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Abstract

Wave propagation in fluid-filled porous media is governed by Biot’s equations of poroelasticity.
Gassmann’s relation gives an exact formula for the poroelastic parameters when the porous
medium contains only one type of solid constituent. The present paper generalizes Gassmann’s
relation and derives exact formulas for two elastic parameters needed to describe wave propa-
gation in a conglomerate of two porous phases. The parameters were first introduced by Brown
and Korringa when they derived a generalized form of Gassmann’s equation for conglomerates.
These elastic parameters are the bulk modulus K associated with changes in the overall vol-
ume of the conglomerate and the bulk modulus Ky associated with the pore volume when the
fluid pressure (ps) and confining pressure (p) are increased, keeping the differential pressure
(pa = p—py) fixed. These moduli are properties of the composite solid frame (drained of fluid)
and are shown here to be completely determined in terms of the bulk moduli associated with
the two solid constituents, the bulk moduli of the drained conglomerate and the drained phases,
and the porosities in each phase. The pore structure of each phase is assumed uniform and
smaller than the grain size in the conglomerate. The relations found are completely independent
of the pore microstructure and provide a means of analyzing experimental data.

The key idea leading to the exact results is this: Whenever two scalar fields (in our problem
ps and pg) can be independently varied in a linear composite containing only two constituents,
there exists a special value «y of the increment ratio for these two fields corresponding to an
overall expansion or contraction of the medium with no change of relative shape. This fact
guarantees that a set of consistency relations exists among the constituent moduli and the
effective moduli, which then determine all but one of the effective constants. Thus, K, and K4
are determined in terms of the drained frame modulus K and the constituents’ moduli. Because
the composite is linear, the coefficients found for the special value of the increment ratio are also
the exact coeflicients for an arbitrary ratio. Since modulus K is commonly measured while the
other two are not, these exact relations provide a significant advance in our ability to predict
the response of porous materials to pressure changes.

It is also shown that additional results (such as rigorous bounds on the parameters) may be
easily obtained by exploiting an analogy between the equations of thermoelasticity and those
of poroelasticity. The method used to derive these results may also be used to find exact
expressions for three component composite porous materials when thermoelastic constants of
the components and the composite are known.

1 Introduction

The equations for elastic wave propagation through fluid-saturated porous media were first
derived by Biot (1956a). The main limitation to the use of these equations is that relationships
between material properties of the rock constituents and coefficients appearing in the equations
are still not well understood. The fundamental result of Gassmann (1951) shows how the
coefficients depend on compressibility of the saturating pore fluid. But rigorous application
of Gassmann’s result is limited by the assumption in its derivation that the porous frame
is composed of only one type of solid constituent. This situation seldom applies to natural
materials like rocks (where a sandstone, for example, often contains a substantial proportion
of clay in its pores), but it does apply to the behavior of artificial materials like sintered-



glass-bead packs. When applying Gassmann’s equation in situations where too many phases
are present, users must be creative in choosing appropriate effective moduli; this undesirable
freedom (imposed by the lack of a more versatile theory) therefore leads to some uncertainty in
the results. Brown and Korringa (1975) have generalized Gassmann’s result to show how the
coefficients must depend on fluid compressibility when more than one constituent is present, but
their result contains two new compressibilities that are unknown and have unknown dependence
on the constituent’s properties. Their result is therefore useful for analyzing experimental data,
but has not yet found use in predicting behavior of porous materials based on a knowledge of
the constituents’ properties.

Berryman (1992) has used single-scattering approximations to derive estimates of the co-
efficients in Biot’s equations of poroelasticity (1956a). These results are obtained by using
exact calculations of scattering coefficients for a spherical inclusion of one type of Biot material
imbedded in another (Berryman 1985). Three types of approximations were considered: an
average T-matrix approximation (ATA), a coherent potential approximation (CPA), and a dif-
ferential effective medium (DEM) approach. All three methods produce results consistent with
both the work of Gassmann and that of Brown and Korringa. They extend results obtained
earlier by Berryman (1986) using only the coherent potential approximation.

Although the approximations generated by Berryman (1992) have many appealing features,
any nontrivial exact result that could be obtained for the coefficients would be very valuable
both for direct applications and also for testing the range of validity of various approximations.
We obtain such exact results in this paper.

In Section 2, we present the equations of poroelasticity, including a discussion of differences
between Gassmann’s result for the coefficients and results of Brown and Korringa. Section 3
presents a simple derivation of exact results for the two parameters of Brown and Korringa
when the porous material contains only two types of porous solid. Section 4 shows that an
analogy between thermoelasticity and poroelasticity could have been used instead to derive one
of the formulas of Section 3, and furthermore that additional exact results such as rigorous
bounds on parameters may be obtained by exploiting the analogy. Section 5 examines several
limiting cases of the exact results and then summarizes our conclusions.

2 Equations of poroelasticity

Consider a porous medium whose connected pore space is saturated with a single-phase viscous
fluid. The fraction of total volume occupied by fluid is the porosity ¢, which is assumed to
be uniform on some appropriate length scale. Bulk modulus and density of the fluid are K
and py, respectively. Bulk and shear moduli of the drained porous frame are K and p. For
simplicity, we at first assume the frame is composed of a single granular constituent whose bulk
and shear moduli and density are K,,, ptm, and p,,. Frame moduli may be measured on drained
samples, or may be estimated using one of a variety of methods from the theory of composites
(Berryman 1980b,c; Berryman and Milton 1988).

For long wavelength disturbances (A >> h where h is a typical pore size) propagating
through such a porous medium, we define average values of local displacements in the solid and
also in the saturating fluid. The average displacement vector in the solid frame is u, while that
in the pore fluid is uy. A more useful way of quantifying fluid displacement is to introduce
average displacement of fluid relative to frame which is w = ¢(uy —u). For small strains, frame



dilatation is
e=V-u (1)
Similarly, average fluid dilatation is
ef =V -uy, (2)

which includes fluid flow terms as well as dilatation. The increment of fluid content is defined
by

(=-V-w=g(e—e) (3)

With these definitions, Biot (1956a; 1962) introduces a quadratic strain-energy functional of
the independent variables e and { for an isotropic, linear porous medium

2F = He? — 2Ce¢ + M¢? — 4uls, (4)

where, if e,y = %(um,y + Uy z),. .., then Io = eggeyy + eyy€s, + €rzepq — 6?531 — ezz — €2, is the
second strain invariant (Berryman and Thigpen 1985). Elementary bounds on coefficients in the
equations of poroelasticity are presented by Thigpen and Berryman (1985). Thermodynamic
and mechanical stability require non-negativity of E, which implies that H > 0, M > 0,
HM — C? >0, and p > 0. Then, components of the average stress tensor 7 for the saturated

porous medium are
Tij = [(H = 2u)e — C(Jbij + 2peij, (5)
and fluid pressure py is
pr=M(—Ce. (6)

Two coupled equations of motion for small disturbances in fluid-saturated media may be
derived easily from the energy functional with these definitions of stresses and pressures. With
time dependence of the form exp(—iwt), Biot’s equations of poroelasticity are, using the notation
of Biot (1962),

pV2u+ (H — p)Ve — CV¢ + W (pu+ pyw) =0, (7)
CVe — MV({ +w?(pju+ qw) =0, (8)
where
p=¢pr+(1—0)pm (9)
and
q(w) = pslr/¢ + iF (€)n/kw]. (10)



Tortuosity 7 > 1 is a pure number related to frame inertia which has been measured (Brown,
1980; Johnson et al., 1982) and can also be estimated theoretically (Berryman, 1980a). Kine-
matic viscosity of the saturating fluid is n; permeability of the porous frame is x; a dynamic
viscosity factor proposed by Biot (1956) is (for our choice of sign for frequency dependence)

F(&) = {111 +27(©) fie]}, (1)
where
and
& = (Wh’/n)?. (13)

Functions ber(¢) and bei(€) are real and imaginary parts of the Kelvin function. The dynamic
parameter h is a characteristic length generally associated with steady-flow hydraulic radius of
the pores, or with a typical pore size.

Coupled equations (7) and (8) give rise to three distinct modes of wave propagation: two
compressional waves (fast and slow) and a single shear wave speed (with two polarizations).

Coefficients appearing in Biot’s equations of poroelasticity must be known before quantita-
tive predictions can be made. Results of Brown and Korringa (1975) may be used to show (see
Appendix A) that these coefficients are given for general isotropic porous media by

H:K+UC+§,u, (14)
e~ ol ) )
and
M =C/o, (16)
where
o=1-K/K;. (17)

The three bulk moduli characteristic of the porous frame are defined by Brown and Korringa
through expressions:

1 1,0V
%= 7 (50, (18)
1 1,0V
%= 7 (G e (19)



and

1 1 (9V¢
—___ (2 20
Ky Vs (apf )Pd, (20)

where V is total sample volume, Vy = ¢V is pore volume, p = —%TT(T) = —%(Em +Tyy + Tz2)
is external (confining) pressure, ps is pore pressure, and pg = p — py is differential pressure.
Brown and Korringa (1975) state that, although these three bulk moduli have simple physical
interpretations, this “does not necessarily help in knowing their values.” Observing the change
in pore volume required by (20) is clearly more difficult than observing the change in total sam-
ple volume required by the other two moduli. Nevertheless, all three moduli may be measured
directly, thus determining their values in specific instances. However, general formulas relating
these moduli to values of the moduli of constituents of a porous composite would clearly be of
great utility.

Constant K is the bulk modulus of the drained porous frame, introduced earlier. However,
values of the two remaining constants K, and K, are generally not known unless the porous
frame is homogeneous on the microscopic scale. For this special circumstance [which is also
the only one considered by Gassmann (1951)] with a single type of elastic solid composing
the frame, these two moduli are both equal to the bulk modulus K, of the single granular
constituent

K, =Ky =Ky, (21)
Thus, Gassmann’s equation is equivalent to

1 ¢ +o*—¢
M K; Ky’

oc=1-K/Kp, (22)

while Brown and Korringa’s more general result is equivalent to

1 ¢ o ¢

H—K—f'f‘E—K—(p, U—l—K/KS. (23)
Gassmann’s result has also been derived within the context of Biot’s theory of poroelasticity by
Biot and Willis (1957) and by Geertsma (1957). Geertsma and Smit (1962) discuss practical
aspects of applications of the theory to rocks. Rice and Cleary (1976) also obtain general results
essentially equivalent to those of Brown and Korringa.

The more general constants of Brown and Korringa, K and K, must somehow be related
to material properties of multiple solid constituents of the porous frame. In the next section,
we show that exact results are available when the composite porous medium is composed of
only two porous constituents, each satisfying Gassmann’s equation.

3 Exact results for two porous constituents

The method we will use to obtain an exact expression for K is completely analogous to meth-
ods used by Cribb (1968) and by Schulgasser (1989) to find relations between the coefficient
of thermal expansion and bulk modulus of an isotropic elastic composite containing two con-
stituents. In both problems, coefficients of linear equations are sought and, by a careful choice



of the ratio of two macroscopic applied fields, the composite material undergoes a uniform ex-
pansion or contraction so global and local fields are identical. This fact leads to simple results
relating the two coeflicients when only two constituents are present. Similar results relating
n coefficients are possible when there are n adjustable macroscopic fields of similar type and
when there are at most n isotropic constituents present.

We assume that the two porous constituents fill all the space of the composite (except for
the void spaces within themselves), and that they are bonded at points of contact (see Figure
1). There is no porosity in the composite that lies outside of the two porous constituents. If
there were such porosity, then the composite would in fact have three distinct component types
and we must exclude such possibilities for the present arguments.

There is an implicit assumption in this analysis that each inclusion of a porous constituent
is of sufficient size so that it makes sense to speak of effective frame moduli K) and K? for
them. Thus, there are three relevant length scales in our problem, which in order of increasing
size are: size of the pores, size of the porous constituents, and macroscopic sample size for which
the effective coefficients K*, K}, and K;; must be computed. The analysis clearly cannot be
applied to all two-phase porous composites; for example, a gravel containing two types of solid
grains randomly mixed may not satisfy the constraints imposed on our derivation, depending
on manner of mixing and (lack of) uniformity of porosity throughout the sample. On the other
hand, both constituents need not be porous; our analysis applies to one type of solid grain
imbedded in another type of porous matrix.

In general, change in overall volume §V" as differential pressure pg and fluid pressure p; vary
is given by

oV 1,0V 1,0V
7 =7 Gy, et v (o 24

Similar expressions apply to volumes and changes of volume in constituents of type-1 and type-2.

If the frame and grain moduli of the two constituents are respectively K ON ,(nl) and
K@), ,(3), while the effective moduli for the composite porous medium are K*, K, then there
exists a ratio of the two pressure increments dpy/dps = v such that the relative change in vol-
umes of each constituent equals the volume changes of the equivalent medium. For this choice,

local and global pressure increments are identical. Thus,

_V _ Opa  Opy
vV  K* Kr
0 o

KO " 0

_ Opa  Opy

=@+ o) (25)

with ratio v given by

/KW —1/E

T 1/K® —1/KO
1KY —1/K:
C1/K* —1/K(1)

Y



YK - 1K

T 1/K@ —1/K* (26)

Relation (25) assumes a uniform swelling or shrinking of the composite so that shapes and
relative positions of all porous constituents remain fixed while overall size increases or decreases.
It is also possible to analyze (25) by subtracting the first line of (25) from the other two and
then setting the 2 x 2 determinant of the coefficients of the resulting homogeneous equations
to zero. That determinant is equivalent to the relations in (26), and for some purposes the
analysis of the determinant may be preferred to the approach presented here.

After some algebra (see Appendix B), it is possible to express (26) in terms of the variable
o defined in (17) as

o* — o) B K*— KO
o —c() K@ —gO)°

(27)

Equations (26) and (27) are our main results. They are exact expressions relating bulk modulus
K}, defined by Brown and Korringa (1975) for general porous media, to the bulk modulus of
the composite porous frame K* and various bulk moduli of the constituents making up the
composite. One important conclusion from (27) is that K is dependent on constituent volume
fractions only implicitly through K*.

Both the result obtained here and its derivation are very special. This approach cannot
be generalized to three or more constituents without requiring that the third constituent obey
certain compatibility conditions not needed with only two constituents.

In another sense, there really are three constituents in the problem we have considered:
two types of solid constituent and included pore space. In fact, the result we have obtained
precludes using the same method to find an exact result for coefficient KF, since it is the effective
modulus of this third component. Nevertheless, we can also obtain an exact result for K3 by
making use of its definition and of the result for K.

Note that, since V; = ¢V,

Wy _0¢ , OV

et (28)

Brown and Korringa (1975) derive a reciprocity relation [their equation (A-6)], from which it
can readily be shown that

SLL Y il

v = (g~ xg)omet K

ops. 2

This result can also be seen to follow from the coupled equations for hydrostatic confining
pressure p and fluid pressure py

()= (™ 2 (%) 0

(‘64> B (-i ﬁjr%%) (—ZZ«)' (31)

Inverting, we find that



Thus, reciprocity, or equivalently the existence of the energy functional (4) [see Biot (1941)],

implies that
0 0
_<§;)P N (3_16)11/ (52)

leading to the symmetric matrix in (31). Translating to differential pressure by substituting
—p 1 1) (—m)
= 33
(—pf) (0 1) \~-py (3
()= (e am ~mea) (5) &2
= —o/K  $(1/K;—1/Ky) ) \ ~ps
Therefore, the translated matrix in (34) follows from

de de de
Gor)o ™ Gy = (7)o (35)

into (31), we find

Oe Oe
=) =(=) , 36
(ap)Pf (8pd)1’f (36)
and similar expressions for variation of (. Taking the fluid to be incompressible so K; — oo in
(34), then (29) follows directly from (34) using the fact that 6¢ = ¢Vy/V in this limit.

Having (29), we can use (28) and (25) to find expressions for the change in the overall
porosity d¢* and in the porosities of the two constituents d¢(") and §¢(2). The results are

. ot — ¢ 11
_(5(;5 = < K- )(spd+¢ <F:£ - K:)épf, (37)
(1) — 4
1 g ¢
=09 = (Fem— ) ore (38)
and
(2) — 42
2 g ¢

Equations (37)—(39) are general, but it is only possible to relate these results easily in the same
special case that we considered before. When the composite undergoes a uniform expansion
or contraction, local pressure increments are the same as global ones. Furthermore, points
where constituents touch continue to remain in touch during expansion or contraction, so (by
assumption) the only porosity in the composite is the porosity within the porous constituents
— no new porosity is created at the contacts. In such circumstances, overall porosity is just the
volume average of local porosities ¢* = (p(x)), so (37)—(39) may be combined to show that

*

of 1 1 o(x) — o(x o* —¢*
o (s m) = (e ) - (F ) Jonaton (0




where the ratio dpq/dpy = v with v given again by (26). With just two constituents, the
volume average (-) of any material quantity g is (g(x)) = fM¢) + f2)¢2) where fs are
volume fractions of constituents with f) + f = 1.

Exact results (26) [or (27)] and (40) depend on knowledge of K* as well as material and
frame constants of constituents. The composite frame constant K* may be found through
measurement, or it may be estimated theoretically using the theory of composites. In one
circumstance, an exact result for K* is known. Hill (1963) showed that if the shear modulus
is constant throughout the composite, i.e., u!) = 4? = p*, then bulk modulus K* is given by

1 1
— , 41
K* + 4 <K(x) + %u*> (41)

With this result for K* or with measured values, we obtain formulas for all bulk poroelastic
coefficients of Brown and Korringa and these may then be used to predict speeds of wave
propagation.

Now we would like to compare these results with those found in single-scattering approxi-
mations (Berryman, 1986; 1992). Using (26), it is possible to derive many expressions for the
constant vy (see Appendix B). One convenient expression is

Q) _ (2
y=—-1+0* —K*(ﬁ)
1 1) _ ~(2)
KT (o) "

Similarly, we may use (26) to show that

o(x) — ¢(x o(x)) — ¢* o(x)) — ¢* o(x) — ¢(x
[<(;{(x)()>_<(£* ]VZHQ* _<() ()>' (43)

S

The right hand side of (40) becomes

KG(X) - ¢(X)> o= ¢*}7 _ (o) —¢" _ <U(X) - ¢(X)> 4 fo(x)) — o

K (x) K* K: K (%) K+
ot — ¢ jo(x) — $(x) (oM =o®
- Trg ) - (g gwm) @

using (43) in the first step and (42) in the second. Substituting (44) into (40), the final result
for Kj is

b o o(x) —é(x) (2D =a®
x5 Crapg ) 0 - (Fa—gm) (4

Equations (40) and (45) contain the same information, but (45) is in a form convenient for
comparison with the single-scattering approximations derived previously by Berryman (1986;
1992). If quantities K, K, and o™ in (45) are consistently replaced by their values in any one
of the approximations considered (ATA, CPA, DEM) by Berryman (1992), the formula for the
corresponding approximation to Kj is recovered. For example, Eq. (47) of Berryman (1986)
for the coherent potential approximation (CPA) can be shown to be of the same form as (45)




when only two porous constituents are present in the composite. Thus, the single-scattering
approximations produce results that agree in form with exact results obtained here.

Recalling that coefficients H and M are coefficients in the quadratic form (4) for internal
energy, we have thermodynamic constraints that both of these coefficients must be non-negative
in all circumstances. Using (23) and considering the limit Ky — co, M > 0 is sufficient to show
that

o* ¢*
- > 46
K; K 20 (46)

To check that (46) is satisfied, we rearrange (45) and use (27) to show that

o ¢* o(x) — ¢(x) o =g 2
Ki K Crnmo )+ )~ (g —gey) 20

8§
Non-negativity of the right hand side of (47) follows from K,,(x) > 0, o(x) > ¢(x), and
(K(x)) > K* (see Appendix C). The non-negativity condition on K, is another thermody-
namic constraint. The other two conditions follow from the fact that the Voigt average is an
upper bound on the effective bulk constant. For example, (1 — ¢(x))K,,(x) > K(x) implies
that o(x) > ¢(x). Thus, (47) shows that the exact results found here automatically satisfy
thermodynamic constraint (46).

(47)

4 Relation to results in thermoelasticity

There is an important connection between results obtained for coefficients of Biot’s equations
and results for coefficients in equations of thermoelasticity. It was not essential to understand
this connection either to obtain or to make use of previously derived formulas. It is very helpful,
however, to be aware of this connection, since a significant literature on exact results and
rigorous bounds for the coefficient of thermal expansion (Levin, 1967; Rosen and Hashin, 1970;
Hashin, 1984; Schulgasser, 1987; Schulgasser, 1989) has developed. We need not rediscover
these results within the context of Biot’s theory if we can show that the mathematical behavior
of the two theories is identical.

Biot (1956b), Rice and Cleary (1976), and Bonnet (1987) have shown that equations of
poroelasticity and of thermoelasticity are mathematically equivalent in both quasistatic and
dynamic regimes. Bonnet (1987) makes use of this equivalence to find exact expressions for the
singular solutions of poroelasticity by taking known results for singular solutions to equations
of thermoelasticity (Kupradze et al., 1979) and appropriately redefining parameters.

To develop this analogy, Biot’s equations (7) and (8) may be rewritten as

pVia+ (K + p/3)Ve — oVp; + w?(pu + pyw) = 0, (48)
2 w?q(w) 2
Vipy+ = Ps +wlog(w) —prle =0, (49)

where we have used (14)-(17) and the fact that the fluid pressure is given by

ps = M( - Ce. (50)

10



To first order in w, (49) becomes

2 wnpy wnpso
=0 51
Viprt o Prt e=0, (51)
since g(w) — inpy/kw as w — 0.
For comparison, the equations of thermoelasticity are
pV2u+ (K + p/3)Ve — 3KaVh + w?pu = 0, (52)
V20 + 20 + iwfe = 0, (53)

D

where 6 is the increment of temperature, « is the (linear) thermal expansion coefficient, D is
thermal diffusivity, and 8 = 3KTy/x with Tp absolute temperature, and x thermal conductivity.

At low frequencies, analogy between thermoelasticity and poroelasticity is completed by
noting the following equivalences:

0— —DPf,

3Ka — —o,

D — kM /npy,
and
B — —npso/k.

Now we can make an argument for thermal expansion coefficient « similar to the one made
in the previous section for coefficient K. Suppose that we have a thermoelastic composite with
two constituents. Then the relative change in the volume is given by

oV dp .

- %% _ 3,0

= Ig(l) 3a' 00

:E%j—&NMG (54)

for some ratio dp/df = —e. The value of € is determined by (54) and is

3a(2) — 3o
T /KO —1/K®

€

_ 3a —3aM
- 1/K(M) —1/K*
3a?) — 3o

T 1K - 1/K@°

11



Equation (55) implies that

of = 1/K*—1/KY)
o — o) 1/K@) —1/K1)’

(56)

which is the exact result for thermal expansion coefficient o* first derived by Levin (1967).
The argument given to derive (56) is essentially the same as one given recently by Schulgasser
(1989) and earlier by Cribb (1968).

Using the mathematical analogy between thermoelasticity and poroelasticity and specifically
using the equivalence relation 3Ka — —o, we can substitute —o /3K for a everywhere in (56)
and then rearrange the resulting formula to find

o — oM _ K* - KM
o@ —o() K@ _— K1)’

(57)

which is identical to (27). This analogy can be used to obtain other results for poroelasticity
as well. For example, any rigorous bounds available for the thermal expansion coefficient may
now be used by analogy to obtain rigorous bounds on coefficients in generalized Gassmann’s
equations. Such bounds are not restricted to two component composite porous media, and are
therefore beyond our present scope. On the other hand, the analogy to thermoelasticity does
not help directly with derivation of (40) or (45), since porosity appears in (48) and (49) only
through internal structure of the fluid pressure (50). Nothing comparable appears in equations
for thermoelasticity.

5 Discussion and conclusions

Several limiting cases of exact formulas (26), (27), (40), and (45) may now be considered. We
will discuss five limits and then consider a generalization.

First, to check that exact results reduce correctly to Gassmann’s equation, consider the
situation with K% = K2 = K. Then, (26) shows that v = 0, from which it follows
immediately that K = Kj = K, using both (26) and (40). Thus, Gassmann’s result is
recovered.

Second, consider a porous material composed of a single type of solid grain, but with
occasional vugs or large pores. The vugs may be treated as a second porous constituent with
¢ =0@ =1and K@ = 0. Then, ¢* = fW¢M) + £ and it is not difficult to show that (27)
and (40) reduce to K = K = K,(,P, also in agreement with Gassmann. This result is expected
since there is only one type of solid grain and the formulas correctly reflect the flexibility we
have in interpreting vugs either as separate entities or as part of the pore space of the type-1
constituent.

Third, consider the physically interesting situation depicted in Fig. 2, where the porous
composite is constructed from a uniform porous matrix of one material by imbedding solid
grains of another material. This situation is representative of a clayey sandstone [see for example
Han, Nur, and Morgan (1986)]. If we take the matrix to be type-1 and the imbedded grains as

type-2, then we find that ¢ = ¢(2) = 0 and K® = K2, The result of (27) in this situation

12



becomes

)
g BT Em (58)
KO — g2’
while (40) or (45) become
g ot ol =g D) o)
KoR S Tgm o U - @) (59)

We expect that (58) and (59) will find considerable use in the analysis of data on natural
materials.

Next, we consider a somewhat artificial situation that is easy to analyze. Suppose that the
composite porous material contains two porous materials that are identical in every way except
that their material bulk moduli differ. Thus, ¢) = ¢ = ¢* and KV /KW = K@ /KD =
1-0M =1-0® =1—¢* where we have made use of (27). Then, it follows from (26) that

y=0"-1 (60)
and from (40) that

¢*(I§; %) == - ()~ ) <° (61)

using the facts that (1/K(x)) > 1/K* and that 1 > o* (see Appendix C). Thus, we find for
such a material that constants for bulk pore and solid either have the relationship

K; < K;, (62)
or
K} <0. (63)

The behavior in (62) was observed in numerical examples by Berryman (1986) for calcula-
tions based on the coherent potential approximation, and is expected to be the most common
situation. The other possibility (63), although it seems odd, does not violate any thermody-
namic constraints. In fact, we have shown in (47) that relevant thermodynamic constraints are
guaranteed to be satisfied. If the medium has the property that an increase in fluid pressure
causes an increase in the pore volume, then K3 < 0. Formula (61) shows that this happens
only when the moduli differ substantially in magnitude K" >> K so that it is possible to
have (1/K(x))™' << K* for some intermediate values of 0 < f, ) < 1. Berryman (1992)
presents numerical examples showing that K§ > K for f M ~0or fO) ~ 1, while K s <0 for
f® ~ 0.5 when K1) /K@ ~ 100.

Finally, we consider generalizing to materials with more than two constituents. For example,
suppose that four constituents (a, b, ¢, d ) are arranged into two types of regions, each containing
only two constituents (say, type-1 contains a,b and type-2 contains c¢,d). Then, (27) may be
generalized directly as

ot — o) _ K* - K
@ —o() K@ — g1)’

(64)
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where

S0 _o@ RO _ K@
0 _o@ ~ KO _K@ (65)

and

o _gl K@ _ Kl)
old) —gle) K@) — K(o)°

(66)

Generalization for K q’; is not quite so straightforward. Porosity changes for constituents a, b, ¢, d
all continue to satisfy equations of the form (38)-(39), but porosity changes for composite regions
of type-1 and type-2 satisfy equations of the form (37). The overall composite also satisfies an
equation of the form (37) so (40) must be generalized to

" 1 1 1 1 o(x) — ¢(x o* — ¢
¢ (K_(’; B K;k) - <¢(x)<K¢(x) B Ks(x))>1,2+ [<%>12 _( K~ )]'Ya (67)

I

where (), , indicates a volume average taken over composite regions of type-1 and type-2 and
v is still éiven by (26) with appropriate reinterpretation of constants in the formulas. This
procedure is not a completely general way of treating three or more constituents because the
assumption that the medium can be decomposed into only two types of mixed regions is very
restrictive.

The method we used to obtain our exact expression for K has been shown to be analogous
to methods used by Cribb (1968) and by Schulgasser (1989) to find relations between the
coefficient of thermal expansion and bulk modulus of an isotropic elastic composite containing
two constituents. The method works when coefficients of linear equations are sought and, by
a careful choice of ratios of macroscopic applied fields, the composite material undergoes a
uniform expansion or contraction so both global and local fields are the same. This fact led
to our simple results relating two coefficients when only two constituents are present. Similar
results are also possible relating n coefficients when exactly n constituents are present, as has
been shown by Schulgasser (1989). For example, if the thermal expansion coefficients of three
types of single grain porous materials are known, then we can obtain exact expressions for the
effective value of K for a composite porous medium containing these three components. To
do so, we generalize expression (25) for change in volume to

_%V - ‘;f{’f — 3060 + (Zf
— % —3aMé0 + I%g)
— % —3a@40 + I(S(L(,é)
_ % _ 3050+ %. (68)

Then, (68) can be solved for the two ratios ¥ = épq/dps and 7 = §0/dps. We can find 7 as a
function of 4. Then, eliminating 7, we find a set of equations similar to (26) and that reduce
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to it when 7 = 0. In this way, exact results may be generated for multiple constituent porous
composites when other physical properties of the component materials are known.

To summarize our conclusions, the main results of this paper are contained in (26) [or (27)]
and (40). These formulas for K7 and Kj are exact for composites composed of two porous
constituents regardless of inclusion shapes as long as the two constituents are well bonded at
points of contact and there is no porosity lying outside the porous constituents but inside the
composite. Thus, with a perfect fit between two constituents, it is possible to find a ratio of
differential pressure and fluid pressure that maintains that perfect fit as the composite undergoes
uniform expansion or contraction. That ratio is given by (26), which also determines K in terms
of K*. Once we know the pressure ratio that maintains shapes of external bounding surfaces of
the porous inclusions, we can use that ratio to compute changes of internal porosity that occur
simultaneously. The resulting computation yields (40) or equivalently (45) for KJ. Numerical
examples and comparisons to the single-scattering approximations appear in Berryman (1992).
Discussion of extensions of this approach to anisotropic porous media and other exact results
will appear later, as will comparisons with experimental data.
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A Relating results of Brown and Korringa to Biot coefficients

Brown and Korringa (1975) showed that (in our notation)
1 1q-1 1 1q-1 1 1 \7-1
%l =lg-=] + [‘ﬁ(ff - E)] ) (69)

where Koy = H — %,u is the effective bulk modulus of the (jacketed) fluid-saturated porous
medium. We can rearrange (69) to show that

1 1y (/K —1/K) (1)Kt — 1/Ks)  o(1 — Keat/K)
o )

K; Ky 1/K —1/Ksq, Koy — K
o[l - K/Ks + (K — Kgat)/ K] _ o? A (70)
Ksat - K Ksat -K Ks,
where 0 =1 — K/K;. Then, it follows easily that
o 1 1 o?
—+ (———):7. (71)
K, Ky Ky K, — K
Cross-multiplication gives the final result
2
o
Kot — K (72)

 o/Ks+¢(1/Kf —1/Ky)’
which may be compared directly with (14). Gassmann’s result follows by replacing effective
moduli K and Ky everywhere by single grain modulus K.

B Equivalent expressions for ~

Many equivalent expressions for constant v may be derived from relations in (26). Those used
in the text will be derived here.
The last two identities in (26) may be rewritten as

/K5 —1/K;
— grgO (L tm s
1=K KO( K(l)()—K* )
1/K$) —1/K?
_ * 7-(2) m s
= KK ( K@) — K* ) (73)
Multiplying through by the denominators, we find that
K@)
M _gy=K*(1 -0 _ 2~
KD - K*) = K (1 o 0 ) (74)
and
K®
@ _gy=K*(1 -5 —
vK® - K" = K (1 o T ) (75)



Subtracting (75) from (74) and dividing through by the difference K(1) — K?) gives

1 W) _ @)
v=-K [f (‘;m_;{@))]
1) (2

=1+ ‘K*(%i —;{((;))’ (76)

which is the result quoted in (42).
Using the remaining equality in (26), we have

e 1KY —1/KS KO - 6®) - KO(1 - 6?)

_ p(1)
v=K XU K@ - 7O 7<)
KD _ k@),
- KO _K®
. @
o —o
=—-14o0 K IO 70)
1) _ @
2 g
=10 K e e (77)

Combining these relations with (76) gives our main result (27).
Similarly, if we multiply through by the denominators of the expressions in (26), we find
that

1 1 1 1
%~ %m) = (K—S,P -~ %) (78)
and
1 1 1 1
V(F_W):(K—g)_ﬂ)' (79)

Multiplying (78) by fM (e — ¢M) and (79) by fP (0@ — ¢?)) and then adding the two
results gives

7[<0—¢)_<0—¢>]:<0—¢>_<0—¢>’ (80)

which is the formula quoted in (43) since ¢* = (¢).

C Some elementary bounds on coefficients

If a porous material is composed of only one solid elastic constituent, then the well-known Voigt
bound (Voigt, 1928; Hill, 1963) shows that

KO <(1-¢"KD for i=1,2. (81)
Equation (81) may be rearranged to show that

0<¢® <o®=1-KO /KD <1, (82)
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The lower bound follows from (81) while the upper bound follows from the thermodynamic
relation guaranteeing that K@) > 0. Then it follows directly from (82), by taking its average,
that

¢" = ($(x)) < (0(x)) = fMol) + fPo® < 1. (83)

The effective constant o* is not necessarily equal to the average (o(x)) for the composite
porous medium. Nevertheless, by definition,

ot =1-K'/K! <1, (84)

(assuming that K} > 0) since K* > 0 is also required for thermodynamic stability. Positivity of
K} for the two component problem follows from the result (27) using the additional fact that
KO < K* <K@ if KO < K@) together with (82).
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List of Symbols

~

e

f(l),f(2

RS TERS aS

Pd
by

s

uys

ol Tl PR

Ksat
KO K®
KW, K

TT I DI SIS

ke
T3

NE X S 39

frame dilatation

average fluid dilatation

volume fractions of constituents

a typical pore size

confining pressure

p — py, the differential pressure

fluid pressure

solid displacement vector

fluid displacement vector

relative fluid displacement

Biot cross coefficient

thermal diffusivity

K+0C+ i

bulk modulus of drained porous frame
fluid bulk modulus

material (or grain) bulk modulus

an effective solid bulk modulus

an effective pore bulk modulus

H— %u, the saturated bulk modulus
drained frame moduli of porous constituents

material moduli of solid constituents
Clo

total volume

(1 — ¢)V, the solid volume
¢V, the pore volume
thermal expansion coefficient
dpa/dpy, ratio of pressure increments
increment of fluid content
kinematic viscosity
increment of temperature
fluid permeability
wavelength

shear modulus

density

density of a fluid

density of a solid material
1-K/K;

electrical tortuosity

porosity

thermal conductivity
angular frequency

average stress tensor
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Figure captions

Figure 1: Two types of porous constituents completely fill the volume of composite porous
material.

Figure 2: This composite porous material contains one granular material imbedded in a matrix
of one type of porous material.
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