-continuation migration

Sali-boundary picking

Below salt Common Image Gathers (CIG)

>Wavefield-continuation velocity updating

Memay need to go beyond downward-continuation initiation initiation in the second second in the second s

be able to perform MVA

Deep Water GOM - Kirchhoff Mig.

Deep Water GOM – Wavefield-continuation Mig.

S E P

4

Outline

• Migration and complex wave propagation

- Wavefield continuation migration
- Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Outline

- Migration and complex wave propagation
 - Wavefield continuation migration
 - Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Sigsbee data - Kirchhoff

J. Paffenholz - SEG 2001

Sigsbee data - Wavefield continuation

J. Paffenholz - SEG 2001

Outline

• Migration and complex wave propagation

- Wavefield continuation migration
- Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Superposition of Beams

Solve wave equation by localizing initial wavefield in space and ray parameter (wavenumber)

Extrapolate and superimpose these solutions to form wavefield

If local solution is accurate and superposition is correct, accurate wavefield should result, including all arrivals, amplitudes, and phases

Schlumberger Private

© 2001 Jun 17, 2001

Gaussian Beam (Ray based)

Cerveny, Popov, Psencik 1982 Hill, 1990, 2001 Kinneging et al 1989 White et al 1987 Hale 1992

$$G(s, \mathbf{x}) \sim \int dp_{0s} \ u(s, p_{0s}, \sigma_s, n_s)$$
 $u = \left(rac{v(\sigma_s)}{q(\sigma_s)}
ight)^{1/2} \exp\left[i\omega\left(au(s, \sigma_s) + rac{1}{2}rac{p(\sigma_s)}{q(\sigma_s)}n_s^2
ight)
ight].$

WesternGeco

S

Asymptotic Coherent State (Ray based)

$$G(s, \mathbf{x}) \sim \int dp_{0s} u(s, p_{0s})$$
 $u(s, p_{0s}) \sim \left[\left| \frac{d\mathbf{p}}{dp_{0s}} \right|^2 \mu^2 + \Omega^2 \left| \frac{d\mathbf{x}}{dp_{0s}} \right|^2 \right]^{1/4}$
 $\operatorname{Eq} \left[i\omega[\tau(s, \mathbf{x}(p_{0s})) - \mathbf{p}(p_{0s}) \cdot (\mathbf{x}(p_{0s}) - \mathbf{x})] - \frac{1}{2}\omega\Omega(\mathbf{x}(p_{0s}) - \mathbf{x})^2 \right]$

WesternGeco

Foster and Huang, 1991 Thompson, 2000 Albertin et al 2001

© 2001 Jun 17, 2001

Wavefield-Extrapolated Coherent State

Foster and Huang 1991 Wu et al 2000 Albertin 2001

$$G(s, \mathbf{x}) \sim \int dp_{0s} u(s, p_{0s}, \mathbf{x})$$
$$u(s, p_{0s}, \mathbf{x}) \sim W\left[e^{-\frac{1}{2}\omega\Omega(x-x_0)^2}e^{-i\omega p_{0s}(x-x_0)}\right]$$

WesternGeco

© 2001 Jun 17, 2001

Wavefield Extrapolated Zero-offset Impulse

© 2001 Jun 17, 2001

Asymptotic Coherent State Reconstruction

© 2001 Jun 17, 2001 3 raytraced coherent states

Asymptotic Coherent State Reconstruction

© 2001 Jun 17, 2001 12 raytraced coherent states

Asymptotic Coherent State Superposition

© 2001 Jun 17, 2001 572 raytraced coherent states

Wavefield Extrapolated Zero-offset Impulse

© 2001 Jun 17, 2001

SEG/EAGE salt data set - Crossline

SEG/EAGE salt data set - Crossline

Wavefield-continuation migration

Beam Migration y=375

© 2001 Jun 17, 2001

Outline

- Migration and complex wave propagation
 - Wavefield continuation migration
 - Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Offset Domain CIG (Kirchhoff)

Angle Domain CIG (wavefield continuation)

Sigsbee data - Well illuminated CIG

Sigsbee data - Partially illuminated CIG

Sigsbee data - Poorly illuminated CIG

Sigsbee data - Well illuminated CIG

Sigsbee data - Partially illuminated CIG

Sigsbee data - Poorly illuminated CIG

Outline

- Migration and complex wave propagation
 - Wavefield continuation migration
 - Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Migration => Normalized Migration

Migration

$$m = \mathbf{L}^* d$$

& Least-Squares Migration

$$m = \left(\mathbf{L}^*\mathbf{L}\right)^{-1}\mathbf{L}^*d$$

Normalized Migration

$$m = \mathbf{W}^{-1} \mathbf{L}^* d$$

Normalized Migration

Migration => Iterative Regularized Inversion

S E 43

*** Least-Squares Migration**

$$m = \left(\mathbf{L}^*\mathbf{L}\right)^{-1}\mathbf{L}^*d$$

Iterative Regularized Inversion

$$m = \left(\mathbf{L}^*\mathbf{L} + \varepsilon^2 \mathbf{A}^*\mathbf{A}\right)^{-1}\mathbf{L}^*d$$

Regularization operator (A)

Geophysical regularization

Geological regularization

Layered velocity model

Migration

Inversion with Geophysical regularization

Inversion with Geophysical regularization

Outline

- Migration and complex wave propagation
 - Wavefield continuation migration
 - Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

ADCIGs and local velocity errors

Sigsbee data - Correct velocity

Sigsbee data - Wrong velocity

ADCIGs and velocity in simple structure

Surface location (m) 3500 Refl. angle (deg) Refl. angle (deg) 40 40 0 0 0 1000 Depth (m) 2000 1000 Depth 30-0D Original velocity 2000 (m) 1000 Depth (m) 20:00 3000 000B Original vel Slower vel Slower velocity

Velocity sensitivity of Angle-Domain DDCIGs

biondo@stanford.edu

56

Outline

- Migration and complex wave propagation
 - Wavefield continuation migration
 - Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Outline

- Migration and complex wave propagation
 - Wavefield continuation migration
 - Gaussian Beams and Coherent States migration

- Migration => Iterative Regularized Inversion
 - Normalized Migration
 - Iterative Wavefield Inversion with geophysical and geological constraints
- Migration Velocity Analysis (MVA)
 - Angle Domain Common Image Gathers (ADCIGs)
 - Ray tomography using ADCIGs
 - Wave-equation Migration Velocity Analysis

Migration \Leftrightarrow Migration Velocity Analysis

wavefronts

wavefields

Kirchhoff migration

* traveltime tomography

Wave-equation migration

Wave-equation MVA

Courtesy of Paul Sava (SEP)

A tomography problem

 $\min_{\Delta s} \left\| \Delta q - \mathbf{L} \Delta s \right\|$

	Traveltime MVA	Wave-equation tomography	Wave-equation MVA
∆ q	Δt traveltime	∆d data	∆R image
L	ray field	wavefield	wavefield

Courtesy of Paul Sava (SEP)

 $\Delta W = W - W_{0}$

Courtesy of Paul Sava (SEP)

WEMVA: objective function

Courtesy of Paul Sava (SEP)

"Simple" wavepath with f=1⇔26 Hz

Courtesy of Paul Sava (SEP)

"Complex" wavepath with f=1⇔26 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔26 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔3 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔5 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔12 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔16 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔26 Hz

Courtesy of Paul Sava (SEP)

"Messy" wavepath with f=1⇔64 Hz

Courtesy of Paul Sava (SEP)

Migration and ADCIGs with correct velocity

Correct velocity model and initial velocity error

Migration and ADCIGs with correct velocity

rd.edu

Migration and ADCIGs with initial velocity

rd.edu

Measuring velocity errors by residual migration

biondo@stanford.edu

Reliability of measurements and velocity errors

True and estimated velocity error

Migration and ADCIGs with initial velocity

Migration and ADCIGs with estimated velocity

東北

Migration and ADCIGs with correct velocity

rd.edu

- Complex structures require accurate and expensive wavefield-continuation imaging operators.
- To image reflectors that are poorly illuminated we need to go beyond the application of the adjoint operator (migration) and move towards "intelligent" (regularized) inversion.
- Wavefield-continuation operators are beneficial not only for migration but also for velocity estimation.
- The estimation of holes in poorly illuminated reflectors and of velocity errors are tightly coupled problems.

- Uwe Albertin at WesterGeco for Gaussian Beam slides.
- SMAART JV and J. Paffenholz (BHP) for the Sigsbee data set.
- Unocal and Phil Schultz for Deep Water GOM data.
- ***** 3DGeo for images of Deep Water GOM data.
- **Total for North Sea data set.**
- ***** SEP sponsors for financial support.

