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Abstract. The statistical data required for quantitative analysis of the phys-
ical properties of composite materials may be obtained using digital image pro-
cessing techniques. This approach allows accurate quantitative determination of
volume fraction data, of interface area per unit volume, and of more sophisticated
measures of the microgeometry of material mixtures including the n-point spatial
correlation functions. The two- and three-point correlation functions can be mea-
sured quite accurately both for synthetic materials and for real materials such as
porous sandstones. To extract the desired parameters of the microgeometry from
the three-point correlation functions, methods of interpolating and integrating
these lattice-based empirical values have been developed. Methods of finessing
the theory to give estimates of physical properties when the available data are not
adequate to permit use of the full theory have also been developed.

1. Introduction. Various methods of estimating effective properties of com-
posite materials require geometrical or topological information contained in sta-
tistical correlation functions. If the three-point correlation functions are measured
using digital image processing methods [1], the values are computed for a discrete
set of admissible triangular arguments corresponding to triangles whose vertices
are commensurate with a simple cubic lattice. To extract the desired information
about microgeometry from the correlation functions, methods of interpolating and
integrating between these lattice-based values have been developed [2].
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Whereas the variational bounds derived by Hashin and Shtrikman [3] for elas-
tic constants depend only on the volume fractions and the moduli of the con-
stituents of the composite, nearly all of the improved bounds on physical prop-
erties require additional information about the microstructure of the composite.
Perhaps the most common method of quantifying this microstructural information
comes in the form of the n-point spatial correlation functions. These functions
were introduced into this problem by Brown [4] in his early work on obtaining
estimates of effective constants in series form. Debye et al. [5] used the angular
distribution of scattered x-rays to measure the two-point spatial correlation func-
tion and estimate the specific (internal) surface area of porous materials. Prager
[6] used these same functions in his early formulation of variational bounds for the
fluid permeability of porous media. Beran [7] also needed them in his variational
approach for finding bounds on the dielectric constant. Theoretical results that
require the information contained in the correlation functions have subsequently
been obtained by many authors over a period of many years [8-16], and we may
expect more applications will be found in the future. It is therefore clear that
methods of measuring these functions are needed in order to make these theo-
retical results accessible to experimentalists and engineers interested in designing
new materials. Corson [13] was the first to try to measure the three-point cor-
relation function, but — with the advent of modern image processing techniques
and faster computers — better techniques are available to us now [1,17,18] than
were available to him then.

In this paper we will define the correlation functions in Section 2 and present
some of their more important general properties. Practical approximation meth-
ods are also discussed. In Section 3 we discuss the parameters of microgeometry
that are commonly encountered in studies of electrical, thermal, and elastic com-
posites. To provide some new insight into the structure of the correlation func-
tions, we present a new method of visualizing the three-point correlation functions
in Section 4.

2. Spatial correlation functions. A discussion of the significance of the
spatial correlation functions has been presented by Torquato and Stell [14] and
a detailed analysis of methods for obtaining these functions experimentally using
image processing techniques was presented in [1]. We will not repeat these detailed
discussions here, but it is still necessary to define the correlation functions and
mention their relevant properties. The analysis presented is limited to two-phase
composite media.

Let p(Z) be the value of some property of a random composite material (e.g.,
electrical or thermal conductivity, dielectric constant, bulk or shear modulus, etc.)
which assumes one of two values p, or p; depending on whether 7 is located in a
grain of material 0 or material 1. Define the indicator or characteristic function

PN it
f(z)_ PL—Dpo (1)

Then f(Z) = 0 in material 0 and f(Z) = 1 in material 1. For example, in a porous
medium we may arbitrarily label all solid regions as material 0 and all void regions
as material 1. Since complete knowledge of the stochastic variable f is seldom
available, our interest in the characteristic function is generally limited to a few



Figure 1. Pseudo-gray scale image of a cross section of a glass bead sample obtained
by digitizing a raw scanning electron microscope image. Dark areas are solid and
light areas are epoxy that has been injected into the pore space. This image
must be registered (ones or zeroes must be assigned to every pixel) before the
spatial correlation functions are computed. To establish the scale of this image,
the apparent diameter of the largest particles is approximately 100u.

of its statistical properties. If chosen properly, these quantities are often sufficient
to provide the data needed for variational bounds on the macroscopic average of
the property being studied [1]. Figure 1 shows an example of a scanning electron
microscope image of a cross section of a real material (a glass bead sample) prior
to registration.

The first three spatial correlation functions are defined by

81 =< f(Z) >= ¢, (2)
Sy (F1,72) =< f(Z + 71) f(Z+ 72) >, (3)

and )
S3(71,72,73) =< f(Z+ 71) f(Z+ 72) f (£ +73) > . (4)

The brackets < - > indicate a volume average over the spatial coordinate z. The
volume fraction of constituent 1 is given by ¢. We will refer to the three correlation
functions defined this way as the one-, two-, and three-point correlation functions,
respectively. Since two points lie along a line and three points lie in a plane, the
two-point and three-point correlations (as well as the one-point correlation) may
be measured by processing digital images of material cross sections. In the present
paper, we will stress the three-point correlation functions. In general, we assume



that the composite medium of interest is statistically homogeneous so that on
average only the differences in the coordinate values are significant (translational
invariance). Furthermore, we often assume that the material is at least locally
isotropic so that the averages do not depend on orientation of the arguments. (An
example of local isotropy in conjunction with global anisotropy is a transversely
isotropic material composed of thin layers of isotropic materials. Such a material
can be treated if the correlation functions are determined by examining cross
sections taken perpendicular to the axis of symmetry.) With these assumptions,
we find that the two-point correlation function simplifies to

S (771,772) = 5’2(7_"12) =5 (le), (5)

while the three-point correlation function satisfies

S3 (7_"1,7_"2,7_"3) =53 (ﬂz,ﬁs) =53 (7“12,7’13,#12.13), (6)

where

Tig = Tj = T3, rij =| 7ij |,
and

Bijik = €OSO = Ty - T [TijTike
The two-point correlation Sy(r) is the probability that two points a distance r = rq
apart are both in material 1. The three-point correlation function Ss(r,s,u) is
the probability that all three vertices of the triangle determined by (r,s,u) lie in
material 1.

In a random material possessing no long range order, we have

lim  Ss(r,s,pu) = $Sa(s) (7)

sfized,r—oo

and
lim Ss(r,s,p) = ¢°, (8)

7,8—00

assuming that g # 1 or that the difference r — s is not fixed if p = 1. The most
important property of S; for statistically homogeneous and isotropic media is the
fact that the value depends only on the size and shape of the triangle formed by
its arguments, not on the orientation of that triangle. Thus,

S3 (7’12,7"13,#12,13) =53 (721,7”23,#21,23) = 53(7”31,7’32,#31,32)- (9)

Furthermore, the order of the first two arguments may be freely interchanged.
It is important to account for the symmetries (9) when designing a scheme to
calculate, sort, and store the values of S3, otherwise the stored values could be as
much as sixfold degenerate. Such a scheme has been described in [2].

In general, these spatial correlation functions must be determined empirically.
These one-, two-, and three-point correlation functions may be found using dig-
ital image processing techniques described previously [1]. Accurate values of S,
are not difficult to obtain for small triangles whose vertices fit on the discrete
lattice composed of the pixels in a digitized image (we call such triangles “lattice-
commensurate”). However, there are several practical reasons why it is virtually
impossible to obtain accurate values of the three-point correlation functions for



large vertex separations: (i) The number of lattice-commensurate triangles of
large size increases like the cube of the length of the longest side of the triangle
(in pixel units), so storage of computed values of S; rapidly becomes difficult. (77)
As the triangle becomes large, fewer and fewer of them will fit on an image of
fixed size, so the size of the statistical sample of S; for large arguments rapidly
decreases and accuracy therefore suffers. Since the integrals used to define the
parameters of the microgeometry are over triangles of all sizes, these practical
limitations to our knowledge of S; must be accounted for in any image analysis
scheme we devise.

Another significant practical issue arises due to the structure of the correlation
function itself. Although the asymptotic value of S;3(r, s, p) for large triangles is ¢*
as stated in (8), there are three exceptions and two are important: () If either
r =0 or s =0, then the triangle collapses to a straight line and the value of the
angle cosine p is immaterial. In this situation,

S3(0, s, 1) = Sa(s) or S3(r,0,p) = Sa(r). (10)

However, since these results are independent of x, we will see that (10) causes no
problems in the integrals for the parameters of microgeometry. (#) On the other
hand, if r = s, then with x = 1 the triangle again collapses to a straight line and

we find
S3(r,r,1) = Sa(r). (11)

For large r, we find that S; approaches ¢? instead of ¢* for either (10) or (11), but

(11) is more troublesome because it does depend on angle. (i) Similarly, if r ~ s
and r is large, then for any value of p it is easy to see that

S3(r, s, 1) = ¢S5(t), (12)

where ¢ = (r> 4+ s> — 2rsp)? is the length of the third side of the triangle in argument
of S;. Eq. (12) follows from (4) by noting that if both » and s are large while ¢
is small, then one of the three vertices of the triangle is far from the other two
and therefore only weakly correlated with them. Thus, the distant point may be
removed from the average in (4) and its contribution included through the factor
¢ in (12), c.f., Eq. (7). Note that (12) is an approximation while (11) is exact. As
t — 0, we see that (12) smoothly approaches (11) only for such large values of r
that Sy(r) = ¢>.

To treat the special regions of S; noted in the last paragraph and to provide
an approximate solution to the problem of finding accurate values of S; for large
triangular arguments, we introduce the following approximation when at least one
of the two sides r, s is large:

S3(r, s, 1) = S2(z)S2(y)/ ¢, (13)

where z and y are the two shortest sides of the triangle whose three sides are r, s, ¢.
When r =0, z=r =0 and y = s so (13) gives the exact result (10). When r = s and
p=1,z=t=0and y =r so (13) gives the exact result (11). When r ~s and ¢ < r,
z =t and y = the smaller of » and s (say r), then (13) gives

S3(r, 5, 1) = S3(8)Sa(r) /9, (14)



which reduces to (12) when r is large, as we have assumed it is.

Note that when z =y =0, (13) gives the exact result S;(0,0,4x) = ¢ and, when
z and y are both large, (13) gives the correct asymptotic limit S; — ¢3. Thus,
although (13) is an approximation, it does reproduce all the special limits we have
discussed. Furthermore, the use of (13) for large arguments solves the problem
of obtaining accurate values of S; for large arguments and also eliminates the
storage problem, since S, is much easier to compute and store than S;. Finally,
note that the approximation (13) is superior to other approximations that have
been used [19] such as Si(r,s,u) = S»(r)S2(s)/¢ which has no angular dependence
(and therefore would produce nothing if used in the integrals) or such as Ss(r, s, n) =
S2(r)(S2(s) + S2(t))/2¢ which does not satisfy all of the limiting conditions.

We will show an example later that illustrates the accuracy of the approxima-
tion (13) for large arguments.

3. Parameters of microgeometry. Milton [15,16] has introduced two
parameters depending on the microgeometry of a composite through the three-
point correlation function S;. These two geometric parameters of interest for
studies of electrical or thermal conductivities and elastic constants are

A +1
5'3 (rys u
T A R i)
and
_5G . 150 + sgrsu
m =0 Y BT e i [T as Puln) (16)

where ¢1 = ¢, g9 = 1 —¢1, and Py(p) and P4(,u) are the Legendre polynomials of order
2 and 4 given respectively by

Py(p) = (35 — 1)

and
1 4 5
Py(p) = g(35p% - 304" +3).

The complements of ¢; and 7, are ¢, =1 - ¢ and 5y =1 — 5, respectively. All four
of these constants lie in the range [0.1].

The integrands of both integrals (15) and (16) are singular for small values of
r,s and poorly behaved for large values of r,s. The conditional convergence of the
integrals requires that the integration over p be performed prior to the integrals
over r and s. The singularity at the origin may be handled easily by standard
methods [20]. The exact relations (10) guarantee that triangles with at least one
side of vanishing length have no angular dependence and therefore no contribution
to these integrals.

Recalling the important fact (12), we can improve the rate of convergence at
large values of the independent variables r and s by adding and subtracting a term
that can be integrated analytically [16] giving

Al + 53 7‘ ¢152( )
—0 A’—o0 2¢0¢1 / dr/ ds/ Pale) ()

G=¢1+ lzm lim




and

5 16 214+ Iz l2
= (3G +16¢1)/21 + A AT 71750(]51

where ¢ = (r? + s> — 2rsp)7. The integrals of S; may be evaluated using numerical
methods described in detail in references [2] and [20], or they may be evaluated
more simply using methods we will describe in Section 4.

/ dr/ ds/ S5(r, 5, 1) "5152(”}’4(“), (18)

TS

A physical interpretation for the parameters ¢; and 7, is lacking at the present
time. However, it is known that for the relevant applications (effective electrical
or thermal conductivity, dielectric constant, elastic constants, etc.) the effective
constants are themselves scale invariant and, therefore, any pertinent parameters
of the microgeometry should also be scale invariant. Egs. (15) and (16) clearly
satisfy the scale invariance criterion, and it is hard to construct any other scale
invariant scalars depending on S; or integrals of S; (at least this author has not
been able to find any). The scale invariance argument also shows why the Hashin-
Shtrikman bounds depend only on volume fraction information even though S,
appears at intermediate stages of the derivation [9].

One significant practical observation about the results for ¢ and n concerns the
choice of image magnification. The digital image used to produce the empirical
values of §; may or may not contain the level of detail required for accurate
computation of these integrals. We have found [2] that our integration scheme
produces good results for ¢ when the effective radius R of the penetrable spheres
satisfies R/H ~ 12 where H is the pixel width. For n the best results were obtained
when the effective radius of the penetrable spheres satisfied R/H ~ 25. Thus, the
image magnification required for the two integrals differs by about a factor of 2.
This result is very reasonable when we compare the Legendre polynomials P, and
P, appearing in the integrands. Since P, has twice as many zeroes as P, it is clear
that, whatever resolution is required to obtain accurate values of ¢, about twice
that resolution will be needed to obtain comparable accuracy for 5. The observed
behavior conforms to this expectation.

Although we expect this factor of 2 difference in optimum image magnification
to be maintained for real materials, we do not expect that these particular values
of (particle radius/pixel size) will be appropriate for all materials. The spherical
particle shape and the lack of both cracks and surface roughness make the pene-
trable sphere model somewhat unrealistic. If the magnification of an image must
be increased substantially beyond the values quoted in the preceding paragraph,
then it is likely that the number of pixels in the image will also have to increase
beyond the value of 512x512 assumed here. With the largest triangles having side
1 < 64, the total number of S; values computed from an image is 47377. Increasing
the largest triangle size by a factor of 2 means increasing the total number of S;
values to 364065 [2]; such an increase entails storing more computed values of S;
than the total number of pixels in the original image. If such an increase in the
data base is really needed for accurate determination of the integrals of interest,
it might be preferable to use the digitized image itself as the data base for the
larger triangles and compute the values of S; for these triangles as needed during
the integration. Another approach would be to increase the number of pixels per
image to 1024x1024 or 2048x2048 directly or by constructing a mosaic. The in-
terpolation technique developed in [2] could be used with any of these approaches



to the integration problem, and is used with still another approach in the next
section.

4. Visualization of three-point correlations. Because the three-point
correlation function S;(r, s, cos ) is a function of triangle shape and size and there-
fore of three arguments, it is somewhat difficult to display the function. If we fix
the angle ¢ between the sides r,s of the triangle, then it is possible to display the
resulting function of two variables. The display can take the form of a contour
plot in the (r,s)-plane showing lines of constant S;(r, s, u); the display could be per-
formed using three-dimensional plotting routines that actually show the surface of
S3(r,s,u) above the (r,s)-plane; or the display can be presented in color as we will
do here (see Figure 2). The color display has the advantage of a contour plot in
that all of the function can be shown simultaneously (three-dimensional surface
plots always suffer from the fact that part of the surface is hidden behind the
peaks of the high values closest to the viewer). Furthermore, it has the advantage
that quantitative information about the values of the function are coded into the
color mapping.

Figure 2 shows nine views of the three-point correlation function computed
from the cross section of the glass bead sample shown in Figure 1. The nine views
were chosen for equally spaced angles from 6 = 0° to ¢ = 180°. The superimposed
protractor shows clearly what the angle is for each frame displayed. The color
bar at the bottom shows the mapping between color and the numerical value of
the three-point correlation function. Since the porosity (volume fraction of void
space) for the glass bead sample was around 30%, the spectrum of colors has been
compressed in this example so the interesting features are most easily seen.

There were 512x512 pixels in Figure 1. The two-point correlation function was
computed to a lag of 256 pixel widths. The full three-point correlation function
was computed only for triangles with largest side < 64 pixel widths, and the display
in each frame of Figure 2 shows the composite three-point correlation function for
triangles with largest side < 128 pixel widths. The values for S; in the upper left
corner of each frame were computed using the interpolation scheme of [2]. Note
that the region where this interpolation scheme is used depends on the angle: For
9 = 0°, this region is a 64x64 pixel square. For ¢ = 90°, this region is one-quarter
of a circle with 64 pixel radius. For ¢ = 180°, this region is an isosceles right
triangle with adjacent sides 64 pixels in length. The remaining values of S; were
obtained using the approximation (13). The accuracy of (13) for large arguments
is demonstrated in Figure 2 by the high degree of continuity observed between
the regions calculated using the different methods.

The main features of the three-point correlation function are easily deduced
from this display. All nine frames show the characteristic behavior along the top
and left hand sides that the three-point correlation function is independent of angle
if either r =0 or s =0 — the reason being that if one side of the triangle vanishes
then the triangle reduces to a line and the three-point correlation function is just
the two-point correlation function for the length of that line. The single frame
that is most distinct from all the others is for 6 = 0°. When the angle between r and
s vanishes and r = s, then again the value of the three-point correlation function
is given by the two-point correlation function Sy(r). This behavior dominates the
frame in the lower right of Figure 2. As the angle increases monotonically from



zero, we see that the correlation function becomes nearly independent of angle
for 9 > 90°, but the significantly higher values of the correlation function at small
angles when r = s is still very apparent for ¢ = 22.5°.

Once we have the capability of displaying the three-point correlation function
for different choices of angle as in Figure 2, it is easy to make the next step of com-
puting the parameters of the microgeometry ¢ and . To do so, we must first do
the angular integration by multiplying the values of S; by the appropriate values
of the Legendre polynomials for each angle and then combining them in quadra-
ture. This step produces the integrals [ duSs(r,s, ) Py(p) and [dpSs(r, s, p)Pa(p). The
remaining integrals over the square domain in the (r,s)-plane are straightforward.
The accuracy of the resulting values of ¢ and n will depend strongly on the choice
of image magnification used. In particular, the examples chosen for display in
Figure 2 were chosen to illustrate the characteristics of the correlation function,
but higher resolution is required to obtain accurate values of the parameters of
microgeometry if this integration scheme is to be used. Other integration schemes
have been used to produce more accurate results [2, 19, 20].

5. Discussion. We have shown that it is possible to obtain useful measured
values of three-point correlation functions for real materials, to interpolate and
integrate those values to find the parameters of the composite microgeometry, and
to use new visualization techniques to gain insight into the structure of the corre-
lation functions themselves. If our information is incomplete — so that accurate
values of both ¢ and 5 cannot be obtained from image analysis techniques, other
methods of attack may be required. It has been shown elsewhere [21] that much
can be learned about effective properties when other information is available. For
example, the existence of the bounds on elastic constants using the microgeom-

etry parameters is enough to show that some improvements can be made to the
Hashin-Shtrikman bounds.
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COLOR FIGURE CAPTION

Figure 2. Display of the three-point correlation function S;(r,s,cos6) as the angle
9 between the sides r,s of the triangular argument varies from 0° to 180° in steps
of 22.5°. In each frame, the origin for the (r,s)-plane is in the upper left corner.



