Wave-Equation Migration Velocity Analysis

Paul Sava and Biondo Biondi*

Stanford Exploration Project Stanford University

EAGE 2004 Workshop on Velocity

Deep-water subsalt imaging

Deep-water subsalt imaging - Velocity problem?

Deep-water subsalt imaging - Illumination?

"Messy" wavepath with f=1⇔3 Hz

biondo@stanford.edu

畲

"Messy" wavepath with f=1⇔5 Hz

*

"Messy" wavepath with f=1⇔12 Hz

"Messy" wavepath with f=1⇔16 Hz

"Messy" wavepath with f=1⇔26 Hz

biondo@stanford.edu

â

Wavepaths in 3-D

Wavepaths in 3-D – Banana or doughnuts?

Velocity Analysis and wavefield methods

Brief history of velocity estimation with wavefield methods

- Full waveform inversion (Tarantola, 1984, Pratt, today)
- Diffraction tomography (Devaney and Oristaglio, 1984)
- Wave-equation tomography (Woodward, 1990; Luo and Schuster 1991)
- Differential Semblance Optimization (Symes and Carazzone, 1991)

Challenges of velocity estimation with wavefield methods

- Limitations of the first-order Born linearization ("Born limitations")
 - Problems with large (in extent and value) velocity errors
 - Dependent on accurate amplitudes both in the data and in the modeling
- Computational and storage requirements of explicit use of wavepaths

Deep-water subsalt data

Deep-water subsalt data - Initial velocity

Deep-water subsalt data - Initial velocity

Deep-water subsalt data – WEMVA step 1)

ratio

ratio

Deep-water subsalt data – WEMVA step 1)

1) Measure errors in ADCIGs by measuring curvature (ρ) 2) Convert measured ρ into ΔI 3) Invert ΔI into Δs by solving: $\Delta \rho = \rho - 1$ $\min_{\ddot{A}s} \left\| \mathbf{W} \left(\ddot{A} I - \mathbf{L}^{\text{wave}} \Delta s \right) \right\|_{2}$

Deep-water subsalt data – WEMVA step 2)

1) Measure errors in ADCIGs by measuring curvature (ρ) 2) Convert measured ρ into ΔI 3) Invert ΔI into Δs by solving: $\Delta I = \min_{\ddot{A}s} \left\| \mathbf{W} \left(\ddot{A} I - \mathbf{L}^{\text{wave}} \Delta s \right) \right\|_{2}$

Deep-water subsalt data – WEMVA step 2)

1) Measure errors in ADCIGs by measuring curvature (ρ) 2) Convert measured ρ into ΔI 3) Invert ΔI into Δs by solving: $\Delta \rho = \rho - 1$ $\min_{\ddot{A}s} \left\| \mathbf{W} \left(\ddot{A} I - \mathbf{L}^{\text{wave}} \Delta s \right) \right\|_{2}$

Deep-water subsalt data – WEMVA step 3)

1) Measure errors in ADCIGs by measuring curvature (ρ) 2) Convert measured ρ into ΔI 3) Invert ΔI into Δs by solving: ΔI $\min_{\ddot{A}s} \left\| \mathbf{W} \left(\ddot{A} I - \mathbf{L}^{\text{wave}} \Delta s \right) \right\|_{2}$

W

Deep-water subsalt data – WEMVA step 3)

- Measure errors in ADCIGs by measuring curvature (ρ)
- 2) Convert measured ρ into ΔI
- 3) Invert ΔI into Δs by solving:

$$\min_{\mathbf{A}s} \left\| \mathbf{W} \left(\mathbf{\ddot{A}} I - \mathbf{L}^{\mathsf{wave}} \Delta s \right) \right\|$$

Deep-water subsalt data – Initial velocity

Deep-water subsalt data – Velocity after 2 iterat. 👫

Deep-water subsalt data – Initial image

Image

Deep-water subsalt data – Image after 2 iterat.

Image

Deep-water subsalt data – Initial ADCIGs

Deep-water subsalt data – ADCIGs after 2 iterat.

ADCIGs

Deep-water subsalt data – Initial ADCIGs

ADCIGs

Deep-water subsalt data – ADCIGs after 2 iterat. 👫

ADCIGs

Deep-water subsalt data – Initial Δρ=ρ-1

∆ρ=ρ-1 White ⇔ flat ADCIGs

Deep-water subsalt data – $\Delta \rho$ after 2 iterations

∆ρ=ρ-1 White ⇔ flat ADCIGs

biondo@stanford.edu

a

Deep-water subsalt data – W after 2 iterations

Weights White ⇔ reliable ρ picks

 Ray-based Migration Velocity Analysis (MVA) methods have been successful in complex structure, but they are challenged by subsalt velocity estimation.

- Ray-based Migration Velocity Analysis (MVA) methods have been successful in complex structure, but they are challenged by subsalt velocity estimation.
- Wave-equation MVA (WEMVA) can be accomplished while preserving the work-flow of conventional ray-based MVA methods.

- Ray-based Migration Velocity Analysis (MVA) methods have been successful in complex structure, but they are challenged by subsalt velocity estimation.
- Wave-equation MVA (WEMVA) can be accomplished while preserving the work-flow of conventional ray-based MVA methods.
- The velocity function estimated by the use of our WEMVA method results in flatter ADCIGS and more coherent reflectors, even if we started from a high-quality velocity function that was estimated with ray-based MVA.

- Ray-based Migration Velocity Analysis (MVA) methods have been successful in complex structure, but they are challenged by subsalt velocity estimation.
- Wave-equation MVA (WEMVA) can be accomplished while preserving the work-flow of conventional ray-based MVA methods.
- The velocity function estimated by the use of our WEMVA method results in flatter ADCIGS and more coherent reflectors, even if we started from a high-quality velocity function that was estimated with ray-based MVA.
- Poor illumination prevents the extraction of reliable velocity information from ADCIGs at every location, and thus presents a challenge also for WEMVA.

Acknowledgments

BP and ExxonMobil, and Frederic Billette at BP, for Deep Water GOM data.

***** Total for North Sea data set.

SMAART JV and J. Paffenholz (BHP) for the Sigsbee data set.

*****SEP sponsors for financial support.

