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Abstract

Exact results are derived relating the various bulk moduli (frame, unjacketed, and pore) and
heat capacity of inhomogeneous fluid-saturated porous media to the pertinent thermal expan-
sion coeflicients and component moduli when only two porous solid constituents are present.
The porous solids need not be space filling or in perfect welded contact, so these results apply to
materials containing some voids or cracks interspersed between the two constituents in addition
to the interior voids associated with their pores. The key ratio of fluid pressure to temperature
change producing uniform expansion or contraction is shown to be independent of porosity.



Using arguments similar to those used by Cribb! and Schulgasser? for thermoelasticity,
Berryman and Milton® have recently shown that exact relations may be obtained for a porous
material composed of only two porous constituents that completely fill the volume of the com-
posite (except for the pore space within themselves). Although these results dramatically
improve our modeling capability compared to that of Gassmann’s equation? (derived assuming
only a single solid constituent is present), the assumption that the two porous components must
be volume filling is very restrictive and precludes using this analysis for the common situation
in rocks and other porous materials where other voids and cracks are present. It is the purpose
of this paper to point out that, by introducing another field (temperature), we can obtain exact
results for two constituents plus voids, thus eliminating this unpleasant restriction imposed
by the previous approach. This idea is similar to Schulgasser’s approach to analyzing three
component polycrystalline composites.?

For isotropic materials and hydrostatic pressure variations, the three independent variables
in linear thermomechanics of porous media are the confining (external) pressure p., the fluid
(pore) pressure ps, and the temperature §. The differential pressure pg = p. — py is often used
to eliminate the confining pressure. The equations of the fundamental dilatations are
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for the fluid volume V}. Equation (1) serves to define the various constants of the porous solid,
such as the drained frame bulk modulus K, the unjacketed bulk modulus K, and the coefficient
of linear thermal expansion « for the composite frame. Similarly, (3) defines the bulk modulus
K¢ and linear thermal expansion coefficient o of the pore fluid. Although reciprocity® shows
that K, = ¢K/(1 — K/K,) where ¢ is the porosity, the remaining bulk modulus Ky in (2) is
independent of the others and (with rare exceptions®) has seldom been estimated and never
been measured for composite porous materials such as rocks. The thermal expansion coefficient
ay for the pore space has been introduced previously by McTigue’, but no measured values of
this coefficient are available.

Treating ép.,ops, and 66 as the independent variables in our thermomechanical theory, we
define the dependent variables ée = 6V/V, 6( = (6Vy — 6Vy)/V, and és, which are respec-
tively the total volume dilatation, the increment of fluid content, and the increment of entropy.
Introducing the combination of moduli ¢ = 1 — K/K,, we find the general relations may be
expressed by
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The constant M is related to the other moduli by
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The heat capacity at constant pressure for the fluid is cg,f ) and for the composite frame is c,,
while the ambient temperature is 6. The first equation in (4) is just a restatement of (1). The
second equation follows immediately from (2) and (3). The third equation follows from the
definition of the entropy®? and reciprocity, since the matrix in (4) must be both symmetric and
nonnegative.

Now the unjacketed modulus can be related to the thermal expansion coeflicient and the
constituents’ properties. Suppose a composite porous medium is composed of two types of
porous solid (A,B) occupying volume fractions vy = V(4 /V and vg = V{B) /V, respectively.
The porosities of these two constituents are ¢(4) and ¢(B), at least one of which must be
nonzero and composed of connected pores. The drained frame moduli of the constituents are
K™ and K(B) while the material (or grain) moduli are KT(nA) and KT(nB). The thermal expansion
coefficients of the constituent grains (and therefore also of the frames and pores) are o{4) and
o(B). The heat capacities at constant pressure for the constituents are C;A) and céB). These
two constituents may not fill up the entire volume, so the volume fraction of cracks or voids is
given by vo = 1 —v4 —vp. Consider the gedanken experiment in the unjacketed, nonisothermal
configuration (6pg = 0,860 # 0) such that the relative change in the volumes V{4, V(B) of the
constituents are the same and therefore also equal® to that of the total volume V. Then, we
have the set of equalities
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It follows that these equalities are satisfied if the changes of these fields have the ratio
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These relations determine K in terms of o together with the constituents’ moduli Kﬁf), KT(HB)
and thermal expansion coefficients a{?), o(B), If the bulk moduli of the constituents are the
same So K,(f) = K,(f), then clearly the unjacketed modulus satisfies K, = Kf;{‘) regardless of
the values of the thermal expansion coeflicients.

For the combination of éps and 66 given by (7), the porosity of the composite does not
change. In fact, changes in p; and 6 do not induce changes in porosity for either constituent



and, since the overall deformation takes the form of uniform swelling or shrinking, ¢ is constant.
Thus,
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Combining the result (7) with (8), we find
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In the limit of equal constituent bulk moduli, it is again clear that Ky = K, = K,(f) = K1(,LB)
regardless of the values of the as. The result (9) could also have been obtained by noting that
6C in (4) equals the volume average of the fluid increments in the three types of constituents.
Although instructive, this approach is much less efficient at producing the desired result (9)
than the derivation presented here.

The increment of entropy 6s may also be computed as the average of the constituent en-
tropies. Using this approach, we find that the effective heat capacity c, of the porous frame is
determined by
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where the average (:), is over the solid volume so, for example,
(cp)y = [va(1 = o) + v (1 = 6P)P] /(1 - ). (11)

Note that (10) reduces correctly to the result of Rosen and Hashin!® when the porosity ¢ — 0.

Various other exact results may be obtained using standard arguments from thermodynam-
ics. For example, consider the limit of constant total volume (fe = 0) when the porous frame
is drained of fluid. Then, it is easy to show that the heat capacity at constant volume is given
by ¢, = ¢, — 902 K6 /(1 — ¢), reducing to the standard result when ¢ — 0. This expression
and the equivalent results for the constituent heat capacities cE,A) and ch) may be used to
eliminate the cps in (11), thereby producing an exact expression for ¢, in terms of constituent
properties. Similarly, considering the adiabatic (§s = 0) limit when the frame is drained of
fluid, shows that the adiabatic bulk modulus of the porous frame is K, = Kcp/c,. Once exact
results are available for all these constants, then the Griineisen parameter v = 3aK/c, may
also be computed for the composite porous medium.

Two other results may be obtained in the undrained (and confined 6 = 0), isothermal
(60 = 0) limit. The undrained bulk modulus* is easily shown to be K, = K/(1 — 0 B) and the
undrained thermal expansion coefficient” is o, = o + ¢(a # — ag) B, where the factor B, given
by B=ocM/(K + c?M), is known as Skempton’s coefficient.!?

Using data from Refs. 12-14, some examples of typical values of the bulk moduli and thermal
expansion coefficients of minerals and metals are presented in Tables I and II. These values are
used to evaluate the inverse of the ratio in (7) for some pairs of minerals in Table ITI. We see
that this factor can have either sign. Recalling that 1 GPa = 1 kJ/cm® and assuming that the



difference (ay — @) ~ £5 x 107 °K 1, the correction to the pore bulk modulus (1/K,—1/K,)
can be negligible or it can be of the same order of magnitude as the unjacketed compressibility
1/K,. Thus, the importance of this correction term is strongly problem dependent. On the
other hand, the correction to the specific heat (c, — (cp),) is of about the same order as the
difference (c, — ¢,) and therefore generally negligible.

It is difficult to make any further quantitative progress until some of the remaining unknowns
in the equations such as o, oy, or Ky have been measured.

The results (7), (9), and (10) apply generally to two- component composite porous media
with or without additional voids or cracks present. The authors’ earlier exact results® for K,
and Ky in terms of the frame and grain moduli of the components are valid only when these
constituents are volume filling, so no additional voids or cracks were allowed. Thus, both sets of
formulas are valid in the absence of extra voids and cracks and, therefore, additional relations
between the various bulk moduli and the thermal expansion coefficients follow easily from the
results presented here in this special case.

Another advantage of the new formulas is that the key ratio found in (7) depends only on
material constants K, and a (that are commonly tabulated for minerals, metals, etc.) and —
most importantly — have no dependence on the porosity. By contrast, the earlier formulas® de-
pend on the frame moduli of the porous constituents, which depend implicitly on the porosities
and therefore are more difficult to tabulate.
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Table I. Density, isothermal bulk moduli, linear thermal expansion coefficients, and heat

capacities of various minerals at 20°C. Data from refs. 12 and 13.

Mineral Formula | p (g/cm3) | Km (GPa) | a (°K 1) | ¢, (J/g°K)
x1076

Corundum Al,Og 3.987 263.2 5.4 0.775

Lime CaO 3.345 113.6 12.7 0.751

Microcline | KAISi3Og 2.560 52.1 5.3 0.727

a-Quartz SiO; 2.648 37.1 11.7 0.742

Table II. Density, isothermal bulk moduli, linear thermal expansion coeflicients, and specific
heats of various metals at 25°C and a pressure of 100 kPa. Data from refs. 13 and 14.

Metal | Formula | p (g/cm®) | Kn (GPa) | @ (°K 1) | ¢, (J/g°K)
x107°
Iron Fe 7.87 166.7 11.8 0.449
Nickel Ni 8.91 185.2 13.4 0.444
Copper Cu 8.93 133.3 16.5 0.385
Silver Ag 10.50 99.0 18.9 0.235

Table III. Ratios of fluid pressure and temperature change [see Eq. (7)] resulting in uniform
expansion or contraction for various pairs of minerals. Values used are those displayed in
Tables I and II.

Mineral Pairs %6pf/60
(J/cm3.°K)
SiO2/Al; 03 0.272
Si04/Ca0 - 0.055
SiOs /KAISizOg 0.825
Cu/Ag 0923
Fe/Ni - 2.592
Ni/Cu 1.475




