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ABSTRACT

An explicit procedure is presented for computing both model and data resolution matrices within a Paige-
Saunders LSQR algorithm for iterative inversion in seismic tomography. These methods are designed to avoid
the need for an additional singular value decomposition of the ray-path matrix. The techniques discussed are
completely general since they are based on the multiplicity of equivalent exact formulas that may be used to
define the resolution matrices. Thus, resolution matrices may also be computed for a wide variety of iterative
inversion algorithms using the same ideas.
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1 INTRODUCTION

Linear tomographic reconstruction schemes have well-defined resolution properties.! Yet, the resolution ma-
trices summarizing these properties are not computed as often as they might be — at least in part — because of
the common misconception that resolution matrices can only be found using singular value decomposition (SVD).
Since SVD is generally the most computationally intensive of all commonly used matrix inversion methods, this
approach is often prohibited by the time or expense involved, and in some cases it is rendered impossible by the
size of the inversion problem. Other matrix inversion methods such as conjugate gradients, conjugate directions,
Lanczos, and LSQR?~° are used more often in tomography codes, because of their smaller storage and computing
requirements. In his recent review article, Nolet® states that “The LSQR method, due to Paige and Saunders
(1982), is the most efficient method so far available to solve linear tomographic systems ....” It would therefore
clearly improve the state of our practical knowledge about tomographic resolution if methods for computing the
resolution matrices were available for all (or at least for the most highly regarded) iterative matrix inversion
schemes. Furthermore, since these iterative methods are almost always terminated long before the full range of
the original matrix has been probed, a method of computing resolution for iterative procedures directly (without
SVD) is essential if we are to understand the resolution characteristics of the actual numerical inversion procedures
we use.

2 RESOLUTION MATRICES

The central role of resolution in geophysical inversion problems has been emphasized by Backus and Gilbert,”
who base their general inversion methods on techniques designed to optimize the resolution of the resulting
geophysical model obtained from processed data. Discussions of resolution also played a central role in the classic
paper of Aki et al® on large scale seismic tomography. Such discussions continue to play a key role in the



interpretation of inversion results in seismology. For example, in their recent review article — which also includes
an extensive discussion of resolution in seismic inverse problems — Evans and Achauer? state that “... evaluating
the whole resolution matrix, not just its diagonal elements, is a required part of interpreting [the reconstructed
model].” Indeed, any inverse method based on incomplete or imperfect data should be expected to produce a
filtered or blurred image of the object or region of interest. Apparent resolution is therefore an important figure
of merit for practical imaging and inversion schemes, since the user of such schemes will eventually want to know
what the smallest object is that can be distinguished. Judgments concerning reliability of features observed in
the reconstructed image depend strongly on our understanding of inherent resolution capabilities of the inverse
method used to produce the image. Therefore, a convenient quantitative measure of pointwise or cellwise model
reliability is certainly helpful and perhaps essential for subsequent interpretation.

Resolution matrices for linear inversion problems can be understood most easily by considering a matrix
equation of the form

Ms=t (1)

and first asking the question: Given matrix M and data vector t, what model vector s solves this equation?
When the matrix M is square and invertible, the answer to the question is relatively easy: s = M~ 't, with M !
being the usual matrix inverse of M. However, it often happens in geophysical inversion problems that M is not
square, or not invertible even if it is square. In these situations, the least-squares method is often used, resulting
in the normal equations

MTMs = MTt, (2)

which can often be solved approximately for s since the normal matrix M7 M is square and symmetric — although
it may still be singular. It proves convenient now to introduce an approximate inverse M called the Moore-Penrose
pseudoinverse.'® 12 This generalized inverse is the unique matrix that satisfies the four conditions: MMM = M,
MMM = M, MM = (MTM)T, and MMT = (MMT)T. Although other choices for the approximate inverse
are known (for example, see Rao'®), we will restrict discussion here to this best known approximate inverse.
Then, after multiplying (1) on the left by M, we find

M'Ms = M't. (3)

If it were true that MM =1 (the identity matrix), then we would have solved the inversion problem exactly, and
also have perfect resolution. But it is precisely in those problems for which no such inverse exists that we need
to consider the analysis that follows. In particular, we define the matrix coefficient of s in (3) as the resolution
matrix

R =MM. (4)

The deviations of R from the identity matrix I, i.e., the components of the difference matrix I — R, determine
the degree of distrust we should have in the components of the solution vector s that are most poorly resolved.

For definiteness, consider the seismic tomography problem (see Figure 1): M is an m x n ray-path matrix, t is
a data m-vector of first arrival traveltimes, and s is the model n-vector for (possibly rectangular) cells of constant
slowness (inverse velocity). We seek the slownesses s given the measured traveltimes in t and the estimates of
the ray paths between source and receiver locations contained in the matrix M (see Berryman'* and references
therein). Then, the resolution matrix defined in (4) is the model resolution, since the slowness vector is the

desired model of acoustic wave slowness. We can also define a data resolution matrix. First, multiply (3) on the
left by M so

MM{Ms = Ms = MM t, (5)

and then compare (5) to (1), noting that the matrix product multiplying t should equal the identity matrix if the
approximate inverse M is a true inverse. Again, deviations of this matrix from the identity provide information
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Figure 1: Schematic illustration of ray paths through a slowness model with rectangular cells.

about the degree to which the solution we compute makes use of all the data in t. Thus, we find that the data
resolution matrix!*® is defined by

7zdata, = MMTv (6)
while the resolution matrix defined previously in (4) is the model resolution®:?
Rmodel = MTM (7)

Furthermore, for seismic inversion, we must also concern ourselves with mathematial nonlinearities involved in the
process of finding a ray-path matrix M that is consistent with the model s. For the present purposes, we assume
that M and s are the final (and mutually consistent) products of an iterative algorithm.'* Then, the question
of resolution needs to be studied carefully in order to explore fully the range of possible solutions resulting from
inherent nonuniqueness of the inverse problem.

We can better understand the significance of these two resolution matrices by considering the singular value



decomposition (SVD) of the matrix M, given by
M = Z )\iuiv;?", (8)
i=1

where the m-vectors u; and n-vectors v; are the eigenvectors of M determined by Mv; = \;u; and u;pr = )\iv;?"
and the A;s are the eigenvalues. The eigenvectors are also assumed to satisfy orthonormality conditions u;ru]- = 6;;
and vIv; = §;;. The rank of M (the number of nonzero eigenvalues) has a value r < min(m,n). The Moore-
Penrose pseudoinverse is then known to be given by

Mf =" viuf, (9)
i=1

so the resolution matrices are written explicitly in terms of sums of the outer products of the eigenvectors as

7zmodel = Zviv;‘r (10)
=1
and
Rdata = Zuiu;'r' (1]‘)
=1

When displayed in this form, it is clear that the resolution matrices simply express the completeness of the
resolved model or data spaces respectively. They are projection operators on the span of the resolved parts of the
model and data vector spaces.

3 COMPUTING RESOLUTION

Now it is important to recognize that, although the resolution matrices have generally been defined by equations
(6) and (7) — or by (10) and (11) (which implicitly assume that a singular value decomposition has been
performed), it may nevertheless be possible to compute these matrices in other ways. Of particular importance is
the computation of an effective inverse matrix X generated by an iterative inversion procedure.

To establish the plausibility of computing resolution without singular value decomposition, we first consider
a simple pedagogical example that would not be ideal for computations. For convenience we define 7 to be a
parameter having the significance of a continuous iteration number and let X(n) be the current approximation to
the pseudoinverse M. Then the current value of the approximate solution vector is given by s(n) = X(n)t and
the unresolved part of the data vector is clearly given by the difference vector At = t — MX(n)t. The length of
this vector is a scalar measure of the unresolved portion of the data. If we design the iterative inversion scheme to
decrease the length of this vector progressively as n — oo, we note that the derivative of its square with respect
to the continuous iteration number 7 is given by

T
aitT(I - XTMT)(I - MX)t = —tTaaiMT(I - MX)t —tT(I - XTMT)M%—Xt. (12)
7 U U

A sufficient condition for the traveltime data resolution to improve continuously as 7 — oo is then (see Lu and
Berryman'®) the equation of motion for X given by

X
— = yMT(I - MX 1
r ( ) (13)



where v > 0 is some arbitrary scalar that determines the rate of convergence. It follows by construction that the
right hand side of (12) is always negative or zero. Thus, the nonnegative length |t — MX(n)t| is a continuously
decreasing function of the iteration parameter 7 as long as X(7) has the equation of motion given by (13). Clearly,
the right hand side of (13) vanishes if and only if the approximate inverse matrix satisfies

MTMX(x0) = M7, (14)

which is equivalent to the normal equations of least-squares, so X(o0) = MT as expected.!?

If we define effective resolution matrices gmodel(ﬂ) = X(U)M and Sdata(ﬂ) = MX(?}), then it follows from (13)
that

8gmodel T
——— = yM"M(I - Enode 1
o ¥ (I = Emoder) (15)
and
0 data
; ' — yMMT (I = Eqata)- (16)
gl

Assuming initial conditions for the integration are given by Emoder(0) = O and E4uta(0) = O, it is easy to see
that the solutions of these equations will be symmetric matrices as desired. This approach becomes an iterative
procedure when we solve the equations numerically by discretizing the independent parameter 7 and stepping
from one discrete value of 7 to the next.

The procedure just outlined establishes that iterative procedures for computing resolution matrices are cer-
tainly possible. However, this particular method is less than ideal because it would be computationally intensive.
So next we consider a general procedure that could be applied to many iterative methods that are used in practice.

To find a more efficient approach that is also inherently symmetric, first analyze the SVD of the normal matrix,
i.e.,

MTM = Z Aiviu? Z )\jujv;fr = Z MvvT, (17)
i=1 j=1 i=1
Then, we can easily show that
(M™™M) ' M™™M = 3" viv? = Rinoder. (18)
i=1

It is equally straightforward to show that an alternative is given by

+
|

MT (MMT) M= Z VZ'V;-P = Rmodels (19)
i=1

a formula that is automatically symmetric. Similarly, we find that the data resolution is given by the various
alternative forms

MM = MMT (MM7)" = M (M"M)'M” =) " u;ul = Raara. (20)
j=1

Iterative methods such as the method of Lanczos!” for solving (1) in the least-squares sense often compute the
pseudoinverse — not of M itself but rather — of the normal matrix MTM. The appearance of the pseudoinverse
(MTM)T of the normal matrix in these alternative expressions for the resolution matrices (18)—(20) then provides
both a motivation and a clue to constructing methods for computing resolution with such iterative methods. Thus,
in the following discussion, we are able to show how these various equivalent formulas for the resolution matrices
may be used efficiently, in the course of a routine computation whose primary goal is to find an approximate
solution to Ms = t by iterative methods.



4 BIDIAGONALIZATION AND THE LSQR ALGORITHM

The method of Lanczos'” may be applied to any square, symmetric matrix inversion problem. To solve the
least-squares inversion problem, the method may be applied to the normal matrix MTM. However, dynamic
range problems due to poor conditioning of M worsen when the Lanczos method is applied directly to the normal
equations since the eigenvalues are squared in MTM. It would therefore be preferable to avoid squaring the
eigenvalues if possible. Another serious drawback of this procedure is that, whereas M is always a sparse matrix
in seismic tomography (each ray path traverses only a small number of cells in the model), M7 M is a full matrix.
Thus, the straightforward application of Lanczos’s method to the least-squares estimation problem immediately
destroys one of the key simplifying features of the matrix M.

To take full advantage of the sparsity of M, we could have “completed the square” with M and considered

instead either the problem
I M r t
(e 0)(2)=(), ey

where r =t — Ms is the residual vector, or the alternate problem

(e 0) (2) = (am), o

where -p = Ms is the predicted traveltime. Equations (21) and (22) again both have the form Ax = b with

I M
MT O
vectors bT = (tT 07) or bT = (07 —tTM), respectively. The first approach has been discussed recently
by van der Sluis and van der Vorst,>*® while the second approach has better numerical properties and has been
treated by both Golub and Kahan* and Paige and Saunders.® The modification of Lanczos’s method resulting
from the use of (22) is now generally known as the LSQR algorithm of Paige and Saunders.®

square symmetric matrix A = ), unknown vectors xT = (rT sT) or xT = (pT sT), and data

In this Section, we assume infinite precision in the computations in order to develop the main ideas. We
discuss practical consequences of finite precision briefly in Section 5.

4.1 A variant of LSQR

To provide a somewhat different derivation of the LSQR algorithm, consider

£(R)
z(F) — (h(k+1)) . (23)

Then, the tridiagonalization process takes the form

T/ 0 0
(1) (1)
z (Z ) (MTt) - (MTt>’ (24)
together with equations
T T I M I M
(1) (,(1) () (,(2) (1) — (1)
[z (z ) +z (z )](I[T C)Z _(I[T :>z , (25)

I M
(MT v ) )
I

= <MT 1\(/)1) z®), (26)

and, for & > 2,

[zw—l) (Z(k—l))T 42 (Z<k>)T 4+ 04D (Z<k+1))T

—_



We first set h*) = 0. Then, substituting (23) into (24), (25), and (26) gives

T
fO =0 and h® (h<2>) M7t = MTt,

£2) (f<2>)T Mh® = Mh® and h® =0,

and, for £ > 1,
f(2k+1) =0 and |:h(2k) (h(zk))T + h(2k+2) (h(2k+2))T:| MTf(Zk) — MTf(Zk),

and

[f(zk) (f(zk))T 1 §(2k+2) <f(2k+z)>T] Mh(%+2) — Mh*+2  and B3 — 0.

Defining the constants
g1 = MTt| = h®MTt,

and, for k£ > 1,
Qor = (h(zk))TMTf(Zk) = (f(Zk))TMh(Zk)

and

Q2ht1 = (h(2k+2))TMTf(2k) = (f(Zk))TMh(2k+2).

The orthogonal matrix of the vectors £(**) is defined by
Fr=(f® & 2B,
while the corresponding matrix Hy, of the vectors h(>*) is defined by

H,=(h® h® .. hek),

Now we introduce the k£ x k upper bidiagonal matrix

q2 g3
g4 gs
Qr = e g7

92k

and the related k x (k + 1) matrix

92k 92k+1

(34)

(35)

(37)



obtained from Qj by adding another column with just one nonzero element ¢s;41. The two bidiagonal systems
may be written, for 2 < k <7, as

—T
H;11Q, = MTFy, (38)

and
f(%“)e;‘:ﬂqzku +F;Q, = MH,,,. (39)

We see that, when k = 7 with r determined by the condition that g2r+1 = O (or is numerically negligible),
multiplying (38) on the right by FZ and then taking the transpose yields the relation

M = F,Q,H”. (40)

This equality is exact for infinite precision and takes its usual approximate meaning in finite precision. The
corresponding approximate inverse is

X, =H, (Q,) ' FL. (41)

Finally, the solution is given by
s=X,t =H, (Q,) ' FIt, (42)
which cannot be simplified directly since t is not orthogonal to any of the vectors f(*>*). Nevertheless, two further

simplifications can be obtained.

To improve the efficiency of the computation, first note that the inverse matrix is upper triangular and has
the simple form

1/92 —q3/929s 9395/929496

1/q4 —q5/qaq6 -
Q) = /1 ql//gﬁq |- (43)

Although it appears that all elements of H,. must be retained to the end in order to compute s, it turns out that
if we define the n X r matrix

W,=H,(Q,) '=(w?® w® ... w@n), (44)
then the n-vectors w?®) for k = 1,...,r can be computed recursively according to
wZk) — Lh(%) _ PRl S2k-2) g L > 1. (45)
2k 2k

The initial vector in the sequence is defined by
w® =o. (46)

The need for retaining earlier vectors h??) for 7 < k, is eliminated using this recursion, since the pertinent
information is already imbedded in the required form in the vectors w(),

The second simplification results when we note that
FrQr = Gr+1§7‘- (47)
From (47), it follows that

£ gop = gPPbyy + g+ Dy g — 2P D gy, (48)



Using the facts that t7 - g(?) = b; and that t is orthogonal to all other gs, we find the general result that

tT - 28 = _¢T . fCh=2 g gy = (_1)kw, (49)
qzk ...qz

Thus, we have found an explicit expression for the elements of the vector FI't appearing in (42).

The resulting algorithm is very similar to the one used in LSQR, although the starting point and some of the
details of the derivation are slightly different.

The main point of this effort is that we end up with virtually the same algorithm as LSQR — having all its
good properties — but can also compute the data resolution safely and easily if we so choose.

4.2 Formulas for resolution using LSQR

Our main conclusion is that the model resolution for this approach is given by
Romodel = MM = X, M = H,HY, (50)
while the data resolution is
Riata = MMT = MX,. = F,FZL. (51)

Equations (50) and (51) is both exact (at least in principle). The usual caveats apply if the process is terminated
early, so the final iteration number is & < r. See Section 5 for further discussion of numerical issues.

4.3 Diagonal resolution

If — as is most often the case — the only resolution matrix desired is the model resolution, then it may also
suffice to limit consideration to the diagonal components of the effective model resolution matrix

(h§)”
k 2)
diga(e® Y _ (h5™)? tor k= "
Zag( model)_z . ) or =1l,...,T. ( )
1=1 (hgz))z

This vector can be accumulated easily without subsequently retaining the components of the vectors h(? for all
1 =1,...,k. The diagonal components are also the ones that are normally the easiest to interpret, since they
are positive and generally lie between 0 and 1 and therefore may be treated as measures of the probability of
having correctly resolved the model slowness value in a given cell. However, it should be emphasized that various
authors, including Evans and Achauer,? caution that diagonal resolution alone can be misleading.

Of the methods commonly used to compute iterative inverses, the variant of LSQR considered here is the

only one known to the author that may be used to compute diagonal components of the data resolution (51) in
analogy to (52). This result is another factor favoring the use of LSQR for seismic tomography problems.

5 EFFECTS OF NUMERICAL ROUNDING ERRORS

In practice, computer precision is finite and the idealized analysis of the preceding section must be modified
to account for the influence of rounding errors. The most important consequence of these errors is the fact that,



after some number of iterations (say j), the basis vectors in LSQR. are no longer orthonormal'®~2?? to working
precision. In particular, Paige'®~% has shown that this effect is an inevitable consequence of the convergence
of the eigenvalues of the truncated tridiagonal system in Lanczos’ method to the actual eigenvalues of the full
matrix A = MTM.

The standard method of dealing with this lack of orthogonality is reorthogonalization — used even by Lanczos
in his original paper on this subject. Reorthogonalization at each stage is costly, both in terms of the computational
time lost and also due to the added storage required to maintain copies of all the vectors h*) needed for the
orthogonalization step. Reorthogonalization of the h vectors requires storage of a matrix with size n x k at the
kth iteration, whereas the model resolution matrix requires a fixed storage of size %n(n + 1), regardless of the
iteration number. If we can afford the storage to compute model resolution, we can certainly afford the storage
needed to perform reorthogonalization of the hs. In fact, computation of model resolution matrix Rmoder can be
delayed until the end of the iteration process, since the h vectors themselves contain all the information required
to compute Rimoder-

Similarly, reorthogonalization of the f vectors requires an m X k matrix for storage at the kth iteration,

compared to a region of size %m(m + 1) for storage of the data resolution matrix elements. When m >> n, the
storage issues for data resolution and reorthogonalization can provide significantly more limiting constraints than

those found for the model resolution and reorthogonalization.

6 EXAMPLES AND CONCLUSIONS

Figure 2 provides some numerical examples comparing and contrasting the results obtained using standard
SVD resolution calculations with the new LSQR resolution calculations described in this paper. We consider a
4 x 4 model using strictly crosswell data, so there are 16 source/receiver pairs as well as 16 cells in 2D. Model
slowness value is shown in the upper left corner of each cell, while diagonal resolution value is shown in the lower
right corner. The top two examples (a,b) show results for the actual model used to compute the traveltime data
(see Berryman!* for a description of the code used to generate both the forward and inverse solutions). The
bottom two examples (c,d) show results obtained after 15 iterations of the reconstruction code of Berryman.*
The LSQR resolution examples (b,d) were computed using ten iterations of the LSQR algorithm, so the maximum
size of the resolved model vector space has dimension ten. To aid in the comparison, the SVD resolution examples
use only the 10 eigenvectors associated with the 10 largest eigenvalues of the ray-path matrix. We find the results
are in qualitatively good agreement. Better quantitative agreement is not anticipated because the 10-dimensional
vector spaces spanned by these two approximations, although having large regions of overlap, will nevertheless
almost always differ to some degree.

The methods of computing resolution matrices that have been illustrated here may be easily generalized
to a variety of other iterative and approximate inversion methods. These other methods will be discussed in
greater detail elsewhere, as will further applications to synthetic and real data. This paper has studied means of
computing resolution matrices for fixed ray-path matrices. The more interesting and more difficult problem of
determining the effective resolution of a nonlinear traveltime tomography algorithm based on analysis of feasibility
constraints'* will also be explored in a later publication.
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Figure 2: Comparison of results obtained using SVD and LSQR for an ideal model and the reconstructed model:
(a) model and SVD resolution, (b) model and LSQR resolution, (c) reconstruction and SVD resolution, (d)
reconstruction and LSQR resolution. In each cell, the upper left number is the slowness value and the lower right
is the diagonal resolution value for the cell. The ten eigenvectors corresponding to the ten largest eigenvalues
were used to compute the values of SVD resolution. Ten iterations were used to compute the values of LSQR

resolution.
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