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Abstract

Gassmann’s fluid substitution formulas for bulk and shear moduli were originally derived for the
quasi-static mechanical behavior of fluid saturated rocks. It has been shown recently that it is
possible to understand deviations from Gassmann’s results at higher frequencies when the rock
is heterogeneous, and in particular when the rock heterogeneity anywhere is locally anisotropic.
On the other hand, a well-known way of generating anisotropy in the earth is through fine
layering. Then, Backus’ averaging of the mechanical behavior of the layered isotropic media at
the microscopic level produces anisotropic mechanical behavior at the macroscopic level. For our
present purposes, the Backus averaging concept can also be applied to fluid-saturated porous
media, and thereby permits us to study how deviations from Gassmann’s predictions could arise
in an elementary fashion. We consider both closed-pore and open-pore boundary conditions
between layers within this model in order to study in detail how violations of Gassmann’s
predictions can arise. After evaluating a number of possibilities, we determine that energy
estimates show unambiguously that one of our estimates — ch)f = (C11 + C33 —2C13 — Cgg) /3
— is the correct one for our purposes. This choice also possesses the very interesting property
that it is one of two sets of choices satisfying a product formula 6KVG£?f =6K Rch)f = wiw_,
where wy are eigenvalues of the stiffness matrix for the pertinent quasi-compressional and
quasi-shear modes. Ky is the Reuss average for the bulk modulus, which is also the true bulk
modulus K for the simple layered system. Ky is the Voigt average. For a polycrystalline
system composed of simple layered systems randomly oriented at the microscale, Ky and Kp

(2) (1)

are the upper and lower bounds respectively on the bulk modulus, and G I and G, 7 are the

upper and lower bounds respectively on the G.s; of interest here. We find that ch)f exhibits
the expected/desired behavior, being dependent on the fluctuations in the layer shear moduli
and also being a monotonically increasing function of Skempton’s coefficient B of pore-pressure
buildup, which is itself a measure of the pore fluid’s ability to stiffen the porous material in

compression.

1 Introduction

It has been shown recently (Berryman and Wang, 2001) that local anisotropy in heterogeneous
porous media must play a significant role in deviations from the well-known fluid substitution
formulas of Gassmann (Gassmann, 1951; Berryman, 1999). In particular, it is not easy to see
in an explicit way how fluid dependence of the effective shear modulus G.s; of such systems
can arise within a Gassmann-like derivation. Locally isotropic materials have been shown to be
incapable of producing such results, even though such effects have been observed in experimental
data (Berryman et al., 2002a,b). So a simple theoretical means of introducing anisotropy into
such a poroelastic system is desirable in order to aid our physical intuition about these problems.

When viewed from a point close to the surface of the Earth, the structure of the Earth is
often idealized as being that of a layered (or laminated) medium with essentially homogeneous
physical properties within each layer. Such an idealization has a long history and is well
represented by famous textbooks such as Ewing et al. (1957), Brekhovskikh (1980), and White
(1983). The importance of anisotropy due to fine layering (i.e., layer thicknesses small compared
to the wavelength of the seismic or other waves used to probe the Earth) has been realized



more recently, but efforts in this area are also well represented in the literature by the work
of Postma (1955), Backus (1962), Berryman (1979), Schoenberg and Muir (1987), Anderson
(1989), Katsube and Wu (1998), and many others.

In a completely different context, because of the relative ease with which their effective
properties may be computed, finely layered composite laminates have been used for theoretical
purposes to construct idealized but, in principle, realizable materials to test the optimality
of various rigorous bounds on the effective properties of general composites. This line of re-
search includes the work of Tartar (1976), Schulgasser (1977), Tartar (1985), Francfort and
Murat (1986), Kohn and Milton (1986), Lurie and Cherkaev (1986), Milton (1986), Avellaneda
(1987), Milton (1990), deBotton and Castanieda (1992), and Zhikov et al. (1994), among oth-
ers. Recent books on composites by Cherkaev (2000), Milton (2002), and Torquato (2002) also
make frequent use of these ideas.

In this work, we will study some simple means of estimating the effects of fluids on elastic
and poroelastic constants and, in particular, we will derive formulas for anisotropic poroelastic
media using a straightforward generalization of the method of Backus (1962) for determining the
effective constants of a laminated elastic material. There has been some prior work in this area
by Norris (1993), Gurevich and Lopatnikov (1995), Gelinsky et al. (1998), and others. However,
our focus is specific to the issue of shear modulus dependence on pore fluids [see Mavko and Jizba
(1991) and Berryman et al. (2002b)]. We initially review facts about elastic layered systems
and then show that, of all the possible candidates for an effective shear modulus exhibiting
mechanical dependence on pore fluids, the evidence shows that one choice is unambiguously
preferred. We then use Backus averaging in the layered model to obtain an explicit formula
for this shear modulus. The results agree with prior physical arguments indicating that fluid
presence stiffens the medium in shear, but the layered material needs substantial inhomogeneity
in its shear properties for the effect to be observed. An Appendix provides a simple derivation
of some useful product formulas that arise in the analysis.

2 Notation for Elastic Analysis
In tensor notation, the relationship between components of stress 0;; and strain uy; is given by

oij = Cijkitk,i, (1)

where Cjjy; is the stiffness tensor, and repeated indices on the right hand side of (3) are summed.
In (1), ug is the kth Cartesian component of the displacement vector u, and uy; = Ouy/0x;.
Whereas for an isotropic elastic medium the stiffness tensor has the form

Cijrt = Mijopt + o1 (k051 + Sitdje) 5 (2)

depending on only two parameters (the Lamé constants, A and p), this tensor can have up to 21
independent constants for general anisotropic elastic media. The stiffness tensor has pairwise
symmetry in its indices such that Cjjx = Cjir and Cijrr = Cjjik, which will be used later to
simplify the resulting equations.

The general equation of motion for elastic wave propagation through an anisotropic medium
is given by

pi; = 04j; = CijriU,ij, (3)



where 1; is the second time derivative of the 7th Cartesian omponent of the displacement vector
u and p is the density (assumed constant). Equation (3) is a statement that the product of
mass times acceleration of a particle is determined by the internal stress force o;; ;. For the
present purposes, we are more interested in the quasistatic limit of this equation, in which case
the left-hand side of (3) vanishes and the equation to be satisfied is just the force equilibrium
equation

oij,j = 0. (4)

A commonly used simplification of the notation for elastic analysis is given by introducing
the strain tensor, where

Ou;  Ou;
e = s+ = (o + 52). ®

Then, using one version of the Voigt convention, in which the pairwise symmetries of the stiffness
tensor indices are used to reduce the number of indices from 4 to 2 using the rules 11 — 1,
22+ 2,33 — 3,23 or 32 » 4, 13 or 31 — 5, and 12 or 21 — 6, we have

o1 Ci1 Ci2 Ci3 e11
022 C12 Co Cog €22
o33 | _ | Ci3 C23 C33 €33 (6)
023 2Cy4 €23
031 2C55 €31
o12 2C66 €12

Although the Voigt convention introduces no restrictions on the stiffness tensor, we have chosen
to limit discussion to the form in (6), which is not completely general. Of the 36 coefficients
(of which 21 are generally independent), we choose to treat only those cases for which the 12
coefficients shown (of which nine are generally independent) are nonzero. This form includes
all orthorhombic, cubic, hexagonal, and isotropic systems, while excluding triclinic, monoclinic,
trigonal, and some tetragonal systems, since each of the latter contains additional off-diagonal
constants that may be nonzero. Nevertheless, we will restrict our discussion to (6) or to the
still simpler case of transversely isotropic (TI) materials.

For TI materials whose symmetry axis is in the z3 direction, another common choice of
notation is 011 = 022 = a, 012 = b, C13 = 023 = f, 033 = C, 044 = C55 = l, and CG6 = m.
There is also one further constraint on the constants that a = b+ 2m, following from rotational
symmetry in the z1xs-plane. In such materials, (6) may be replaced by

J11 a b f €11

099 b a f €22

o3 | _ | f [ ¢ €33 (7)
093 21 €923 ’

031 2] €31

012 2m €12

in which the matrix has the same symmetry as hexagonal systems and of which isotropic
symmetry is a special case (havinga =c=A+2u,b=f =X, and l = m = p).



3 Backus Averaging of Fine Elastic Layers

Backus (1962) presents an elegant method of producing the effective constants for a finely
layered medium composed of either isotropic or anisotropic elastic layers. For simplicity, we
will assume that the layers are isotropic, in which case the equation relating elastic stresses o;;
to elastic strains e;; is given by

o11 A+ 2# A A €11
g922 A A + 2;1, A €92
o33 | _ A A A4 2u €33 (8)
093 2p €23
031 2p €31
o12 2p €12

The key idea presented by Backus is that these equations can be rearranged into a form where
rapidly varying coefficients multiply slowly varying stresses or strains. For simple layering, we
know physically (and can easily prove mathematically) that the normal stress and the tangential
strains must be continuous at the boundaries between layers. If the layering direction is the z or
x3 direction as is the normal choice in the acoustics and geophysics literature, then o33, 023, 031,
e11, €22, and ej9 are continuous and in fact constant throughout such a laminated material. If the
constancy of e11, egs, and e1o were not so, the layers would necessarily experience relative slip;
while if the constancy of o33, 023, and o3; were not so, then there would be force gradients across
boundaries necessarily resulting in nonstatic material response to the lack of force equilibrium.

par By making use of this elegant idea, we arrive at the following equation

4p(Ap) 22 A
o11 A+2u A+2u A+2u el
221 4u(A+p) A
022 A2u A2 A +2u €22
_ A A 1
e — o
33 = A2u A2u A2u 33 (9)
€23 5= 023
n
€31 1 031
012 2u €12

24

which can be averaged essentially by inspection. Equation (9) can be viewed as a Legendre
transform of the original equation, to a different set of dependent/independent variables in
which both vectors have components with mixed physical significance, some being stresses and
some being strains. Otherwise these equations are completely equivalent to the original ones in

(8)-

Performing the layer average using the symbol (-), assuming as mentioned previously that
the variation is along the z or z3 direction, we find, using the notation of (7),

dp(A+p) 22u A

A2u A2 A2u
<o > < 2 > <4u(>\+u)> < A €11
< 099 > A2 A+2u A2u €99

A A 1
TS| <A+2u> <A+2u> - <A+2u> 33
< e3> 1 023

2

< e3r > H 1 031
<012 > <ﬂ> €12




a—f*lc b=f*/c flc el

b—f*fe a—f*lc flc €2

- fle fle —1/c 033
o 1/2l 093 ’(10)

1/2l 031

2m €12

which can then be solved to yield the expressions

a:<>\:\2u>2</\+12u>1+4<u>(\)\+7+2;lj)>’ (1D
b:<>\:\2u>2<>\+12u>_1+2<>\iu2u>’ (12)
c:<)\j2u>_l (13)
f:<A+Azu><>\+12M>_l’ (14)
-y

and
m=(u). (16)

Equations (11)—(16) are the well-known results of Backus (1962) for layering of isotropic elastic
materials. One very important fact that is known about these equations is that they reduce
to isotropic results, having a = ¢, b = f, and [ = m, if the shear modulus p is a constant,
regardless of the behavior of A\. Another fact that can easily be checked is that a = b+ 2m,
which is a general condition that must be satisfied for all transversely isotropic materials and
shows that there are only five independent constants.

4 Bulk Modulus K and Estimates of K.;s for Polycrystals

4.1 Bulk Modulus K
The bulk modulus K for the layered system is well-defined. Assuming that the external com-

pressional/tensional stresses are hydrostatic so that 017 = 092 = 033 = 0, and the total volume
strain is e = eq1 + ego + e33, we find directly that

e =

= (a7)



where, after some rearrangment of the resulting expressions, we have

k=g (Lo 1)_1 (18)
pioo2u3)

The new terms in (18) are defined by

2ui =a+b-2f and 2uz =c—f. (19)
and are measures of shear behavior in the simple layered system. We can write the formula
(18) this way, or in another suggestive form

11 1 2
K—f_a—m—f+c—f’ (20)

in anticipation of results concerning various shear modulus measures that will be discussed at
length in the next section.

4.2 Effective Bulk Modulus Estimates for Polycrystals

Assuming that the simple layered material we have been studying is present locally at some
small (micro-)scale in a heterogeneous (macro-)medium, and also assuming that the axis of
symmetry of these local constituents is randomly distributed so the whole composite medium
is isotropic, then we have a polycrystaline material. The well-known results of Reuss and Voigt
provide simple and useful estimates for moduli of polycrystals [actually lower and upper bounds
on the moduli as shown by Hill (1952)].

4.2.1 Reuss average

The Reuss average is obtained by assuming constant stress, which is the same condition we
applied already to estimate the bulk modulus K for the simple layered material. The well-
known result in terms of compliances (S = C 1) is

1
—— = 2511 + 2512 + S33 + 4S513. (21)
Kpr

It is straightforward to show that this produces exactly the same result as either (18) or (20).
So Kr = K, which should be interpreted as meaning that the lower bound on the bulk modulus
in the polycrystalline system is equal to the bulk modulus of the simple layered system.

4.2.2 Voigt average

The Voigt average is obtained with a constant strain assumption, and leads directly to the
estimate in terms of stiffnesses

Ky = % (2C11 + 2C12 + C33 + 4C13)
=[9f+4a—m—f)+(c—f)]/9=[9f + 4pu] +2u3] /9, (22)

where the final equality makes use of the definitions from (19). It is well-known that Ky >
Keopp > K [see Hill (1952)].



For an isotropic system, the bulk modulus K = A+2u/3. The results (18) and (22) obtained
for Kyp suggest that f plays the role of A and that some combination or combinations of the
constants puj and p3 may play the role of the one nontrivial effective shear modulus G,y for
both the simple layered system and for the polycrystalline system. The combinations arising
here are

2 /1 1\17"
= |- (— 2u% . 2
Gkr [3 (/[{ + 2#;’)] and GKv( M1+M3) /3, ( 3)

the harmonic mean and mean, respectively, of u] and p3 after having accounted for the dupli-
cation of u} in the system. We might anticipate (incorrectly!) that these two estimates of the
magnitude the remaining shear response will be, respectively, the lowest and the highest that
we will find. However, in fact both these estimates usually take lower values than the ones we
study more carefully in the next section.

5 Effective Shear Modulus Estimates for Simple Layers and for
Polycrystals

To understand the effective shear modulus G.s; and how to estimate it, we need first to intro-
duce some facts about the eigenvalue structure of the elasticity matrices.

5.1 Singular value decomposition

The singular value decomposition (SVD), or equivalently the eigenvalue decomposition in the
case of a real symmetric matrix, for (6) is relatively easy to perform. We can immediately write
down four eigenvectors:

; (24)

OO = O OO
SR OO O O
_ o oo oo

and their corresponding eigenvalues, respectively 2, 21, 2m, and a—b = 2m. All four correspond
to shear modes of the system. The two remaining eigenvectors must be orthogonal to all four
of these and therefore both must have the general form

(1, 1, Q, 0,0, O)T (25)
with corresponding eigenvalue
w=a+b+ fQ. (26)
The remaining condition that determines both © and w is

w =2f +cQ, (27)



which, after substitution for w, leads to a quadratic equation having the solutions

o3 (= )

Then (26) and (28) imply that

wiw_ = (a+ b)c— 2f2 (29)
and
wytw_=a+b+c=2(a—m)+ec, (30)
which are two identities that will be used repeatedly later.
The ranges of values for Q4 are 0 < Q < oo and, since Q_ = —2/Q,;, —00 < Q_ < 0. The
interpretation of the solutions €2, is simple for the isotropic limit where 2, =1 and Q_ = -2,

corresponding respectively to pure compression and pure shear modes. For all other cases,
these two modes have mixed character, indicating that pure compression cannot be excited
in the system, and must always be coupled to shear. Some types of pure shear modes can
still be excited even in the nonisotropic cases, because the other four eigenvectors in (24) are
unaffected by this coupling, and they are all pure shear modes. Pure shear (in strain) and pure
compressional (in stress) modes are obtained as linear combinations of these two mixed modes
according to

1 1 1

1 1 1
0 o | —2

al g [T o |7 1+ ) E (31)

0 0 0

0 0 0

with @ = —2(Q24 — 1)/[Q4(Q4+ + 2)] for pure shear, and

1 1 1

1 1 1

O, o | 1

0 0 0

0 0 0

and with g = Q4 (94 —1)/(24 + 2) for pure compression.

To understand the behavior of 2, in terms of the layer property fluctuations, it is first
helpful to note that the pertinent functional f(x) = % [—:1: + \/8-|-—362] is easily shown to be a
monotonic function of its argument z. So it is sufficient to study the behavior of the argument

z=(a+b-0)/f.



5.1.1 Exact results in terms of layer elasticity parameters

Combining results from Egs. (11)—(14), we find after some work on rearranging the terms that

H;_c = <A+A2u>1 [<A+A2u> _6</\il;lﬁ>

B T R

where Ay = p — (u) is the deviation of the shear modulus from the layer-averaged shear
modulus m. Note that the term in curly brackets in (33) is in Cauchy-Schwartz form (i.e.,
() (%) — (aB)* > 0) and therefore is always non-negative. This term is also effectively
quadratic in the deviations of u from its layer average, and thus is of higher order than the
term explicitly involving Ap. This fact, together with the fact that (Ap/p) = 1—(u) (1/u) <0,
suggests that the dominant corrections to unity (since the leading term is exactly unity) for this
expression will be positive if A and u are positively correlated throughout all the layers, but
the correction could be negative in cases where there is a strong negative correlation between A
and p. If the fluctuations in shear modulus are very large throughout the layered medium, then
the quadratic terms can dominate, in which case the result could be less than unity. Numerical
examples developed by applying a code of V. Grechka [used previously in a similar context by
Berryman et al. (1999)] confirm (and, in fact, motivated) these analytical results.

Our main conclusion is that the shear modulus fluctuations giving rise to the anisotropy due
to layering are (as expected) the main source of deviations of (33) from unity. But, there are
some other more subtle effects present having to do with the interplay between A, y correlations
as well as the strength of the y fluctuations that ultimately determine the magnitude of the
deviations of (33) from unity.

5.1.2 A fifth effective shear modulus?

From what has gone before, we know that there are four eigenvalues of the system that are
easily identified with effective shear moduli (two are [ and two are m). The bulk modulus K
of the simple system is well-defined, and the bounds on K.f; for polycrystals are quite simple
to apply and interpret. But we are still missing an important element of the overall picture of
this system, and that is how the remaining degree of freedom is to be interpreted. It seems
clear that it should be imterpreted as an effective (quasi-)shear mode, since we have already
accounted for the bulk mode. It is also clear that analysis of this remaining degree of freedom
is not so easy because it is never an eigenfunction of the elasticity/poroelasticity tensor except
in the cases that are trivial and therefore of interest to us here only as the isotropic baseline
for comparisons.

Although it seems problematic to define a new shear modulus arbitrarily, we will now
proceed to enumerate a number of possibilities and then, by a process of elimination, arrive at
what appears to be a useful result.



5.2 Bounds for polycrystals
5.2.1 Reuss average for shear

The well-known Reuss result for shear modulus is

G}_zl:%(8511—4512+4533—8513+GS44+3566)
1 /6 6  9f+4a—-m—f)+(c—f)
_E(7+E+ @ me_ ] ) (34)
but
(a—m)e—f>=[la—m—f)+ (c— )] Kr = [y} + 2u3]Kr, (35)

again using the definitions from (19). Combining these results, we have

o172 2 L 3Ky
GRIZ—(—+E+[HT+2M§] IK—R>

AW (36)

Since the multiplicity of the shear modulus eigenvalues (I and m) is properly accounted for (2
and 2, respectively, out of 5), this result strongly suggests that one reasonable estimate of the
fifth shear modulus for the system is

(W) — (% 1+ 9, KR
Gefr = (b1 + 2p3) 3Ky (37)

5.2.2 Voigt average for shear

The Voigt average for shear modulus is

1
Gy = 5 [2C11 — Ci2 + C33 — 2C13 4+ 6Cuq + 3Css]

1
L

(a—m—f)+(c—f)+6l+6m]. (38)

[Note that (38) corrects an error in equation (69) of Berryman and Wang (2001).] This result
shows that the combinations 2(a — m — f) and (¢ — f) again play the roles of twice a shear
modulus contribution. By analogy to (36) and (37), we could define another effective constant

GO =[(a—m— )+ (c— /3= (uF +2u3) /3. (39)

This constant has a sensible dependence on these parameters and is consistent with the rest
of our analysis (see Discussion of G.ry below), and also a somewhat simpler form than (37).

Both this constant and Gi})f reappear in the later analyses. Because these two estimates are

related to rigorous bounds, it seems that estimates not lying in the range from ch)f to ch)f
can surely be excluded from consideration.

10



5.3 Estimates based on matrix invariants
5.3.1 Trace estimates

The trace of the stiffness matrix C is an invariant, and equals the sum of its eigenvalues.
Similarly, the trace of the compliance matrix S is also invariant, and equals the sum of its
eigenvalues, which are the inverses of the eigenvalues of C. These facts provide two more ways
of obtaining estimates of the G,y we seek.

Trace estimate from S

After eliminating the four eigenvalues associated with simple shear, the remainder of the
trace of S is just the sum of the inverses of w; and w_. To obtain an estimate of Gy, we
again make use of the known bulk modulus K and set

1 1 1 1
e T 4
3K + QG(?})f W4 + w_’ (40)

which can easily be shown to imply that

* * K
Gy =t +2055) g2 = Gy (41)

So this compliance estimate again produces the same result found earlier in (37).

Trace estimate from C

Again eliminating the four eigenvalues associated with simple shear, the remainder of the
trace of C' is just the sum of w; and w_. To obtain another estimate of G.s¢, we make use of
the known bulk modulus K as before and set

3K +2G'7, = wy +w_. (42)

After some manipulation, we find

(0 _2a—m— P+ f)? _,m)*+2u)’
N mmmfre—f) st )

2G

So this estimate does not agree with any of the others, but it is nevertheless an interesting new
combination of the shear modulus measures (a — m — f) and (¢ — f).

5.3.2 Determinant estimates

Another invariant of an elasticity matrix is its determinant, which is given by the product of
its eigenvalues. Thus,

detC = wiw (20)2(2m)?  and  detS = [det O], (44)

and so there is only one new estimate available based on this fact. In particular, if we assume
that a reasonable estimate of Gyy might be obtained from this condition, then we would again

11



make use of the four known eigenvalues for shear, and the bulk modulus for the simple layered
medium. Setting

det C = (3K)(2G s ) (202 (2m)?, (45)
comparing to (44), and recalling that K = Kpg, we immediately find

(6) _ WiW—  5~(2)
which is a repeat of an earlier estimate.
It is easy to show that Gf})f < Gg?f, and, since Ggf)f was derived from the Voigt average
(4)

for shear, now we should be able to exclude G if safely from further consideration.

5.3.3 Relationship among estimates

The three estimates of Gy found in this subsection can be related, by making use of the fact
that wy + w_ = wiw_(1/wy + 1/w_). The main result is

(5) (3) (4) (3)
Gepy =~ Gepy _ Gepr = Geys (47)
2G§})f 3K ’

which shows first of all (since K > 0 and Gg?})f > 0) that if any two of these constants are
equal, then they are all equal. Eq. (47) also shows that the value of fo)f always lies between

3)

the other two estimates, so in general G(?f > G(‘L})f > G! £ with equality holding only in the

€ € €
case of isotropic composites.

5.4 Energy estimates

The energy W of the elastic system can be written conveniently in either of two ways, based
on strain and stress respectively:

2W = a(el; + ebo) + cels + 2beriean + 2fess(enn + e22)
= S11(07) + 03y) + S33033 + 2512011092 + 2513033 (011 + 022). (48)
We can use these energy formulas to help decide whether any of the estimates obtained so
far are actually fundamental quantities, by which we mean that they actually provide useful

measures of the energy stored in the system. For example, it is well-known (as we have already
discussed) that, if we set 011 = 099 = 033 = 0, then

W = o¢%/2K, (49)

where K is given by (20). Thus, even though K is not simply related to the eigenvalues of
the system in general, it is still the fundamental measure of compressional energy in the simlpe
layered system.

12



To check to see if any of the shear constants studied so far play a similar role for shear, we
can set e;] = egg = —e33/2 = e/\/g. Then, we find that

W=2[(a-—m—f)+(c—f)led; = Gg?feQ. (50)

So there is no ambiguity in the result for the shear energy. Clearly, G eﬁf)f plays the same role

for shear energy that K plays for bulk energy in this system, again regardless of the fact that
it is not simply related to the eigenvalues.

5.5 Discussion of G,

Our goal is to obtain some new insight into the effective shear modulus of a poroelastic system
in order to understand how the shear and bulk modes become coupled in such systems and
thereby violate Gassmann’s (1951) results for quasi-static systems having nonzero fluid perme-
ability. The purpose of such an analysis will ultimately be to understand why some laboratory
ultrasonics data show that the effective shear modulus of porous saturated and partially satu-
rated rocks/systems has a substantial dependence on saturation when Gassmann’s result would
appear to deny the possibility of such behavior. It was demonstrated by Berryman and Wang
(2001) that such deviations from Gassmann’s predictions are expected, but they are surely not
universal. For example, local elastic isotropy and spherical pores are two cases in which the
shear modulus should remain independent of pore-fluid saturation.

For the transversely isotropic system arising from finely layered isotropic layers, we know
that four out of five of the shear modes of the system are always independent of fluid saturation.
They depend only on the Reuss and Voigt averages of the shear moduli present in the layered
system. The remaining two modes are both of mixed character, not being pure shear or pure
compression. So at some intellectual level it is clear that this coupling imposed through the
eigenvalues is the reason for the shear wave dependence on fluid saturation. But this statement,
although surely correct, is not really helpful in achieving our goal of understanding how the
mixing of these effects happens down at the microscale. The best possible way to elucidate this
behavior would be to make use of a formula for shear modulus (if one were known), containing
the desired effects in it explicitly. But, a rigorous formula of this type is probably not going to
be found. So, the next best option is to have in hand a formula that, although it is known to
be approximate, still has the right structure and thereby permits analysis to proceed.

What is the right structure? The appropriate shear strain that contains all the effects of
interest clearly is of the form (1,1,—2,0,0,0)”. If we apply this shear strain to the stiffness
matrix, the two distinct stresses generated are proportional to 2(a —m — f) [twice] and (c — f)
[once]. So the effective shear modulus we seek should depend on these two quantities, each
of which acts like 2y in the limit of an isotropic system. But in the nonisotropic cases of
most interest, these combinations both include coupling between A and p of the layers through
the Backus formulas — coupling that is good for our purposes. Furthermore, since there are
two nontrivial constants, it is not obvious what combinations to choose for study. But, the
preceding analysis shows that one likely candidate for the effective shear modulus is Gg})f, since

it appears naturally in two out of five of the main cases considered above. Gg)f also appears

in two similar cases, as well as in the energy estimate.

e e
eigenvalue w_ relevant for our study is even more difficult to analyze and interpret (both because

The shear moduli G(?f and G(?f are clearly not eigenvalues; but the most likely candidate
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of its eigenvector’s mixed character and because of the complicated formula relating it to the
elastic constants) than either Gge)f or Gg)f. There are other choices that could be made, but

we will give preference to ch)f and Gg)f in the following discussion — both for definiteness

and because they do seem to be useful constants to quantify and to help focus our attention.

6 Porous Elastic Materials Containing Fluids

Now we want to broaden our outlook and suppose that the materials composing the layers are
not homogeneous isotropic elastic materials, but rather poroelastic materials containing voids
or pores. The pores may be air-filled, or alternatively they may be partially or fully saturated
with a liquid, some gas, or a fluid mixture. For simplicity, we will suppose here that the pores
are either air-filled or they are fully saturated with some other homogeneous fluid. When the
porous layers are air-filled, it is generally adequate to assume that the analysis of the preceding
section holds, but with the new interpretation that the Lamé parameters are those for the
porous elastic medium in the absence of saturating fluids. The resulting effective constants
Adr and pg are then said to be those for “dry” — or somewhat more accurately “drained”
— conditions. These constants are also sometimes called the “frame” constants, to distinguish
them from the constants associated with the solid materials composing the frame, which are
often called the “grain” or “mineral” constants.

One simplification that arises immediately is due to the fact, according to a quasi-static
analysis of Gassmann (1951), that the presence of pore fluids has no mechanical effect on the
layer shear moduli, so pg, = p. There may be other effects on the layer shear moduli due to
the presence of pore fluids, such as softening of cementing materials or expansion of interstitial
clays, which we will term “chemical” effects to distinguish them from the purely mechanical
effects to be considered here. We neglect all such chemical effects in the following analysis. This
means that the lamination analysis for the four effective shear moduli (I, I, m, m) associated
with eigenvectors (since they are uncoupled from the analysis involving A) does not change
in the presence of fluids. Thus, equations (15) and (16) continue to apply for the poroelastic
problem, and we can therefore simplify our system of equations in order to focus on the parts
of the analysis that do change in the presence of fluids.

The presence of a saturating pore fluid introduces the possibility of an additional control
field and an additional type of strain variable. The pressure ps in the fluid is the new field
parameter that can be controlled. Allowing sufficient time for global pressure equilibration will
permit us to consider p; to be a constant throughout the percolating (connected) pore fluid,
while restricting the analysis to quasistatic processes. The change ¢ in the amount of fluid mass
contained in the pores [see Berryman and Thigpen (1985)] is the new type of strain variable,
measuring how much of the original fluid in the pores is squeezed out during the compression
of the pore volume while including the effects of compression or expansion of the pore fluid
itself due to changes in p;. It is most convenient to write the resulting equations in terms of
compliances rather than stiffnesses, so the basic equation for an individual layer in the stack of
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layers to be considered takes the form:

e11 S11 S12 S12 =B o11

ez | _ | S1i2 511 Si2 =B 022 (51)
€33 S12 S12 S11 —p o33 |’

—¢ -8 -B-8 v —pf

The constants appearing in the matrix on the right hand side will be defined in the following two
paragraphs. It is important to write the equations this way rather than using the inverse relation
in terms of the stiffnesses, because the compliances S;; appearing in (51) are simply related to
the drained constants Ay, and pg,- in the same way they are related in normal elasticity, whereas
the individual stiffnesses obtained by inverting the equation in (51) must contain coupling terms
through the parameters 8 and -y that depend on the pore and fluid compliances. Thus, we find
easily that

i _ )\dr + [
Eqr //‘(3)‘dr + 2/1')

Si1 = and Si2 = — Vdr (52)

where the drained Young’s modulus Ey, is defined by the second equality of (52) and the drained
Poisson’s ratio is determined by

A
Vi = 37 ar (53)

>\dr + lj') '

When the external stress is hydrostatic so o = 011 = 099 = 033, equation (51) telescopes

down to
(jC):%m(—la a_/ol;> (—Upf)’ (54)

where e = eq1 + ea9 + €33, Kgr = Agr + %u is the drained bulk modulus, o = 1 — K4/ Ky,
is the Biot-Willis parameter (Biot and Willis, 1957) with K, being the bulk modulus of the
solid minerals present, and Skempton’s pore-pressure buildup parameter B (Skempton, 1954)
is given by

1
B = .
1+ Kp(l/Kf - l/Km)

(55)

New parameters appearing in (55) are the bulk modulus of the pore fluid K; and the pore
modulus K ! = a/¢Ky, where ¢ is the porosity. The expressions for a and B can be generalized
slightly by supposing that the solid frame is composed of more than one constituent, in which
case the K, appearing in the definition of « is replaced by K, and the K, appearing explicitly
in (55) is replaced by Ky [see Brown and Korringa (1975), Rice and Cleary (1976), Berryman
and Milton (1991), Berryman and Wang (1995)]. This is an important additional complication
(Berge and Berryman, 1995), but one that we choose not to pursue here.
Comparing (51) and (54), we find easily that

a (0%

= d
B=3 K, ™ gl

(56)
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All the constants are defined now in terms of “easily” measureable quantities.

When the mechanical changes (i.e., applied stress or strain increments) in the system happen
much more rapidly than the fluid motion can respond, the system is “undrained” — a situation
commonly modeled by taking ( = 0 in the layer, py = Bo, and e = (1 — aB)o/K4,. So the
undrained bulk modulus of the layer is

Kdr
K,=—. 57
Then, it is not hard to show that
o011 Ay + 20 Ay Ay €11
0922 = Au )\u + 2/1, /\u €922 ; (58)
033 Au Au Au+2p €33

where the undrained Lamé constant is given by

A = K — %" (59)
For our purposes, the language used here to describe drained /undrained layers is intended to
convey the same meaning as opened/closed pores at the boundaries separating the layers. If
pores are open, fluid can move between layers, so pressure can equilibrate over long periods of
time. If the pores are closed at these interfaces, pressure equilibration can occur within each
layer, but not between layers — no matter how long the observation time.

With (58) and (59), we can now repeat the Backus analysis for a layered system in which
each layer is undrained. The only difference is that everywhere A appeared explicitly before, now
Ay is substituted. Furthermore, the constants resulting from the Backus lamination analysis
can now be distinguished as a,, by, ¢y, and f, for the undrained system. The constants without
u subscripts are assumed to be drained, i.e., a = a4y, etc. The constants [ and m are the same
in both drained and undrained systems, since they do not depend on either A or A,.

Carrying through this analysis for our main estimate ch)f, we find, after some rearrange-

ment of terms, that
2 1 2
) o) ) | )
Au+2p Au+ 2 Au+2p

Equation (60) is the main result of this paper. It incorporates all the earlier work by making

use of the effective shear modulus G((f) selected in the end by using energy estimates. Then
it is evaluated explicitly here for the simple layered system. The term in square brackets is in
Cauchy-Schwartz form (i.e., (o) (6%) > (@B)?), and thus this term is always nonnegative. The
contribution of this term is therefore a nonpositive correction to the leading term m. Further, it
is clear that the correction is second order in the fluctuations in the shear modulus throughout
the layered material. This fact means that fluctuations must be fairly large before any effect
can be observed, since there are second order subtractions but no first order corrections at all.
Finally, we note that the effect of an increase in the undrained constant A, is to reduce the
magnitude of these correction terms. Thus, since a reduction in a negative contribution leads
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to a positive contribution, it is also clear that an increase in Skempton’s coefficient B always
leads to an increase in the effective shear modulus ch)f, as we expected.

Since each layer in the stack is isotropic, the result (60) may appear to contradict the
earlier results of Berryman and Wang (2001), showing that shear modulus dependence on fluid
properties does not and cannot occur in microhomogeneous isotropic media. But these layered
media are not isotropic everywhere. In particular, if we consider a point right on the boundary
between any two layers, the elastic properties look very anisotropic at these points. So it is
exactly at these boundary points where deviations from Gassmann’s results can and do arise,
leading to the result (60).

We will check these ideas by showing some numerical examples in the next section.

7 Numerical Examples

As we learned in the previous section, large fluctuations in the layer shear moduli are required
before the predicted deviations from Gassmann’s quasi-static constant shear modulus result
will become noticeable. To generate a model that demonstrates these results, I made use of a
code of V. Grechka [used previously in a joint publication (Berryman et al., 1999)] and then I
arbitrarily picked one of the models that seemed to be most interesting for the present purposes.
The parameters of this model are displayed in TABLE 1. The results of the calculations are
shown in Figures 1 and 2.

The model calculations were simplified in one way, which is that the value of the Biot-Willis
parameter was chosen to be a uniform value of = 0.8 in all layers. We could have actually
computed a value of a from the other layer parameters, but to do so would require another
assumption about the porosity values in each layer. Doing this seemed of little use because
we are just trying to show in a simple way that the formulas given here really do produce the
results predicted. Furthermore, if o is a constant, then it is only the product aB that matters.
Since we are using B as the plotting parameter, whatever choice of constant a < 1 is made, it
mainly determines the maximum value of the product @B for B in the range [0,1]. So, for a
parameter study, it is only important not to choose too a small value of «, which is why the
choice @ = 0.8 was made. This means that the maximum amplification of the bulk modulus
due to fluid effects can be as high as a factor of 5 for the present example.

TABLE 1. Layer parameters for the three materials in the simple layered medium used to
produce the examples in Figures 1 and 2.

Constituent | K (GPa) | u (GPa) | z (m/m)

1 9.4541 0.0965 0.477
2 14.7926 4.0290 0.276
3 43.5854 8.7785 0.247

The results for bulk modulus in Figure 1 show that K = Kp and w, /3 are always quite
close in value. The Voigt upper bound does bound both Kr and w; from above as expected.
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Furthermore, the simple Gassmann estimate based on the value of the drained constant (B = 0)
gives a remarkably good fit to these estimates with no free fitting parameters. This good
agreement with Gassmann may depend in part on our choosing « to be a constant. (Without
this choice, a direct comparison in fact could not have been made here.)

(2 1)

The results for the effective shear moduli G i Gi e and the quasi-shear mode eigenvalue

contribution w_/2, show that ch)f ~ w_/2, although it actually does bound this parameter
M

from above. The third shear modulus estimate G, 1 is far from the other two. We also show
a constant value of shear modulus based on the Gassmann-like prediction of constant shear
modulus equaling the drained modulus, but it is clear that this labeling is not fair to Gassmann
as his result was for microhomogeneous materials, and therefore does not strictly speaking apply
to layered materials at all. Nevertheless, we see that Gassmann’s result for bulk modulus did
a very creditable job of matching the bulk modulus values, even though it also was not a fair
comparison for exactly the same reasons. This shows that Gassmann’s results are much more
sensitive to heterogeneity in shear modulus than they are to heterogeneity in the bulk modulus
for these layered materials.

8 Conclusions

Our main conclusion is that the two best constants to study for our present purposes are the
ones derived from the Reuss and Voigt bounds, ch)f and G e?f' Furthermore, these estimates

are naturally paired with the Voigt and Reuss bounds on bulk modulus through the product
formulas (see the Appendix for a derivation)

(3Kv)(2GLY;) = (3KR)(2G)) = wiw_. (61)
The product formulas are true for both drained and undrained constants, but of course the
numerical values of these constants differ in going from drained to undrained constants. Of
these two estimates, ch)f has the simplest form and further is paired with the Reuss bound
on bulk modulus, which is actually the true bulk modulus of the simple (not polycrystalline)
layered system. So we believe, based on theoretical considerations — especially using energy
estimates, that this choice is worthy of special attention. But the numerical experiments show
that Gg?f and w_ /2 have very similar values in the cases studied. So the practical advantages
of this choice over the others may not be overwhelming.

Eq. (60) shows explicitly that ch)f = m together with a generally negative correction whose
magnitude depends strongly on fluctuations in layer shear modulus. The magnitude of these
correction terms decreases as Skempton’s coefficient B increases, so ch)f is a monotonoically
increasing function of B. This is exactly the behavior we were trying to explicate in the present

paper, so (60) is one example of the types of aid-to-intuition that we were seeking. The leading

term in ch)f is also easy to understand, as G((f) was first obtained here using the Voigt average,
which is an upper bound on the overall behavior; so it is natural that the leading term is m,

which is the Voigt average of the u’s in the layers.
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Appendix: Product Formulas

This Appendix will clarify the derivation of the product formulas relating the bulk modulus

K = K and ch)f. The product formula for Ky and ch)f is just the dual, and is obtained in
a very similar fashion.
Since the relevant excitation for Gge)f has been shown to be a shear strain proportional to

(1,1, —2)T, consider

Ci1 Ci2 Ci3 1 Ci1+ Ci2 —2C3
Ci2 C11 Ci3 1 | = | Cii+Ci2—2C13 |- (62)
Ci3 C13 Cs3 -2 —2(C33 — C13)

Then, by applying the inverse of the matrix in (62) to the left side of the equation, we get the
useful formula:

1 S11 S12 Si3 Ci+Ci2 —2C3
1 | = | Si2 S11 Si3 Cii+Cig—=2C13 |- (63)
-2 Si3 S13 S33 —2(Cs3 — Ch3)

which supplies two independent identities among the elastic coefficients. These are

1= (511 + S12)(C11 + C12 — 2C13) — 2513(C33 — C13) (64)
and
—1 = 813(C11 + C12 — 2C13) — S33(C33 — C13). (65)
Adding these together and switching to the a, b, ¢ notation, we find
c—f
= 2 _ .
S11+ Sz + 513 = (833 + 2513) Y. (66)
Recalling that
1
x= 2(S11 + S12 + S13) + (S33 + 2513), (67)
and then substituting (66), we find
1 (@a—m—f)+(c—f)
— = 2 . 68
7 = (833 +2513) p— (68)
Then, since
2Na —m —
S33 + 2513 = M, (69)
WiWw—
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we find immediately that

GKG(?f = wiw_, (70)

€

because ch)f =[(a—=m— f)+ (c— f)]/3.
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Figure 1: Bulk modulus as a function of Skempton’s coefficient B. The Biot-Willis parameter
was chosen to be o = 0.8, constant in all layers.
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Figure 2: Shear modulus as a function of Skempton’s coefficient B. The Biot-Willis parameter
was chosen to be a = 0.8, constant in all layers.
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