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ABSTRACT
We present a migration velocity analysis (MVA) method based on wavefield extrapo-
lation. Similarly to conventional MVA, our method aims at iteratively improving the
quality of the migrated image, as measured by the flatness of angle-domain common-
image gathers (ADCIGs) over the aperture-angle axis. However, instead of inverting
the depth errors measured in ADCIGs using ray-based tomography, we invert ‘image
perturbations’ using a linearized wave-equation operator. This operator relates per-
turbations of the migrated image to perturbations of the migration velocity. We use
prestack Stolt residual migration to define the image perturbations that maximize the
focusing and flatness of ADCIGs.

Our linearized operator relates slowness perturbations to image perturbations,
based on a truncation of the Born scattering series to the first-order term. To avoid
divergence of the inversion procedure when the velocity perturbations are too large
for Born linearization of the wave equation, we do not invert directly the image per-
turbations obtained by residual migration, but a linearized version of the image per-
turbations. The linearized image perturbations are computed by a linearized prestack
residual migration operator applied to the background image. We use numerical ex-
amples to illustrate how the backprojection of the linearized image perturbations, i.e.
the gradient of our objective function, is well behaved, even in cases when backpro-
jection of the original image perturbations would mislead the inversion and take it in
the wrong direction.

We demonstrate with simple synthetic examples that our method converges even
when the initial velocity model is far from correct. In a companion paper, we illustrate
the full potential of our method for estimating velocity anomalies under complex salt
bodies.

I N T R O D U C T I O N

Seismic imaging is a two-step process: velocity estimation and
migration. As the velocity function becomes more complex,
the two steps become increasingly interdependent. In complex
depth imaging problems, velocity estimation and migration
are applied iteratively in a loop. To ensure that this iterative
imaging process converges to a satisfactory model, it is crucial
that the migration and the velocity estimation are consistent
with each other.
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Kirchhoff migration often fails in areas of complex geology,
such as subsalt, because the wavefield is severely distorted by
lateral velocity variations leading to complex multipathing. As
the shortcomings of Kirchhoff migration have become appar-
ent (O’Brien and Etgen 1998), there has been renewed inter-
est in wave-equation migration, and computationally efficient
3D prestack depth migration methods have been developed
(Biondi and Palacharla 1996; Biondi 1997; Mosher, Foster and
Hassanzadeh 1997). However, no corresponding progress has
been made in the development of migration velocity analysis
(MVA) methods based on the wave equation. We aim at filling
this gap by presenting a method that, at least in principle, can
be used in conjunction with any downward-continuation mi-
gration method. In particular, we have been applying our new
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methodology to downward continuation based on the double
square root (Yilmaz 1979; Claerbout 1985; Popovici 1996) or
common-azimuth (Biondi and Palacharla 1996) equations.

As in the case of migration, wave-equation MVA (WEMVA)
is intrinsically more robust than ray-based MVA because
it avoids the well-known instability problems that rays en-
counter when the velocity model is complex and has sharp
boundaries. The transmission component of finite-frequency
wave propagation is mostly sensitive to the smooth varia-
tions in the velocity model. Consequently, WEMVA produces
smooth, stable velocity updates. In most cases, no smoothing
constraints are needed to ensure stability in the inversion. In
contrast, ray-based methods require strong smoothing con-
straints to avoid divergence. These smoothing constraints of-
ten reduce the resolution of the inversion that would otherwise
be possible, given the characteristics of the data (e.g. geometry,
frequency content, signal-to-noise ratio, etc.). Eliminating, or
substantially reducing, the amount of smoothing increases the
resolution of the final velocity model.

A well-known limitation of wave-equation tomography or
MVA is represented by the linearization of the wave equa-
tion based on truncation of the Born scattering series to the
first-order term. This linearization is hereafter referred to as
the Born approximation. If the phase differences between the
modelled and recorded wavefields are larger than a fraction
of the wavelet, then the assumptions made under the Born
approximation are violated and the velocity inversion meth-
ods diverge (Woodward 1992; Pratt 1999; Dahlen, Hung and
Nolet 2000; Hung, Dahlen and Nolet 2000). Overcoming
these limitations is crucial for a practical MVA tool. This goal
is easier to accomplish with methods that optimize an objec-
tive function that is defined in the image space (e.g. differential
semblance optimization and our WEMVA) than with methods
that optimize an objective function that is defined in the data
space.

Our method employs the Born approximation to linearize
the relationship between the velocity model and the image.
However, we ‘manipulate’ the image perturbations to ensure
that they are consistent with the Born approximation, and we
replace the image perturbations with their linearized counter-
parts. We compute image perturbations by analytically lin-
earizing our image-enhancement operator (e.g. prestack resid-
ual migration) and applying this linearized operator to the
background image. Therefore, the linearized image pertur-
bations are approximations to the non-linear image pertur-
bations that are caused by arbitrary changes of the velocity
model. Since we linearize both operators (migration and resid-
ual migration) with respect to the amplitude of the images,

the resulting linear operators are consistent with each other.
Therefore, the inverse problem converges for a wider range of
velocity anomalies than the one implied by the Born approxi-
mation.

Our method is more similar to conventional MVA than
other proposed wave-equation methods for estimating the
background velocity model (Noble, Lindgren and Tarantola
1991; Bunks et al. 1995; Forgues, Scala and Pratt 1998)
because it maximizes the migrated image quality instead of
matching the recorded data directly. We define the quality
of the migrated image by the flatness of the migrated angle-
domain common -image gathers (ADCIGs) along the aperture-
angle axis (Sava and Fomel 2003). In this respect, our method
is related to differential semblance optimization (DSO) (Symes
and Carazzone 1991; Shen 2003) and multiple migration fit-
ting (Chavent and Jacewitz 1995). With respect to DSO, our
method has the advantage that at each iteration it optimizes an
objective function that rewards flatness in the ADCIGs glob-
ally (for all the angles at the same time), and not just locally
as DSO does (minimizing the discrepancies between the image
at each angle and the image at the adjacent angles). We sug-
gest that this characteristic should speed up the convergence,
although we have no formal proof of our assertion.

This paper describes the theoretical foundations of
wave-equation MVA with simple examples illustrating the
main concepts and techniques. In a companion paper (Sava
and Biondi 2004), we present an application of wave-equation
MVA to the challenging problem of velocity estimation under
salt. Here, we begin by discussing wavefield scattering in the
context of one-way wavefield extrapolation methods. Next,
we introduce the objective function for optimization and fi-
nally, we address the limitations introduced by the Born ap-
proximation. Two appendices detail the wave-equation MVA
process and the computation of linearized image perturba-
tions.

R E C U R S I V E WAV E F I E L D E X T R A P O L AT I O N

Imaging by wavefield extrapolation (WE) is based on recursive
continuation of the wavefields U from a given depth level to
the next by means of an extrapolation operator E, i.e.

Uz+�z = Ez [Uz] . (1)

Here and hereafter, we use the following notation conven-
tions: A[x] denotes operator A applied to x, and f (x) denotes
function f of argument x. The subscripts z and z + �z indi-
cate quantities corresponding to the depth levels z and z + �z,
respectively.
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The recursive equation (1) can also be explicitly written in
matrix form as

1 0 0 · · · 0 0
−E0 1 0 · · · 0 0

0 −E1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −En−1 1





U0

U1

U2

...
Un


=



D0

0
0
...
0


or in a more compact notation as

(1 − E)U = D, (2)

where the vector D represents data, U represents the extrapo-
lated wavefield at all depth levels, E denotes the extrapolation
operator and 1 is the identity operator. Here and hereafter, we
make the distinction between quantities measured at a partic-
ular depth level (e.g. Uz), and the corresponding vectors de-
noting such quantities at all depth levels (e.g. U).

After wavefield extrapolation, we obtain an image by ap-
plying, at every depth level, an imaging operator (Iz) to the
extrapolated wavefield Uz:

Rz = Iz [Uz] , (3)

where Rz denotes the image at some depth level. A commonly
used imaging operator Iz involves summation over the tempo-
ral frequencies. We can write the same relationship in compact
matrix form as

R = IU, (4)

whereR denotes the image, and I denotes the imaging operator
which is applied to the extrapolated wavefield U at all depth
levels.

If a perturbation of the wavefield is applied at some depth
level, �U can be derived from the background wavefield by a
simple application of the chain rule of derivation to (1), i.e.

�Uz+�z = Ez [�Uz] + �Vz+�z, (5)

where �Vz+�z = �Ez [Uz] represents the scattered wavefield
generated at z + �z by the interaction of the wavefield Uz

with a perturbation of the velocity model at depth z. �Uz+�z

is the accumulated wavefield perturbation corresponding to
slowness perturbations at all levels above. It is computed by
extrapolating the wavefield perturbation from the level above
�Uz, plus the scattered wavefield at this level �Vz+�z.

Equation (5) is also a recursive equation which can be writ-
ten in matrix form as
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or in a more compact notation as

(1 − E) �U = �EU . (6)

The operator �E represents a perturbation of the extrapo-
lation operator E. The quantity �EU represents a scattered
wavefield, and is a function of the perturbation in the medium
given by the scattering relationships derived in Appendix A.
For the case of single scattering, we can write

�Vz+�z ≡ �Ez[Uz] = Ez[Sz(Ũz)[�sz]]. (7)

The expression for the total wavefield perturbation �U ob-
tained from (5) becomes

�Uz+�z = Ez [�Uz] + Ez[Sz(Ũz)[�sz]], (8)

which is also a recursive relationship that can be written in
matrix form as

1 0 0 · · · 0 0
−E0 1 0 · · · 0 0
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Figure 1 Comparison of image perturbations obtained as the difference between two migrated images (b) and as the result of the forward
WEMVA operator applied to the known slowness perturbation (c). (a) shows the background image corresponding to the background slowness.
Since the slowness perturbation is small (0.1%), the image perturbations in (b) and (c) are practically identical.

or in a more compact notation as

(1 − E) �U = ES�s. (9)

The vector �s denotes the slowness perturbation at all depths.
Finally, if we introduce the notation,

G = (1 − E)−1 ES, (10)

we can write a simple relationship between a slowness per-
turbation �s and the corresponding wavefield perturbation
�U :

�U = G�s. (11)

This expression describes wavefield scattering caused by the
interaction of the background wavefield with a perturbation
of the medium.

M I G R AT I O N V E L O C I T Y A N A LY S I S

Migration velocity analysis is based on estimating the veloc-
ity that optimizes certain properties of the migrated images. In
general, measuring such properties involves making a transfor-
mation after wavefield extrapolation to the migrated image,

using a function f , so that

Pz = f Iz[Uz], (12)

where I is the imaging operator applied to the extrapolated
wavefield U . In compact matrix form, we can write this rela-
tionship as

P = f (IU) . (13)

The image P is subject to optimization from which we derive
the velocity updates.

Two examples of transformation functions are:
� f (x) = x − t where t is a known target. A WEMVA method

based on this criterion optimizes

Pz = Iz [Uz] − Iz [Tz] , (14)

where Tz denotes the target wavefield. This is called a target

image fitting (TIF) method (Biondi and Sava 1999; Sava and
Fomel 2002).

� f (x) = Dx where D is a known operator. A WEMVA method
based on this criterion optimizes

Pz = Dz [Iz [Uz]] . (15)
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Figure 2 Comparison of slowness backprojections using the WEMVA operator applied to image perturbations computed as the difference
between two migrated images, (b) and (d), and as the result of the forward WEMVA operator applied to a known slowness perturbation, (c)
and (e). (a) shows the background image corresponding to the background slowness. Since the slowness perturbation is small (0.1%), the image
perturbations in (b) and (c) and the fat rays in (d) and (e) are practically identical.

If D is a differential semblance operator, this is called a
differential semblance optimization (DSO) method (Symes
and Carazzone 1991; Shen 2003).

In general, such transformations belong to a family of affine
functions that can be written as

Pz = Az[Iz[Uz]] − Bz[Iz[Tz]], (16)

or in compact matrix form as

P = AIU − BIT , (17)

where the operators A and B are known and take special forms
depending on the optimization criterion used. For example,

A = 1 and B = 1 for TIF, and A = D and B = 0 for DSO. 1
denotes the identity operator and 0 denotes the null operator.
With the definition in (16), we can write the objective function
J as

J (s) = 1
2

∑
z,m,h

|Pz|2 (18)

= 1
2

∑
z,m,h

|Az[Iz[Uz]] − Bz[Iz[Tz]]|2, (19)

where s is the slowness function, and z, m, h denote, respec-
tively, depth and the midpoint and offset vectors. In compact
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Figure 3 Comparison of image perturbations obtained as the difference between two migrated images (b) and as the result of the forward
WEMVA operator applied to the known slowness perturbation (c). (a) shows the background image corresponding to the background slowness.
Since the slowness perturbation is large (20%), the image perturbations in (b) and (c) are different from one another.

matrix form, we can write the objective function as

J (s) = 1
2

|AIU − BIT |2 . (20)

In the Born approximation, the total wavefield U is related
to the background wavefield Ũ by the linear relationship,

U ≈ Ũ + G�s. (21)

If we can replace the total wavefield in the objective function
(20), we obtain

J (s) = 1
2

|AIŨ − BIT + AIG�s|2. (22)

Equation (22) describes a linear optimization problem, in
which we obtain �s by minimizing the objective function,

J (�s) = |�R − L�s|2, (23)

where �R = −(AIŨ − BIT ) and L = AIG. The operator L
is constructed, based on the Born approximation (Lo and
Inderweisen 1994), and involves the pre-computed back-
ground wavefield through the background medium. The im-
plementation details for operator L are discussed in Appendix

A. The convex optimization problem defined by the lineariza-
tion in (22) can be solved using standard conjugate-gradient
techniques.

Since, in most practical cases, the inversion problem is not
well conditioned, we need to add constraints on the slowness
model via a regularization operator. In these situations, we use
the modified objective function,

J (�s) = |�R − L�s|2 + ε2 |A�s|2 . (24)

Here, A is a regularization operator, and ε is a scalar param-
eter that balances the relative importance of the data residual
(�R − L�s) and the model residual (A�s).

We illustrate our method with a simple model, shown in
Fig. 1. The velocity is constant and the data are represented
by an impulse in space and time. We consider two slowness
models: one regarded as the correct slowness sc and the other
as the background slowness s̃. The two slownesses are related
by a scaling factor ρ = sc/s̃. For this example, we take ρ =
1.001 to ensure that we do not violate the requirements im-
posed by the Born approximation.

Next, we migrate the data with the background slow-
ness s̃ and store the extrapolated wavefield at all depth
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Figure 4 Comparison of slowness backprojections using the WEMVA operator applied to image perturbations computed as the difference
between two migrated images, (b) and (d), and as the result of the forward WEMVA operator applied to a known slowness perturbation, (c)
and (e). (a) shows the background image corresponding to the background slowness. Since the slowness perturbation is large (20%), the image
perturbations in panels (b) and (c) and the fat rays in (d) and (e) are different from one another. (d) shows the typical behaviour associated with
the breakdown of the Born approximation.

levels. Figure 1(a) shows the image corresponding to the
background slowness R̃. We also migrate the data with the
correct slowness and obtain a second image Rc. A simple
subtraction of the two images gives the image perturbation
in Fig. 1(b).

Finally, we compute an image perturbation by a simple ap-
plication of the forward WEMVA operator, defined in (23),
to the slowness perturbation �s = sc − s̃ (Fig. 1c). Since the
slowness perturbation is very small, the requirements imposed
by the Born approximation are fulfilled, and the two images
in Figs 1(b) and 1(c) are identical. The image perturbations
are phase-shifted by 90◦ relative to the background image.

A simple illustration of the adjoint operator L, defined in
(23), is shown in Fig. 2. Figure 2(a) shows the background
image, Figs 2(b) and 2(c) show image perturbations, and
Figs 2(d) and 2(e) show slowness perturbations. We extract
a small subset of each image perturbation to create the im-
pulsive image perturbations shown in Figs 2(b) and 2(c).
Figures 2(b) and 2(d) correspond to the image perturbation
computed as an image difference, while Figs 2(c) and 2(e) cor-
respond to the image perturbation computed with the forward
WEMVA operator. In this way, our data correspond to a single
point on the surface, and our image perturbation corresponds
to a single point in the subsurface. By backprojecting the image
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∆ ρ

Born approximation

Linearized

perturbation (eq. 27)
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Difference
image
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Figure 5 A schematic description of our method for computing lin-
earized image perturbations, showing images on the vertical axis and
function of velocity on the horizontal axis. The dashed line corre-
sponds to image changes described by residual migration with various
values of the velocity ratio parameter ρ. The straight solid line corre-
sponds to the linearized image perturbation computed with an image
gradient operator applied to the reference image, scaled at every point
by the difference of the velocity ratio parameter �ρ.

perturbations in Figs 2(b) and 2(c) with the adjoint WEMVA
operator, we obtain identical ‘fat rays’ shown in Figs 2(d) and
2(e), respectively.

I M A G E P E RT U R B AT I O N B Y
R E S I D U A L M I G R AT I O N

Prestack Stolt residual migration (PSRM) can be used to create
image perturbations (Sava 2003). Given an image migrated
with the background velocity, we can construct another image
by using an operator K, a function of the parameter ρ that
represents the ratio of the original and modified velocities.
The improved velocity map is not known explicitly, although
it is described indirectly by the ratio map of the two velocities:

R = K (ρ)
[
R̃

]
. (25)

The simplest form of an image perturbation can be con-
structed as a difference between an improved image R and
the background image R̃, given by

�R = R − R̃. (26)

The main challenge with this method of constructing image
perturbations for WEMVA is that the two images can be
phase-shifted too much with respect to one another. Thus,
we violate the requirements of the Born approximation and
risk subtracting images that are out of phase. This prob-
lem is common in all wavefield-based velocity analysis or
tomographic methods using the Born approximation
(Woodward 1992; Pratt 1999; Dahlen et al. 2000).

A simple illustration of the problem is shown in Figs 3 and
4. This example is similar to the one shown in Figs 1 and 2, ex-
cept that the velocity ratio linking the two slownesses is much
larger, i.e. ρ = 1.20. In this case, the background and correct
images are out of phase, and when we subtract them we ob-
tain two distinct events, as shown in Fig. 3(b). In contrast, the
image perturbation obtained by the forward WEMVA opera-
tor (Fig. 3c) shows only one event, as in the previous exam-
ple. The only difference between the image perturbations in
Figs 1(c) and 3(c) is a scaling factor related to the magnitude
of the slowness anomaly.

Figure 4 shows fat rays for each kind of image perturba-
tion: Figs 4(b) and 4(d) show the image perturbations ob-
tained by subtraction of the two images, and Figs 4(c) and
4(e) show the image perturbation obtained by applying the
forward WEMVA operator. The fat rays corresponding to the
ideal image perturbation (Figs 4c and 4e) do not change from
the previous example, except for the scaling factor. However,
in the case when we use image differences (Figs 4b and 4d),
we violate the requirements of the Born approximation. In
this case, we see slowness backprojections of opposite sign
relative to the true anomaly, and we also see two characteris-
tic migration ellipsoidal side-events, indicating cycle skipping
(Woodward 1992).

We address this problem by employing linearized image per-
turbations. If we define �ρ = ρ − 1, we can write a discrete
version of the image perturbation, using a Taylor series expan-
sion of (25), as

�R ≈ K′∣∣
ρ=1 [R̃]�ρ, (27)

where the ′ sign denotes derivation relative to the velocity ra-
tio parameter ρ. Image perturbations computed with (27) are
known as linearized image perturbations. Figure 5 illustrates
this procedure.

The linearized PSRM operator K′|ρ=1 can be computed an-
alytically, as described in Appendix B. With this operator, we
can compute linearized image perturbations in two steps. First,
we run residual migration for a large range of velocity ratios
and at every image point we pick the ratio which maximizes
the flatness of the gathers. We then apply the operator in (27)
to the background image R̃ and scale the result with the picked
�ρ.

The linearized image perturbations approximate the non-
linear image perturbations caused by arbitrary velocity model
changes. They are based on the gradient of the image change
relative to a velocity model change, and are less restrictive than
the Born approximation limits.
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Figure 6 Comparison of slowness backprojections using the WEMVA operator applied to image perturbations computed with the differential
image perturbation operator, (b) and (d), and as the result of the forward WEMVA operator applied to a known slowness perturbation, (c) and
(e). (a) shows the background image corresponding to the background slowness. Despite the fact that the slowness perturbation is large (20%),
the image perturbations in (b) and (c) and the fat rays in (d) and (e) are practically identical, both in shape and in magnitude.

Figure 6 shows how the linearized image perturbation
methodology applies to the synthetic example used above. All
panels are similar to those in Figs 2 and 4, except that Figs 6(b)
and 6(d) correspond to linearized image perturbations, instead
of simple image perturbations. Again, we compare image and
slowness perturbations with the ideal perturbations obtained
by the forward WEMVA operator (Figs 6c and 6e). Both the
image and slowness perturbations are identical in shape and
magnitude.

Inversion example

Our next example concerns linearized image perturbations
computed for prestack images. We use another simple model

with flat reflectors and constant velocity. The image perturba-
tion methodology is identical to the one outlined in the pre-
ceding paragraphs. The main point of this example is to illus-
trate our methodology in a situation where the requirements
of the first-order Born approximation are clearly violated. In
this case, the slowness perturbation is 50% of the background
slowness.

Figure 7 shows representative common-image gathers in the
angle domain (Sava and Fomel 2003) for (a) the background
image, (b) the correct image, (c) the image perturbation ob-
tained as a difference of the two images, (d) the image per-
turbation obtained using the forward WEMVA operator, and
(e) the linearized image perturbation. Figures 7(d) and 7(e)
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Figure 7 Comparison of common-image gathers for image perturbations obtained as the difference between two migrated images (c), as the
result of the forward WEMVA operator applied to the known slowness perturbation (d), and as the result of the differential image perturbation
operator applied to the background image (e). (a) shows the background image corresponding to the background slowness, and (b) shows an
improved image obtained from the background image using residual migration. Despite the fact that the slowness perturbation is large (50%),
the image perturbations in (b) and (c) are identical within numerical accuracy.

Figure 8 WEMVA applied to a simple model with flat reflectors. (a) The background image; (b) the image updated after one non-linear iteration;
(c) the image computed with the correct slowness.

Figure 9 WEMVA applied to a simple model with flat reflectors. (a) The zero-offset of the image perturbation; (b) the slowness update after the
first non-linear iteration; (c) the convergence curve of the first linear iteration.
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are identical within numerical accuracy, indicating that our
methodology can be successfully employed to create correct
image perturbations well beyond the limits of the first-order
Born approximation.

Finally, we apply our migration velocity analysis algorithm
to the example in Fig. 7. First, we compute the background
wavefield represented by the background image (Figs 7a and
8a). Next, we compute the linearized image perturbation,
shown in Fig. 9(a) (stack) and in Fig. 7(e) (angle gather from
the middle of the image).

From this image perturbation, we invert for the slowness
perturbation (Fig. 9b). We stop the inversion after 19 lin-
ear iterations when the data residual has stopped decreasing
(Fig. 9c). The slowness updates occur in the upper half of
the model. Since no reflectors exist in the bottom part of the
model, no slowness update is computed for this region.

Finally, we remigrate the data using the updated slowness
and obtain the image in Fig. 8(b). For comparison, Fig. 8(c)
shows the image obtained after migration with the correct
slowness. The two images are identical in the upper half where
we have updated the slowness model. Further updates to the
model would require more non-linear iterations.

C O N C L U S I O N S

We present a new migration velocity analysis method using
wavefield extrapolation techniques that can address the chal-
lenges posed by velocity estimation in complicated media with
sharp contrasts and fine-scale features. Our method is formu-
lated in the migrated image space, with an objective func-
tion aimed at improving the image quality. The method is
based on a linearization of the downward-continuation op-
erator that relates perturbations of slowness models to per-
turbations of migrated images. Since our method is based on
finite-difference extrapolation of band-limited waves, it nat-
urally takes into account the multipathing that characterizes
wave propagation in complex environments with large and
sharp velocity contrasts. It also takes into account the full
wavefield information, and not only selectively picked trav-
eltimes, as is currently the case in state-of-the-art traveltime
tomography.

We use prestack Stolt residual migration to define image
perturbations by maximizing the focusing and the flatness of
angle-domain common-image gathers. In general, the image
perturbations computed with this method can be too different
from the background image, and we are in danger of sub-
tracting images that are not in phase, violating our first-order
Born approximation assumption. We avoid divergence of the

inversion procedure when the velocity perturbations are too
large, by not inverting directly the image perturbations ob-
tained by residual migration, but by inverting linearized ver-
sions of them. Thus, we achieve a method which is robust
with respect to large model perturbations, a crucial step for a
practical MVA method.

We illustrate our method with simple numerical examples,
and show that our method is well behaved even for large slow-
ness perturbations, well beyond the limits of the first-order
Born approximation. A companion paper (Sava and Biondi
2004) illustrates the full potential of our method with more
complex examples.
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frequency traveltimes–I. Theory. Geophysical Journal International
141, 157–174.

Forgues E., Scala E. and Pratt R.G. 1998. High-resolution velocity
model estimation from refraction and reflection data. 68th SEG
meeting, New Orleans, USA, Expanded Abstracts, 1211–1214.

de Hoop M., le Rousseau J.H. and Wu R.S. 1996. Generalization
of the phase-screen approximation for the scattering of acoustic
waves. Wave Motion 31, 43–70.

Huang L.Y., Fehler M.C. and Wu R.S. 1999. Extended local Born
Fourier migration method. Geophysics 65, 1524–1534.

Hung S.H., Dahlen F.A. and Nolet G. 2000. Fréchet kernels for finite
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A P P E N D I X A

The scattering operator

Imaging by wavefield extrapolation (WE) is based on recursive
continuation of wavefields U from a given depth level to the
next by means of an extrapolation operator E. Within every
extrapolation slab, we can write

Uz+�z = Ez [Uz] , (A1)

where Uz is the wavefield at the top of the slab, and Uz+�z is the
wavefield at the bottom of the slab. The operator E involves
a spatially dependent phase shift described by

Ez[] = eikz�z, (A2)

where kz is the depth wavenumber and �z is the wavefield
extrapolation depth step. (A1) corresponds to the analytical
solution of the differential equation,

U ′(z) = ikzU(z), (A3)

which describes depth extrapolation of monochromatic plane
waves (Claerbout 1985). The ’ sign represents a derivative with
respect to the depth z. The depth wavenumber kz is given by
the one-way wave equation, also known as the single square
root equation,

kz =
√

ω2s2 − |k|2, (A4)

where ω is the temporal frequency, s is the laterally variable
slowness of the medium and k is the horizontal wavenumber.
We use s and k in (A4) for conciseness, although such a nota-
tion is not mathematically correct in laterally varying media.

Since downward continuation by Fourier-domain phase
shift can be applied for slowness models that vary only with
depth, we need to split the operator E into two parts: a con-
stant slowness continuation operator applied in the (ω − k)
domain, which accounts for the propagation in depth, and a
screen operator applied in the (ω − x) domain, which accounts
for the wavefield perturbations due to the lateral slowness
variations. In essence, we approximate the vertical wavenum-
ber kz with its constant slowness counterpart kzo, corrected
by a term describing the spatial variability of the slowness
function (Ristow and Rühl 1994).

Furthermore, we can separate the depth wavenumber kz

into two components, one corresponding to the background
medium k̃z and one corresponding to a perturbation of the
medium:

kz = k̃z + �kz. (A5)

In a first-order approximation, we can relate these two depth
wavenumbers by a Taylor series expansion:

kz ≈ k̃z + dkz

ds

∣∣∣∣∣
s=s̃

(s − s̃) (A6)

≈ k̃z + ω
ωs̃√

ω2s̃2 − |k|2
(s − s̃), (A7)

where s(z, x) is the slowness corresponding to the perturbed
medium and s̃(z) is the background slowness.

Within any depth slab, we can extrapolate the wavefield
from the top, either in the perturbed or in the background
medium. The wavefields at the bottom of the slab, Ũz+�z =
Uzeik̃z�z and Uz+�z = Uzeikz�z, are related by the relationship:

Uz+�z ≈ Ũz+�zei�kz�z. (A8)

Equation (A8) is a direct statement of the Rytov approxima-
tion (Lo and Inderweisen 1994), since the wavefields at the
bottom of the slab correspond to different phase shifts related
by a linear equation.
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The wavefield perturbation �V at the bottom of the slab is
obtained by subtracting the background wavefield Ũ from the
perturbed wavefield U :

�Vz+�z ≈ Uz+�z − Ũz+�z (A9)

≈ (
ei�kz�z − 1

)
Ũz+�z (A10)

≈ eik̃z�z

(
ei dkz

ds

∣∣∣
s=s̃

�sz�z − 1
)
Ũz, (A11)

where �s = s − s̃ is the perturbation between the correct and
the background slownesses at depth z.

In operator form, we can write

�Vz+�z = Ez
[
Rz

(
Ũz

)
[�sz]

]
, (A12)

where Ez represents the downward-continuation operator at
depth z, and Rz represents the Rytov scattering operator, which
is dependent on the background wavefield Ũz and the slowness
perturbation �sz at that depth level, and is given by

Rz
(
Ũz

)
[�sz] =

(
ei dkz

ds

∣∣∣
s=s̃

�sz�z − 1
)
Ũz. (A13)

In this approximation, we assume that the scattered wave-
field is generated only by the background wavefield and we
ignore all multiscattering effects. For the Born approxima-
tion (Lo and Inderweisen 1994), we further assume that the
wavefield differences are small, so that we can linearize the ex-
ponential according to the relationship ei�φ ≈ 1 + i�φ. With
this new approximation, the expression for the downward-
continued scattered wavefield becomes

�Vz+�z ≈ eik̃z�z

(
i

dkz

ds

∣∣∣∣
s=s̃

�sz�z
)
Ũz. (A14)

In operator form, we can write the scattered wavefield
at z as

�Vz+�z = Ez[Sz(Ũz)[�sz]], (A15)

where Ez represents the downward-continuation operator at
depth z, and Sz represents the Born scattering operator, which
is dependent on the background wavefield and operates on the
slowness perturbation at that depth level.

The linear scattering operator S is a mixed-domain opera-
tor similar to the extrapolation operator E. This operator is
related to the background wavefield and background slowness
by the expression:

Sz(Ũz)[�sz] ≈ i
dkz

ds

∣∣∣∣∣
s=s̃

�z�szŨz. (A16)

In practice, we can implement the scattering operator de-
scribed by (A16) in different ways:
� One option is to implement the Born operator (A16) in the

space domain using an expansion (Huang, Fehler and Wu
1999) such as

dkz

ds

∣∣∣∣∣
s=s̃

≈ ω

(
1 + 1

2

[
|k|
ωs̃

]2

+ 3
8

[
|k|
ωs̃

]4

+ 5
16

[
|k|
ωs̃

]6

+ 35
128

[
|k|
ωs̃

]8

+ . . .

)
. (A17)

In practice, the summation of the terms in (A17) involves
forward and inverse fast Fourier transforms (FFT and IFT)
and multiplication in the space domain with the spatially
variable s̃, i.e.

�Vz = iω�z�sz

[
1 +

∑
j=1,...

c j
1

(ωs̃)2 j
IFT[|k|2 jFFT[Ũz]]

]
,

(A18)

where c j = 1
2 , 3

8 , . . . .
� Another option is to implement the Born operator (A16) in

the Fourier domain relative to the constant reference slow-
ness in any individual slab. In this case, we can write

dkz

ds

∣∣∣∣∣
s=s0

≈ ω
ωso√

ω2so
2 − (1 − iη)2|k|2

, (A19)

where η is a damping parameter which avoids division by
zero (de Hoop, le Rousseau and Wu 1996). In practice, the
implementation of (A19) involves FFT and IFT, i.e.

�Vz = i�z IFT

[
dkz

ds

∣∣∣∣∣
s=s0

FFT[Ũz�sz]

]
. (A20)

A P P E N D I X B

Linearized image perturbations

A linearized image perturbation is computed using a residual
migration operator K in a relationship such as

�R ≈ K
′ |ρ=1

[
R̃

]
�ρ. (B1)

The operator K depends on the scalar parameter ρ which is
the ratio of the velocity to which we residually migrate and
the background velocity. The background image corresponds
to ρ = 1.

Using the chain rule of differentiation, we can write

�R ≈ dK
dkz

dkz

dρ

∣∣∣∣
ρ=1

[
R̃

]
�ρ, (B2)

where kz is the depth wavenumber defined for PSRM.
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Equation (B2) offers the possibility of building the image
perturbation directly, by computing three elements: the deriva-
tive of the image with respect to the depth wavenumber and
two weighting functions, one for the derivative of the depth
wavenumber with respect to the velocity ratio parameter (ρ),
and the other one for the magnitude of the �ρ perturbation
from the reference to the improved image.

Firstly, the image derivative in the Fourier domain, dK
dkz

, is
straightforward to compute in the space domain as

dK
dkz

∣∣∣∣
ρ=1

[
R̃

] = −izR̃. (B3)

The derivative image is simply the imaginary part of the mi-
grated image, scaled by depth.

Secondly, we can obtain the weighting representing the
derivative of the depth wavenumber with respect to the veloc-
ity ratio parameter, dkz

dρ
|ρ=1, starting from the double square

root equation written for prestack Stolt residual migration
(Sava 2003):

kz = kzs + kzr

= 1
2

√
ρ2µ2 − |ks |2 + 1

2

√
ρ2µ2 − |kr |2,

where µ is given by the expression,

µ2 =
[
4 (kzo)2 + (

kr − ks
)2

] [
4 (kzo)2 + (

kr + ks
)2

]
16kzo

2 . (B4)

The derivative of kz with respect to ρ is

dkz

dρ
= ρ

(
µ2

4kzs
+ µ2

4kzr

)
, (B5)

therefore

dkz

dρ

∣∣∣∣
ρ=1

= µ2

2
√

µ2 − |ks |2
+ µ2

2
√

µ2 − |kr |2
. (B6)
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