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ABSTRACT

The task of electrical impedance tomography is to invert electrical boundary
measurements for the conductivity distribution of a body. This inverse prob-
lem can be formulated so the primary data are the measured powers dissipated
across injection electrodes. Then, since these powers are minima of the pertinent
variational principles (Dirichlet’s or Thomson’s principle), feasibility constraints
can be formulated for the nonlinear inversion problem. These constraints may
also be used to stabilize iterative reconstruction algorithms where voltage differ-
ences across other electrodes are the primary data and the measured powers are
treated only as secondary data. When the powers may be measured accurately,
the existence of these dual variational principles implies that an exact solution

(if any) must lie at a point of intersection of the two feasibility boundaries.

PACS numbers: 41.10.Dq, 03.50.De, 87.71.Rh, 93.85.+q
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Inverse problems continue to play a central role in many fields of science and
engineering. For example, biomedical imaging using x-rays or ultrasound is now
common practice. Similarly, geophysical imaging using seismic methods is also
common. Each imaging method tends to reconstruct the contrasts in a single
physical property, u.e., the density for x-rays and the sound (or seismic) wave
speed for ultrasound (or seismic tomography). If we are lucky, the contrasts are
low so linear inversion methods may apply. If we are unlucky, the contrasts in
the physical property we wish to image are high so nonlinear inversion methods

must be developed.

For applications to nonlinear traveltime (seismic) tomography, it had been
previously discovered! that Fermat’s principle implies the existence of a set of
constraints (called feasibility constraints) which may be used to stabilize prac-
tical algorithms for inverting traveltime data for wave speed distribution. The
main result of the present work is to point out that this previous result is just
a special case of a much more general result. When an inverse problem can be
formulated so the data are minima of one of the variational problems of mathe-
matical physics, feasibility constraints can be found for the nonlinear inversion

problem and the corresponding reconstruction algorithm can be stabilized.

The example we will consider is electrical impedance tomography. This
technique attempts to image the electrical impedance (or just the conductivity)
distribution inside a body using electrical measurements on its boundary. The
method has been used successfully in both biomedical?> and geophysical®* appli-
cations, but the analysis of optimal reconstruction algorithms is still progressing.®¢|]
The most common application in both biomedical and geophysical applications
is monitoring the influx or eflux of a conducting fluid (such as blood in the heart
or brain, or brine in a porous rock) through the body whose conductivity is be-
ing imaged. Compared with radiological methods in diagnostic medicine, this
approach does not have such high resolving power, but it is comparatively inex-
pensive and uses no ionizing radiation so it is suitable for applications requiring
continuous monitoring of patients, and practical for both laboratory and field

measurements monitoring fluid flow through rocks and soils.

We wish to avoid discussing the details of specific experimental arrange-
ments and reconstruction algorithms here (since that is probably only of inter-
est to specialists), so we will simply describe the fundamental ideas. Although
other methods are in use, the data for electrical impedance tomography have

most often (especially in geophysical applications) been gathered (see Fig. 1) by
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injecting a measured current between two electrodes while simultaneously mea-
suring the voltage differences between pairs of other electrodes placed around
the boundary of the body being imaged. This process is then repeated, in-
jecting current between all possible (generally adjacent) pairs of electrodes and
recording the set of voltage differences for each injection pair. Note that this
data set (normally) does not include the voltage difference across the injection

electrodes.”

Then, to summarize the reconstruction method: First, guess a conductivity
distribution (e.g., a constant) and do forward modeling to determine predicted
voltage differences across the measurement electrodes for each injection pair.
Second, the predicted and measured voltage differences are compared and these
differences are used (in a different way specific to each algorithm) to determine
an update for the conductivity distribution. Then, the process is repeated with
the updated conductivity as the new guess. The method may stop after a single
iteration in some methods or it may proceed for a large number of iterations in
other methods. A convergence criterion may be used to terminate the algorithm
based on the agreement between the predicted and measured voltage differences,

or a limit may be set for the total number of iterations.

Uniqueness results have been obtained by Kohn and Vogelius® for piecewise
analytic conductivities and by Sylvester and Uhlmann® for smooth conductivities
assuming complete sets of current and voltage measurement pairs are available.
These papers have shown that an unique solution is obtained either by inverting
the data just described (but including the voltages across the injection electrodes
to make a complete set) or by inverting an apparently more limited set of data.
This alternative data set is obtained by measuring only the voltages across
the injection electrodes, or equivalently the power dissipated during current
injection; a complete set of such power measurements is required. It is important
to recall that the normal data set described previously does notinclude the power
dissipation measurements. The practical reason for this gap in the data is that
the voltages across the injection electrodes are difficult to measure reliably — at
least partially because a substantial contact impedance develops at the interface
between the body and the electrodes when large currents are injected. Since the
contact impedance is a function of current magnitude, the data collection process
can itself be nonlinear. The effects of contact impedance can be eliminated to
some extent by using electrodes with large surface areas;” however, this approach
is not possible in all applications. So one difficulty that we may have to live with

in practice is a substantial inaccuracy in the power dissipation measurements —



when they are available.

Having given the traditional reasons for not considering power dissipation
measurements, we will now develop a reconstruction method based on this data.
Dirichlet’s principle states that, given conductivity distribution (%) and po-
tential distribution ¢(z), the power dissipation p; realized for the i-th current

injection configuration is the one that minimizes the integral [o|V¢|* d*z, or

¢(_tnaz)

pi(0) = min /a|v¢§t”“”|2 d®z = /UlV(ﬁZ[O‘”Z d*z. (1)

The trial potential field for the i-th injection pair is ¢!"**?(z) while the actual

potential field ¢;[s](Z) is the one that satisfies Poisson’s equation V- (ocV¢;) =0

within the body. Furthermore, if we define the power dissipation associated with

the trial potential ¢{""**Y by the integral
ﬁgdh')(o_) = /Ulvqsgtrial)lz d3m, (2)
then the measured powers P; must satisfy

P; = pi(o0) Sﬁ?")(ao), (3)

if o9(%) is the true conductivity distribution. The set of constraints which may be
inferred from (3) for all i and all trial potential fields will be called the feasibility

(or variational) constraints for electrical impedance tomography.

To see what these constraints are, we can follow the same reasoning used to
obtain feasibility constraints in the seismic tomography problem?!: If, at some

stage of the inversion algorithm, we reconstruct a conductivity o(z) such that
A (0) < P, )

(i.e., that violates the feasibility constraints (3) for any injection pair i and/or
any trial potential field), then we know that such a conductivity distribution is
not feasible — it is inconsistent with the data. Conductivity distributions satisfy-
ing (4) based on the variational principle (1) belong to the Dirichlet infeasibility
region. The corresponding result in traveltime inversion produced the Fermat

infeasibility region.

Somewhat surprisingly, there follows a close analogy between the electrical

impedance tomography problem and the seismic traveltime inversion problem?®
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— even though the physics of these two inverse problems is completely different:
one being a d.c. electrical conduction problem and the other a wave propagation
problem. The connection arises from the similarity of the variational formula-
tions of these two problems. To see the connection, consider the first arrival

traveltime as a function of the wave slowness s(#). Fermat’s principle states that

ti(s) = min /sdlﬁpath) = /sdl;‘[s], (5)

{paths}

where 1%%"" is the arc length along any connected path between the source and
receiver and where [;[s] is an arc length along a ray path that minimizes the
integral of the traveltime for the ;-th path and the wave slowness s. We will also

define a trial traveltime by
rPUh) (g) = / s 1Pt (6)

Then, the correspondence between the electrical impedance tomography prob-

lem and the first arrival traveltime inversion problem is determined by:

o — s,

pi(o) — ti(s),

~($3)

B (o) — TP

|v¢gtrial)|2 Br — dli:path),
V6110 2 — disls),

P, - T;.

The significance of this correspondence lies in its impact on algorithmic
structure of inversion codes: Programming from the top down, these two prob-
lems look essentially identical. Of course, from the bottom up, they are very
different because the routines required to compute the trial potential fields and
the trial ray paths are completely different. Nevertheless, the top down equiv-
alence of these two problems suggests that algorithms that have been found
to be successful for one of the problems will also work for the other as well.
Berryman! has developed a method of stabilizing iterative traveltime tomogra-
phy algorithms with least-square error as objective function by using the mini-
mum number of Fermat feasibility violations as a figure of merit to help choose

an underrelaxation parameter to modify the step size of the model correction.
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Since it has also been shown!® that in general least-squares methods produce
models in the infeasible region (unless an exact solution of the inversion problem
has been obtained), a criterion for underrelaxation based on minimum feasibility
violation number is expected to be applicable to any inversion scheme that has

this same variational structure.

For electrical impedance tomography, this idea has been tested extensively
using both synthetic data (with and without added noise) and real laboratory
data with conducting and insulating anomalies in a small tank filled with brine.
The tests have shown that the several different inversion algorithms for elec-
trical impedance tomography can all be stabilized in the presence of noise by
using these feasibility constraints. For example, when the inverse problem is
formulated so the primary data are the measured powers dissipated across the
injection electrodes, a least-squares fitting procedure based on comparing the
predicted and measured powers may be used; then, the feasibility constraints
determine the size of the underrelaxation parameter (modifying the size of the
model update) required to stabilize the resulting iterative algorithm as in the
traveltime problem.! Alternatively, when the powers cannot be measured very
accurately and it is therefore undesirable to have the powers play the role of pri-
mary data, the constraints may be used to stabilize any iterative reconstruction
method while the voltage differences across other measurement electrodes are
the primary data. General arguments based on the convexity of the Dirichlet
feasibility region and the fact that the correction step tends to be tangent to
the feasibility surface show that inaccuracies in the power measurements are
relatively unimportant in this context. Even moderately large inaccuracies (5
to 10%) in the power measurements are negligible in this approach because the
feasibility constraints are only used to determine the underrelaxation parameter
(7.e., a multiplier for the correction step) not the direction of the correction step
itself.

Another remarkable fact is this: For the electrical impedance tomography
problem, there are two different sets of feasibility constraints. One set is for
Dirichlet’s principle as presented here. The other is for its dual (Thomson’s

principle)
pi< [1ip/ads, (7)

where J;() is a trial current distribution for the i-th current injection pair that

satisfies the continuity equation V-J; = 0. The current distribution J; in (7) and
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the gradient of the potential ¢, in (2) are generally unrelated except that when
the minimum of both variational functionals is attained, then J; = —oV¢:[o](Z).
The existence of the dual variational principle is a general result whenever the
pertinent variational principles are true minimum principles. (By contrast, Fer-
mat’s principle is not in this class, since it is only a stationary principle; the
analysis given previously for Fermat’s principle remains valid however since the

first arrival traveltime data are truly minima.)

The existence of dual variational principles for this inversion problem sug-
gests that the quality of a reconstructed conductivity distribution can be esti-

mated. To see why this is so, discretize (3) and (7) according to

PisYo; [ VTP da (®)
j=1 2
and
n 1 .
Ry / VP s, (9)
Jj=1 g

where we now model the conductivity distribution in the body by dividing it
into n cells labelled by j of volume Q; and constant conductivity o;. The lim-

iting equalities in (8) determine a set of hyperplanes in the vector space for

the conductivity vector & = (01,09,...,0,), while (9) determines another set of
hyperplanes in the resistivity vector space 5= (&, 7-,..., 7-)-

To provide a simplified example, suppose there are only two cells in the

reconstruction problem; then,

P; < 01A; +09B; (Dirichlet) (10)
and
C; D;
P< — 4+ —, (Thomson) (11)
g1 09

The constants A;, B;, C;, and D; are all positive, dependent on the injection
pair : and on the trial field or current distribution. Including the positivity and
finiteness constraints on conductivity, the dual feasibility conditions for o, as a

function of #; become

i for feal S -
0 otherwise,



and

JliDi for o > &
02 <4 01 P; — C; t= P; (13)
o0 otherwise.

The complete set of inequalities implied by (12) and (13) is as large as the
number of injection pairs m (1 < i < m) times the number of trial fields and

currents considered.

Figure 2 shows the kind of picture that emerges from this type of analysis
when the constraints for a single power measurement are considered. Then, the
two variational principles have essentially disjoint infeasibility regions, while the
dual feasibility region is sandwiched between. Thus, a reconstructed conductiv-
ity o(#) may be compared against the two feasibility boundaries and error bars
on the accuracy of a reconstruction may therefore be obtained. For example, if
all cell conductivities save one are held fixed, then the feasibility boundaries de-
termine a definite range of values for the one allowed to vary. To our knowledge,
this approach is the first example of a nonlinear inversion problem for which er-
ror bars of this type may be obtained for the reconstructed model. Furthermore,
it is clear that, if an exact solution to the inversion problem exists, this solution
must lie on both the Dirichlet and the Thomson feasibility boundaries. Thus,
any points of intersection of these two boundaries might play a special role in

other formulations of the reconstruction problem.

The picture becomes considerably more complex when more than one power
measurement is used and these powers are subject to inaccuracies and therefore
may provide an inconsistent set of data. Then, for each power measurement,
we have a dual feasibility region similar to the one pictured in Fig. 2. In the
absence of measurement errors, a solution of the inversion problem must lie
in the intersection of all the resulting dual feasibility regions. However, the
inconsistencies introduced by the measurment errors may result in an empty
intersection set. In this situation (which is actually common in practice), we
introduce the concept of the combined (or dual) feasibility violation number;
then, the optimum solution of this inversion problem must lie in a region of
model space where the minimum total number of feasibility violations occurs
(considering all constraints from both variational principles). This approach is
the one that has been used in developing our reconstruction algorithms and it
has been found to provide the desired stabilizing mechanism needed for robust

nonlinear inversion in the presence of noise.
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FIGURE CAPTIONS
Fig. 1. Data for electrical impedance tomography is generally gathered by

injecting a current I between two electrodes while measuring the voltage differ-

ences V between other pairs of electrodes.

Fig. 2. Illustrating the dual feasibility region for discrete conductivity (o, 09)
between the Dirichlet and Thomson regions of infeasibility for a single power

measurement.



