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ABSTRACT

Reconstruction of acoustic, seismic, or electromagnetic wave speed distribu-
tion from first arrival traveltime data is the goal of traveltime tomography. The
reconstruction problem is nonlinear, because the ray paths that should be used
for tomographic backprojection techniques can depend strongly on the unknown
wave speeds. In our analysis, Fermat’s principle is used to show that trial wave
speed models which produce any ray paths with traveltime smaller than the
measured traveltime are not feasible models. Furthermore, for a given set of
trial ray paths, nonfeasible models can be classified by their total number of
“feasibility violations”, 7.e., the number of ray paths with traveltime less than
that measured. Fermat’s principle is subsequently used to convexify the fully
nonlinear traveltime tomography problem. In principle, traveltime tomography
could be accomplished by solving a multidimensional nonlinear constrained opti-
mization problem based on counting the number of ray paths that exactly satisfy
the measured traveltime data. In practice, this approach would be too compu-
tationally intensive without the use of massive parallel computing architecture.
Nevertheless, the insight gained from from this new point of view leads to a sta-
ble iterative reconstruction algorithm. The new algorithm is a modified version
of damped least-squares (also known as “ridge regression”). The correction step
at each iteration is in the direction of the damped least-squares solution, but the
size of the step is determined by the location of the point having the minimum
number of feasibility violations in the direction of the step. The computational
burden of computing the number of feasibility violations is virtually negligible.

Examples of the results produced by this algorithm are given.



1. Introduction

The classical methods of tomography provide a means for reconstructing a two-
dimensional function from a set of line integrals [1,2]. For medical x-ray to-
mography [3], such line integrals are provided by measurements of the wave
amplitude attenuation for straight rays passing through the body. When back-
projected along the known ray paths [4,5], the attenuation data provide a picture
of an inhomogeneous density distribution; the picture can then be interpreted

for purposes of diagnosis.

Tomography has many uses outside of the field of medicine including elec-
tron microscopy [1,2,4], acoustical and optical tomography [2,5], and radio as-
tronomy [6]. In geophysical applications to the whole earth [7,8] or to local
reconstruction problems such as borehole-to-borehole scanning with either elec-
tromagnetic or seismic probes [9,10], the assumption of straight ray paths is
often a poor approximation [11,12]. Nevertheless, sophisticated full wave field
processing schemes such as geophysical diffraction tomography [13] (using both
wave amplitude and phase in the reconstruction) are known to work very well
when a starting model of sufficient accuracy is available. Thus, there is reason
to believe that the reconstruction problem with ray bending might be solved if
some sensible procedure for finding a good starting model (other than trial and
error) could be found. Recent progress towards finding an iterative algorithm

for computing just such a model from traveltime data is described in this paper.

Traditional traveltime tomography reconstructs a slowness (reciprocal wave
speed) model from measured traveltimes for first arrivals. The locations of
sources and receivers are assumed known, but the actual ray paths are not
known and must be determined along with the model slowness (see Figure 1).
Fermat’s principle [14] — that the path taken is the one of least traveltime —
has been used extensively in forward modeling, z.e., given the slowness model
Fermat’s principle determines the ray paths. However, Fermat’s principle may
also be applied in an entirely different way during the reconstruction of the

slowness model using traveltime data [15], as we shall show.

The main purpose of this paper is to develop a stable method of reconstruct-
ing wave speed structure from first arrival traveltime data. Our emphasis is on
problems containing high contrast anomalies assuming that the errors made if
one neglects ray bending effects are far more significant than are those made by

neglecting measurement errors in the traveltime data. Sections 2 and 3 develop
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notation and a geometrical description of the analysis that will make it easier
to understand the main result of the paper presented in section 4. In section 2,
we show how Fermat’s principle may be used to convexify the fully nonlinear
traveltime tomography problem. It is also shown that, for a fixed ray-path ma-
trix, the total number of “feasibility violations” may be used to classify all wave
speed models in the nonfeasible region. In section 3, relaxed constraints are
introduced and their relationship to weighted least-squares solutions is found.
In section 4, the number of feasibility violations is used to choose the magnitude
of the correction step in each iteration of our modified ridge regression method.
Numerical results are presented in section 5. Our conclusions are summarized
in section 6.

2. Fermat feasibility boundary

To set notation, let ¢ be the measured traveltime m-vector such that 7 =
(t1,--.,tm), Where ¢; is the traveltime along the i-th ray path (a superscript T
implies the transpose) and m is the total number of views (transmitter-receiver
pairs). We form our model in two-dimensions (see Figure 2) by dividing the
rectangular region enclosed by our sources and receivers into rectangular cells of
constant slowness. In three dimensions, the cells are blocks of constant slowness.
Then, s is the model slowness n-vector s” = (s1,...,s,), with s; being the slowness
of the j-th cell and n the total number of cells. For forward modeling, s and ¢
are related by the equation

Ms=t, (1)
where M is an m x n matrix whose matrix elements I, ; are determined by the
length of the i-th ray path as it passes through the j-th cell. Eq. (1) simply
states that the total traveltime along a ray path is the sum of the traveltimes
through each of the cells traversed by the ray. Fermat’s principle is often used

in forward modeling to determine M and therefore ¢ when s is given.
2.1 Feasibility constraints

The inverse problem associated with (1) starts with traveltime data ¢ and
attempts to find the corresponding slowness model s and ray-path matrix M.
We will now depart from traditional methods by applying Fermat’s principle
in a new way [15]. The forward problem (1) is replaced by the m feasibility
constraints

(Ms); > t;. (2)

This fact follows from Fermat’s principle: the first arrival necessarily followed
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the path of minimum traveltime for the model s. Thus, (2) must be satisfied
by any ray-path matrxz M if s is the true model and therefore any model that
violates (2) along any of the ray paths is not a feasible model. An exact solution
to the inversion problem is found if and only if all of the inequalities in (2)
become identities for some choice of model slowness vector s. (The question of
uniqueness of the solution is discussed in subsection 2.4.) For each of the m
inequality constraints (2), the limiting equality is the equation for a hyperplane
in the n-dimensional slowness model space. The feasible region is bounded by
these hyperplanes and by the planes determined by positivity of slowness in all

cells j.

;> 0. (3)

The two sets of inequalities (2) and (3) guarantee that the feasible region of the
model space is convex. Thus, for fixed ray-path matrix M, the set of all feasible
models s includes all models either inside the feasible region or on the feasibility

boundary determined by M and ¢.

So far the argument has been pertinent only to linear traveltime tomography
(i.e., fixed ray-path matrix M). However, it is a small step (see Figure 3) to
see that the constraints (2) imply the existence of a definite convex set in the
model space containing all the feasible models for arbitrary choices of the ray-
path matrix: Since any point s that is nonfeasible for any particular choice of
M must lie outside of the global feasibility set, it follows that the intersection of
the feasible sets for all choices of M determines the global (nonlinear) feasibility
set. This global set must be convex since it is the intersection of convex sets.
Furthermore, an exact solution of the inverse problem (i.e., assuming the data
are consistent so such a solution exists) must lie on the boundary of this global
convex set. Finally, we note that the location of the global feasibility boundary
depends only on the set of measured traveltimes ¢, and on the locations of the

transmitters and receivers.

2.2 Feasibility violation number

Another new concept that is useful in computations is that of “feasibility
violation number” Ny(s). For any combination of ray-path matrix M, slowness
vector s, and measured traveltimes ¢, the number of rays violating the constraints
(2) is given by

m

Nu(s) = 0[ti — (Ms)d, (4)

i=1
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where the step function 6(z) is defined by

R g
The number Ny (s) is equal to zero in the feasible region. Furthermore, it is
clearly a monotonically increasing function of distance from the local feasibility
boundary associated with M — once one of the hyperplanes of (2) is crossed we
will never cross it again if we keep moving in the same direction in the model
space. Thus, Nj(s) is cheap to compute and gives us a rough idea of how close

we are to the feasibility boundary.

The feasibility violation number may be used to classify all models in the
nonfeasible region of the model space. For example, contours of constant Ny,

may be drawn starting with Nj; =0 on the feasibility boundary.

2.3 Scale invariance of M

Another important idea that will be used repeatedly in the sections that
follow is that of scale invariance. In forward modeling, we use Fermat’s principle
to find the optimum ray-path matrix M associated with a given slowness model
s. However, the M found this way is actually optimum for all slowness models
in the same direction as s, i.e., all models of the form ys where v is an arbitrary

positive scalar:

yt; = min/ vsdl;.
! {paths} path !

Thus, the optimum M is associated with a direction, not just with a single point,
in the model space. This scale invariance property of the ray-path matrices is
very useful in the reconstruction algorithms, because it means that any model
can be scaled to achieve either feasibility or some other desirable property (such
as an improved fit to the traveltime data) without affecting the validity of the

current ray-path matrix M.
2.4 Lack of uniqueness

There are three principal sources of nonuniqueness in traveltime tomogra-
phy: (i) choice of model (slowness) parameterization, (i) measurement errors,

and (7)) ghosts.

(i) The first type of nonuniqueness arises from our initial (somewhat arbi-
trary) choice of the parameterization of the slowness model. In real problems,

the medium to be analyzed may be assumed to have an essentially continuous
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distribution of slowness. So any particular discrete parameterization of such a
medium is subject to the criticism that it is not providing a realistic model of
the medium. However, as long as the wavelengths of the acoustic, seismic, or
electromagnetic probe are comparable to or greater than the cell size, some sort
of discrete approximation is entirely justified. Even if the model does not have
the resolution we would like it to have, it may still be entirely consistent with
the data that is collected. After one accepts a discrete parameterization, there
still remains the nonuniqueness associated with our particular choice of cell size.
The question of optimum cell size will not be treated here, but the question can
be addressed in a straightforward (if ad hoc) manner by trying different param-
eterizations for the same data. If the results are qualitatively insensitive to the
parameterization, we may have some confidence in their validity. Having said

this, we will not treat this issue further in the present paper.

(#i) The second type of nonuniqueness arises from any measurement errors in
the traveltime data (whether real or synthetic). These errors may be due to er-
rors in transmitter or receiver location, or they may be due to errors in correctly
picking the first arrivals and/or measuring the absolute time from transmission
to reception of the signal. Even synthetic data may be expected to have some
errors associated with the ray tracing or finite difference algorithm used to pro-
duce the data. The consequences of such errors on the nonuniqueness of the
reconstruction are similar to those arising from the choice of model parameter-
ization. Our method of treating them is corresponding similar. We can check
the sensitivity of the final results to such errors by varying these data values
within the expected range and then determine how sensitive the reconstructed
values are to these changes. Lack of sensitivity to small errors is a sign of a
robust reconstruction method. Later in the paper we will treat the effects of

measurement errors further.

(#i) Once having chosen the model parameterization and having neglected
the measurement errors, the third source of nonuniqueness is still difficult to
treat. It arises because uniqueness of the solution s is possible only when the
matrix M is of full rank which is highly unlikely in nonlinear traveltime
tomography. The subject of such ghosts [16,17] in tomography is well-known,
a ghost being any slowness vector in the null-space. Thus, any n-vector o from
the null space of M (i.e., Mo =0) may be added to a solution s satisfying Ms =t
without affecting the agreement with the traveltime data through M(s + o) = t.
As a simple example, suppose that none of the rays making up the ray-path

matrix pass through cell k. Then, the value of the slowness s, is arbitrary and
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any value may be added to the slowness of this cell. We should therefore think
of the solution s that we seek as a particular solution while any vector o from
the null space is a homogeneous solution. The full solution of our problem must
include a careful analysis of the span of the null space of the ray-path matrix
M associated with the particular solution s. Clearly, the primary goal of the
analysis must be to find such a particular solution and its associated ray-path
matrix M. The analysis of the corresponding null space — which may be carried
out using standard numerical techniques (i.e., singular value decomposition) —

is a secondary goal and will not be a major concern for us in the present paper.

3. Significance of relaxed constraints

In principle, traveltime tomography could be done by solving a multidimensional
nonlinear constrained optimization problem based on counting the number of ray
paths that exactly satisfy the measured traveltime data, ¢.e., moving along the
feasibility boundary using something akin to a simplex method [18]. In practice,
this approach would be too computationally intensive for most applications; the
global feasibility boundary is determined only implicitly by (2) and, because of
the high dimensionality of the model space, would require a very large number of
forward calculations for different Ms to produce a useful map of this boundary.
So we will seek other ways of using the insight gained from this new point of
view to produce a stable iterative reconstruction algorithm. In particular, we
will permit feasibility violations during the reconstruction since the nonfeasible
region has the most easily quantified structure. We can always use the scale
invariance property of M to place the model slowness on the feasibility boundary

at the end of the calculation if desired.
3.1 Relaxed constraint

Let »T = (1,...,1) be an m-vector of ones. Then, the total traveltime along
all the ray paths is given by «7t. One method of relaxing the constraints (2) is

to sum over these inequalities to produce a single constraint
uTMs > uTt. (6)

The limiting equality in (6) determines a single hyperplane constraint. This
hyperplane has the physical significance of being the unique hyperplane asso-
ciated with the ray-path matrix M for which all slownesses s have the same
total traveltime as that measured. All models feasible for M satisfy (6), but
some nonfeasible models also satisfy (6). That is why (6) is called a relaxed

constraint.



3.2 Tailored eigenvalue problem

There are at least two important eigenvalue problems associated with the
ray-path matrix M. Following Lanczos [19], we will introduce the (m+n) x (m+n)

real, symmetric matrix H determined by M

H:(A/?T J‘g) (7)

Then, the first eigenvalue problem has the form

0 M\ [u_ (L 0 [u
(e 0) () =205 &) () ®
In (8), the vectors u, and vy are of length m and n respectively. The matrix on

the right is defined in terms of the diagonal matrices L and C whose diagonal

elements are the row sums L; and column sums C;

m

L=l Ci =l (9)

j=1 i=1
The quantity L; is seen to be the total length of path i. The quantity C; is the
total length of all the ray-path segments that pass through cell j, so we will call
this the “coverage” of cell ;. Any cell with C; = 0 is uncovered and therefore lies
outside the span of our data for the current choice of ray paths. We retain only
the covered cells in the reduced slowness vector § of length # < n. The matrix M
may similarly be reduced to M by deleting the corresponding columns of zeros.
Finally, the diagonal matrix C is modified to include only the nonzero sums in

(9). For simplicity of notation, we assume that # = n in the following discussion.

Now recall «* = (1,...,1), an m-vector of ones, and define +* = (1,...,1), an
n-vector of ones. Then,
Mv = Lu (10)

and

MTu = Cw. (11)
Problem (8) has been treated in detail by Berryman [20], and is most important
for reconstruction problems having low to moderate contrasts (< 20%). We see
in particular that Eqs. (10) and (11) are of the form (8) so that the (m+n)-vector
of ones (u”,vT) = (1,...,1) is an eigenvector of H with eigenvalue unity. This fact
is significant, and provides the motivation for studying the eigenvalue problem

(8), as has been shown elsewhere [20].
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An analogous eigenvalue problem pertinent for high contrast reconstructions

(i ) () =2 (3 ) (=) a2

where, for A = 1, w; = v, and z; = 5 is the current best estimate of the recon-

takes the form

structed slowness. Then, by analogy with (10) and (11),

M5 = T, (13)
MTu=Cv=Ds3 (14)

where 7' and D are diagonal matrices with elements given by

Ty =Y i3 fori1<i<m (15)
j=1
and
bj = Zli,j/“:’j = Cj/gj for 1 <j<n. (16)

i=1

The T;s are the traveltimes of the current ray paths through the current model
. The D; is the coverage of the j-th cell divided by the slowness of that cell; the
dimensions of D; are (length)?/time — or, the same as that of a diffusion coef-

ficient. We will call D; either the “modified cell coverage” or the “cell diffusion

factor.”

Now we will transform (12) to a canonical form using

<£T g):(fa% ﬁq%)(MOT A(f)((; 1“)(1%) (17)

so that

and
U _ T%’LU)\
(Z)\> - <f)%m)\) ' (19)

The motivation for using this particular choice of transform will be clarified in

section 3.4. The eigenvalue problem (12) is then transformed into

(= 5) (2)=2(2) 2
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The significance of (20) will become clear in the following discussion. We wish to
emphasize now that, with the normalization that has been performed to produce
A, the current slowness model  gives rise to the unique eigenvector of (20) with

the highest ergenvalue and that eigenvalue is unity  t.e., ATAz = 2.
3.3 Weighted least-squares

Now we will consider two weighted least-squares fitting problems. In both
examples, the weights 7 and D have been incorporated directly into the nor-
malization (preconditioning) factors for the matrices A, and the eigenvector
components y, and z,. The first problem is to find the slowness s = y5 in the
direction of 5 giving the best least-squares fit to the measured traveltime data.

If the normalized traveltime measurement vector is given by

g =173t (21)
then the problem is to find v such that
¥(7) = (9§ - Ar2)7 (5 — Av2) (22)

achieves its minimum. This value is found to be

_ ETATy _ 2TATH
T 2TATAz - 3Tz

(23)

since ATAz = 2z by the constructions of subsection 3.2. If the optimum scale
factor has already been found and the value 7 scaled appropriately, then v =1

in (23). We will assume this is the case for the remainder of this discussion.

Now consider a second weighted least-squares problem. Consider the objec-
tive function
$u(2) = (9 — A2)" (5 — Az) + p(z - £)" (2 - ) (24)

where p is a damping parameter [21,22]. The minimum of (24) occurs at z = z,
where z,, satisfies

(ATA 4 pl)(z, — 2) = AT§ - . (25)

To arrive at (25), we again used the fact that ATAz = 2. The solution z, is called

the damped least-squares solution or the ridge regression solution.

Now notice that the right hand side of (25) is orthogonal to 2, i.e.,

$T(ATg - 2)=0. (26)
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Eq. (26) follows from (23) when y=1. Applying 27 to (25) then gives
(1 4+ )37 (0~ 2) = 0, (1)

so that z, lies in a hyperplane orthogonal to 2.
3.4 Hyperplane of constant total traveltime

To establish the significance of the relaxed constraints, now note that
fTAT) = T MTT 1t =Tt (28)

and that

T2 =5TDs =vTCs =u"Tu. (29)

Eq. (28) is the sum of all measured traveltimes, while (29) is the sum of all

traveltimes associated with the current best estimates of the slowness § and the
ray-path matrix M. Thus, the condition (26), or equivalently (23) with v =1,

implies that
uTt = uTTu, (30)

i.e., the hyperplane of (27) is the unique one for which the total measured trav-

eltime is the same as the total traveltime for the trial model 5. Our conclusion is
that both of the weighted least-squares solutions z, and z lie in the hyperplane

determined by the limiting equality of the relaxed constraint (6). Furthermore,

this statement is true for any positive value of p.

The result (30) provides both a simple physical interpretation (constant total
traveltime) and a simple geometrical interpretation (orthogonal to z) for the
hyperplane containing both z, and 2. In fact, it is this result that motivated us
to pick this particular weighted least-squares problem (24) and the eigenvalue
problem (20). We will term this choice of weights the “natural” one for the

nonlinear traveltime tomography problem.
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4. Modified ridge regression algorithm

Figure 4 illustrates the ideas presented in sections 2 and 3 and will also help to

clarify the ideas underlying the new algorithm to be developed in this section.

The key ideas behind our new algorithm may now be summarized as follows:
Given a set of transmitter-receiver pairs and any model slowness s, Fermat’s
principle may be used to find the ray-path matrix M associated both with s and
with any slowness vs (where v > 0) in the same direction as s. An optimum scale
factor v may be found by doing a weighted least-squares fit to the traveltime
data. Good weights to use for low contrast reconstructions are described in detail
in Berryman [20]. For high contrast applications, good weights were presented

in section 3.3.

Having found the optimum slowness 5 = vs in the given direction, we next
attempt to improve the model by finding another direction in the slowness vector
space that gives a still better fit to the traveltime data. As many others have
done, we first compute a damped least-squares solution s, = D=7z, using (25).
Next we note that both of the points found so far are guaranteed to lie in the
nonfeasible part of the vector space — at least one and generally about half of
the ray paths for both of these models will have traveltimes shorter than that of
the measured data. Furthermore, although the point s, gives a better fit to the
traveltime data, this fit is certainly spurious to some extent because it is based
on the wrong ray-path matrix; the ray-path matrix M used in the computation
of s, from 3 is the one that was correct for slownesses along the direction s.
Thus, both of the points we have found so far lie on the nonfeasible side of the
feasibility boundary and the second point s, is of questionable worth because

its value was also obtained in an essentially inconsistent manner.

We wish to stress this point: The motivation for performing a least-squares
fit to the traveltime data is based on an implicit assumption of linearity, z.e.,
closeness between the current model and the next model found after the cor-
rection step. If this linearity assumption is violated (as it often will be in the
problems with high contrast we are considering), then our motivation for im-
proving the least-squares fit to the data is not so strong and other criteria for

choosing the size and direction of the correction step should be considered.

Now recall that the solution of (1), if one exists, must lie on the feasibility
boundary. So we would like to use s, and 5 to help us find a point on this

boundary that is optimum in the sense that it is as consistent as possible (%)
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with the ray-path matrix M, (77) with the measured traveltimes ¢, and (%) with
the feasibility constraints. The fact that traveltime error may be reduced by
moving in the direction of s, may still give us an important clue about the best
direction to move in the vector space, 7.e., we may want to move in the direction
s, — & but perhaps we should stop before arriving at s,. How far then should we

move in this direction?

If we consider Figure 4, we are reminded that the feasible region is convex.
Therefore, there may exist a point s,, between the points s, and s that is closer to
the feasible region than either of the two end points. If we could find this point
sm and then scale up to the point in the same direction lying on the feasibility
boundary, then we have found s; in the figure. In principle, it is possible to
find the point on the line s, — § closest to the feasibility boundary. However, it
is much easier to compute the feasibility violation number Ny (s). As we move
in the direction s, — § from 3, we generally find that this number achieves a
minimum value at some intermediate point. This point of minimum Ny (s) is

the point s, in the figure.

Now we will prove that all three of the points 3, s,, and s; are distinct
unless we have found an exact solution to the inversion problem. Consider the

possibility that s satisfies (1) so that
Mi="Tu=t (31)
Then, MTu = D§ = MTT 't which is equivalent to D35 = (D *MTT 2)I" 3t or, in
canonical form,
z= ATy (32)
Eq. (32) implies that the right side of (25) vanishes. Since the matrix (AT A+ uI)
is nonsingular, (32) and (25) imply that

2, = 2. (33)

Thus, (31) implies (33). Similarly, working backwards through this line of rea-
soning, we see that (33) also implies (31). Our conclusion is that z, = 2 if and
only if 5 is an exact solution of (1). This same conclusion is reached by noting
that the absolute minimum (i.e., zero) of the objective function (24) is attained
only when s = 5 and Ms =¢. From previous arguments, we also know that the
least-squares solutions z, and 2 never lie on the feasibility boundary unless the
corresponding slownesses are exact solutions of (1). So unless we have already
solved the problem, these three points form a triangle and the size of the triangle

provides a measure of our distance from a solution.



— 15—

5. Results

These ideas have all been repeatedly confirmed in a large number of recon-
structions on synthetic examples. Figure 5 shows some examples of the ray
paths used both in forward modeling and in the reconstructions. The model
shown has two anomalies, a slow anomaly on top and a fast anomaly on the
bottom. The percentage contrasts in these three examples are: 20%, 50%, and
100%. The model contains 8x16 square cells. The method used to generate the
ray paths is new, although it is essentially a simplified version of an algorithm
by Prothero et al. [23]. We represent the graph of a ray by a straight line plus
a Fourier sine series expansion. The end points of the straight line are the loca-

tions of the transmitter and the receiver. The coefficients of the sine functions
are found using a simplex search routine [24] to minimize the total traveltime

along the ray path. For all examples shown in this paper, only the first two
coefficients in the sine series are allowed to vary — thus severely limiting the
possible shapes of the ray paths that can be found, but also limiting the amount
of computation time required to obtain these approximations to the true ray

paths.

The remaining Figures (6-8) show examples of reconstructions for three high
contrast models having anomalies with 20%, 50%, and 100% contrasts. The
traveltime data consists of 320 rays, including 256 (16x16) from left to right
and 64 (8x8) from top to bottom. This measurement configuration was chosen
to minimize the effects of ghosts, since the main issue being addressed in this
paper is the possibility of obtaining reconstructions of high contrast (nonlinear)
anomalies. The standard damped least-squares results are shown first (a) and
the new results based on the algorithm using the minimum feasibility violation
number to determine the correction step size are shown second (b). The layout
of each frame is the same as Figure 5 with the slow anomaly at the top and
the fast anomaly at the bottom. Reading from left to right and top to bottom
the first five frames are the reconstructed slowness models at iterations 1, 11,
21, 31, and 41. The sixth frame (lower right hand corner) is the ideal (target)

slowness model.

The two methods produce very similar results for the 20% anomalies shown
in Figure 6. However, the new method produces a very stable accurate recon-
struction while the damped least-squares method starts to diverge somewhat in
the later stages  overshooting in the slow region and producing some vertical

stripes in the homogeneous region that are no doubt caused by contributions
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from eigenvectors with low eigenvalues. The results start to diverge significantly
for the 50% anomalies in Figure 7. The damped least-squares results are very
noisy already by iteration 11 and are clearly not very useful in this form af-
ter more iterations. (A smoothed version of these reconstructions will at least
show the locations of the slow and fast anomalies quite clearly.) The best re-
construction using the damped least-squares method is actually obtained after
just a few iterations [15], so this method should be terminated quickly. How-
ever, for real data we do not know when to terminate the iteration process, so
the damped least-squares method is not robust. By contrast, the new method
produces results for 50% contrast that are quite reasonable: the fast anomaly is
reconstructed very well while the slow anomaly is located well and general fea-
tures are reproduced. The slow anomaly is always harder to reconstruct for high
contrasts because few or no first arrivals pass through this region. Thus, first
arrival data covers this area poorly. The results obtained by the two methods
are startling different in Figure 8 (100% contrast). The damped least-squares
method is quite unstable for such high contrasts. In fact, the method produces
singular results by iteration 20, and the process terminates. The new method

produces a stable result that retains the main features of the target model.

Our method converges quite rapidly to a definite result unless we force the
algorithm to make a minimum percentage correction step (say 1-10% of the
distance along z,—2) at each iteration. The triangle size decreases monotonically
to a small value unless we force such corrections to be made; then the triangle
size can decrease monotonically at first and subsequently oscillate around a small

number.

The traveltime data used in these reconstructions were generated using the
same ray tracing algorithm that is used in the reconstruction itself, z.e., our
simplex search algorithm. The results of this algorithm have been compared to
the results obtained using Vidale’s new finite difference approach to first arrival
traveltime computation [25]. For small contrasts, both methods produce uni-
formly excellent results (< 1% error) with comparable short computation time.
For larger contrasts, both algorithms become less accurate: (1) The simplex ray
path is constrained by the use of only two coefficients in the sine series expansion
to be quite smooth, perhaps smoother than it should be for such high contrast
media. (2) The finite difference computation does not allow for all possible
spreading patterns of wave energy, and therefore tends to miss the fastest ray

paths in regions of high contrast where multiply reflected waves and other wave
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trapping effects can produce unusual results. We have tried using the results of
Vidale’s traveltime computations as the data for our reconstructions. For the
cases of small contrast anomalies, the results are virtually the same. For higher
contrast anomalies, Vidale’s traveltimes used as input produce reconstructions
that are somewhat noisier looking than those presented here, but basically the
results are comparable. We also tried a hybrid method of finding the travel-
time data: After generating the traveltime data using both the simplex method
and Vidale’s method, we construct a hybrid data set that contains the smaller

of these two traveltimes between each transmitter and receiver. When used in
the reconstructions, these hybrid data produced reconstructions that are again

comparable to those shown here, but they are somewhat less noisy than these

results  indicating that the traveltime data are indeed better in this case.

These ideas have also been tested on real seismic and real electromagnetic
data. In all cases tested, the method converges to a reasonable model of the
wave speed structure. Detailed analysis for applications of these methods to

real data will be presented elsewhere.

6. Discussion and conclusions

For real problems with high contrasts and noisy data, the damped least-squares
method does not converge and we never know when to terminate the iteration
sequence. By contrast, our new algorithm converges quickly (in 15-20 iterations)
to a solution in its convergence set (i.e., not a single point, but a region of
the model space with very similar characteristics). Stable iteration to such a
convergence set is the most that could be expected when the traveltime data

have errors and are therefore inconsistent.

The main purpose of this paper has been to develop a simple geometrical pic-
ture of the model space relevant to the iterative reconstruction algorithms. We
have shown that Fermat’s principle leads to one stable algorithm — a modified
ridge regression method that is quite successful at reconstructing high contrast
wave speed anomalies. This one algorithm certainly does not exhaust the pos-
sibilities. Other algorithms could also be envisioned based on the picture we
now have of the model slowness vector space (Figure 3). With the advent of
massive parallel processing computers, we should be able to map the feasibility
surface and then use nonlinear programming techniques [26] or some sophisti-
cated minimization technique such as simulated annealing [27] to produce still

better reconstructions based on the general ideas presented here.
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FIGURE CAPTIONS

Fig. 1. Schematic diagram illustrating an experimental configuration typical of
cross borehole seismic or electromagnetic tomography. For linear inversion, the

straight rays shown are the ones normally used for backprojection.

Fig. 2. Diagram to illustrate terms in Eq. (1). Rectangular cells are numbered
from 1 to n, with constant slownesses s;,...,s,. The ray length for path i through

cell j is I; ;. The total traveltime for path i is Y~ 1; ;s; = t;.

Fig. 3. Illustration of the distinction between local and global feasibility bound-
aries. Local feasibility is determined by the traveltime data vector and one
ray-path matrix M. Global feasibility is determined by ¢ and all possible Ms.

Both types of feasibility region are convex.

Fig. 4. Illustrating the main points of the new reconstruction algorithm. The
variable z; is the wave slowness s; weighted by the square root of the modified
cell coverage D; [see Eq. (20)]. The axes are the weighted slownesses for any two
cells (j and k) in the model space. Point 2 is the initial value for the next step
of the iteration scheme. Point 2, is the damped weighted least-squares solution.
Point z,, is a linear combination of 2 and z, chosen because it has the smallest
number of feasibility violations. Point z; is the unique point on the feasibility

boundary in the same direction as z,,.

Fig. 5. Three examples of high contrast slowness models to be reconstructed
from synthetic traveltime data. In each frame the top anomaly is slower than
the background while the bottom anomaly is faster than the background. Per-
centage contrast from left to right: (a) 20% , (b) 50%, and (c) 100%. Superim-
posed on the models are examples of the curved ray paths obtained using the

simplex search method and used in the reconstructions.

Fig. 6. Slowness reconstructions of 20% anomalies at iteration numbers 1, 11, 21,
31, and 41 for two methods: (a) the standard damped least-squares method and
(b) the new method using minimum feasibility violation number to determine
correction step size. The ideal (target) slowness model is shown in the lower

right frame.
Fig. 7. As in Fig. 6 for 50% anomalies.

Fig. 8. Asin Fig. 6 for 100% anomalies, except that the iteration frames shown
in (a) are 1, 6, 11, 16, and 19.



