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Abstract. Efforts to extend the theory of poroelasticity to semilinear and non-
linear elastic response, to partially saturated pores, to inhomogeneous solid frame
materials, and to viscous losses due to localized flow effects are summarized. The
prospects for a comprehensive theory of wave propagation in partially saturated
porous media and the reasons for needing such a theory are also discussed. The
main results are these: (a) Using the physically reasonable assumption of negligible
capillary pressure change during passage of an acoustic signal through the medium,
equations of poroelasticity for partially saturated materials have been derived and
boundary conditions assuring the uniqueness of the solutions have been found. (b)
Coefficients for scattering from a spherical inclusion in a poroelastic medium have
been calculated. These coefficients may then be used to estimate effective constants
in poroelastic wave equations when the medium is inhomogeneous; three common
single-scattering approximations yield expressions that satisfy all known constraints
on these constants and therefore provide generalized Gassmann’s equations for in-
homogeneous porous media. (c¢) The observed anomalously high attenuation of
sound in partially saturated porous media can be explained in part by accounting
for the effects of inhomogeneous porosity and fluid permeability. Regions of high
permeability allow more fluid motion than regions of low permeability and therefore
may be expected to play the dominant role in sound attenuation.
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1. Introduction. A limited theory of poroelasticity was formulated by Biot
[1,2]. He assumed linear, isotropic elastic response on the macroscopic scale for
porous media composed of homogeneous frame materials and fully fluid-saturated
pores. The principal attenuation mechanism of this theory was viscous attenuation
due to shear induced during macroscopic flow of the single-phase fluid filling the
pores. Even with these simplifications, the resulting theory has remained a scientific
oddity for over 30 years: (a) It is relatively hard to analyze the predictions of
this theory [3-6] because it involves two coupled wave equations forming a system
somewhat more complex than the equations of viscoelasticity [7,8] — which are
nontrivial to analyze themselves! (b) The most startling predictions of the theory
— such as the existence of a slow bulk compressional wave [1] or slow surface [9] and
extensional waves [10] — are often very hard to verify in the laboratory [11-21]. (¢)
Even the validity of the form of the equations and the physical interpretation of
many of the coefficients in the equations remained unclear for 25 years [12,22-27],
and in some cases are still in dispute today [28,29]. It is therefore understandable
that significant progress towards eliminating the many simplifying assumptions
contained in the original work had not been made prior to the 1980s. Indeed, why
complicate a subject which is already so difficult?

Often we try to argue that an elementary theory should suffice to explain the
gross behavior of such complex materials, justifying our approximations with the
comparative simplicity and elegance of the resulting analysis. If the theory is really
successful at explaining the preponderance of experimental data, then of course our
arguments are justified and it appears to be of only academic interest to expend
such effort as would be required to construct a truly comprehensive theory. On
the other hand, the theory to date has been unable to explain some of the most
elementary experimental results for waves in geological materials, so it is essential to
produce a more sophisticated theory capable of treating most of the complications
encountered in practice. The need for a more realistic theory drives us to remove the
simplifying assumptions. And this need for a more realistic theory becomes most
apparent when we try to analyze sound wave data for real porous materials. For
many of the geophysical applications of greatest interest, the pertinent geological
materials are anisotropic and very heterogeneous, composed of multiple solid frame
materials and multiple pore fluids. In some applications, the exciting waves are of
large amplitude so that linear equations of motion are simply inadequate to describe
the phenomena we want to study.

Various extensions of the elementary theory have been introduced. Biot himself
had generalized the theory to include anisotropic effects for dynamic problems [30]
and nonlinear effects for quasistatic problems [31]. When the saturating fluid is air
[32-34], connections between Biot’s theory and earlier work on rigid frame porous
media [35] have also been explored. Various other authors have treated the gen-
eralization to partial saturation at very low frequencies in an intuitively appealing
manner [36-40], but without having any clear procedure for generalizing their re-
sults for higher frequencies. The most general form of the equations for the elastic
coefficients when the solid frame material is composed of two or more constituents
has been known for some time [37], but no method for obtaining the required data
had been suggested.

One goal of our research is a comprehensive theory of dynamic poroelasticity.



Irreversible pore collapse [41] is important in some of our applications, but we have
neglected such effects initially in order to construct what is otherwise a quite gen-
eral Lagrangian variational principle [42] for nonlinear and semilinear (reversible)
deformations of dry and fluid saturated porous solids. This approach is very closely
related to an Eulerian variational formulation of Drumheller and Bedford [43] for
flow of complex mixtures of fluids and solids. We have shown that our theory re-
duces correctly to Biot’s equations of poroelasticity [1] for small amplitude wave
propagation and that it also reduces correctly to Biot’s theory of nonlinear and
semilinear rheology for porous solids [31] when the deformations are sufficiently
slow. The resulting theory is a nontrivial generalization of Biot’s ideas including
explicit equations of motion for changes of solid and fluid density. Furthermore,
if capillary pressure change may be neglected, the linear theory also shows that
calculations on problems with only partially saturated pores may be reduced to
computations of the same level of difficulty as those for fully saturated pores [44].
Appropriate boundary conditions have been found to guarantee that solutions of
these equations are unique [44,45]. We expect the general theory to give a very
good account of the behavior of wet porous materials during elastic deformations.

In the presentation that follows, we concentrate on three extensions of the
theory of poroelasticity that tend to make the theory more realistic for applications
to rocks. First, we show how the theory may be generalized to partially saturated
porous media. Then, we use an effective medium method to find estimates of
the coefficients in the equations when the frame material surrounding the pores is
inhomogeneous. Finally, we analyze the attenuation of the fast compressional wave
in heterogeneous media and show that the physically correct damping coefficient
depends not on the global fluid-flow permeability, but on a spatial average (a line

integral) of the local permeability.

2. Wave Equations for Multiple Fluid Saturation. When the mechanical
and thermodynamical processes set in motion by a deformation are reversible, an
energy functional which includes all the important effects involved in the motion
may be constructed. Equations of motion may then be found by an application
of Hamilton’s principle. Such variational methods based on energy functionals are
well-known in continuum mechanics [46]. Thus, the only really new feature in
the present context is the degree of complexity; porous earth may be composed of
many types of solid constituents and the pore space may be filled with a mixture
of water and air. Some irreversible effects may also be included in the variational
method (e.g., losses of energy due to drag between constituents) when they may
be analyzed in terms of a dissipation functional. Other irreversible effects such as
those associated with collapse of the pore space lie outside the scope of the tradi-
tional variational approaches; the forms normally used for the energy functionals
are quadratic with constant coefficients in the linear problems or simply positive
definite polynomials with constant coefficients for nonlinear problems. During pore
collapse, the usual assumptions about the form of the energy functionals are vio-
lated, so the usefulness of the variational method is questionable. However, if we
restrict discussion to linear or semi-linear processes, the variational methods are
entirely adequate.

Using these variational methods, Berryman and Thigpen [44] have shown that



the general equations of motion for linear elastic wave propagation through an
isotropic porous medium containing both liquid and gas (or, more generally, any
two fluids) in the pores are given by
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where v = g or [ and ¢ = g,l, or s. The generalization to multiple pore fluids is
immediate: let the index y range over all fluids in the pores, and the index ¢ range
over all the fluids and the solid frame. The displacements are we);. The local
densities (mass per unit volume of constituent) are 5. The partial densities (mass
per unit total volume) are pe) = ¢()pe)- The internal energies of these immiscible
constituents are E). The induced mass coefficients are p(,,o. The body forces are
given by b); and the drag forces by d(¢);. Thigpen and Berryman [47] have shown
that the drag forces may be written in the form d(,); = — 3¢ D(ye) (d(¢)i — t(s)s) Where
Dy is a symmetric, positive semidefinite matrix whose matrix elements satisfy
>, Dye) = 0 for ¢ = g or I. For the present discussion, we will ignore the effects of
contact line motion that can be an added source of dissipation in partially saturated
porous media [48,49]. We will also ignore possible effects of interaction torque that
may lead to shear wave coupling between the pore fluids and the solid matrix [50].

One major simplification that occurs in the equations for partial saturation
follows from (1) and the approximation Ay, = 0. We find that
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where p¢, is the pressure for constituent ¢. Eq. (4) implies that all the pressures are
equal — which is consistent with an assumption that capillary pressure effects are
negligible for acoustics (also see References [51,52]). Without this approximation,
the number of compressional waves through a porous medium will generally be one
more than the number of fluids in its pores. This result is however dependent on the
spatial arrangement of the fluids. If one fluid dominates and the others are mixed
into the dominant one, then only two compressional waves are expected. When
(4) is valid, only two compressional waves will be found regardless of the spatial
arrangement of the fluids.

The subscript may subsequently be dropped from p. If 2e¢);; = u(e)s j+ue);,:, then
the first two strain invariants are defined by Ir¢) = e¢);; and gy, = %[I(Za1 — e(¢)ij€(e)jil-



The changes in density are defined by Ape) = ey —peyo- In terms of these invariants,
the standard definitions of the internal energies for an isotropic medium are
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for v =g,1. Applying (4) to (5) and (6), we find
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The coefficients in (5) have been shown elsewhere [42] to be related to measurable
quantities: a = ¢ 0K /(o — d(sp0) + F47, b = —=2u, ¢ = G50 K /Psp(o — ¢(5)0), and
d = [¢(s)0/Ps10)* K(5)/ (0 — ¢(5y0) Where o =1 — K*/K(,. The bulk and shear moduli of
the drained porous solid frame are K* and p*. The bulk modulus of the (assumed)
single constituent composing the microscopically homogeneous frame is K,,. If the
solid frame is composed of two or more constituents, then these formulas must be
modified. The coefficient h,, is related to the bulk modulus K, of the y-th fluid
constituent by

(8) hiyy = Z—K(y)-
Piy)o

These equations are all based in essential ways on Gassmann’s equations [22, 37,

53]. Methods for generalizing these relations for isotropic porous materials will be
presented in Section 5. The methods presented here could easily be generalized
for anisotropic porous media, but at the present time little work has been done
to identify appropriate measurements to determine the coefficients needed in the

resulting equations so we will not pursue this line of research here.

Now we define the linearized increment of fluid content for partial saturation
to be
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If only one fluid phase is present, (9) reduces to the exact result obtained previously
[42]. If more than one fluid phase is present, then we observe that by defining an
effective total fluid density change according to

¢ 0 _ 0 _ ¢ 1o
(10) IO Apsy = 2 Apg + 2

P(£)0 P(g)0 P10

Apqy



with ¢(s)0 = 3 (10 and we find that (9) reduces again to the exact result. Further-
more, applying (8), it is straight forward to show that (4) implies that
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for v = g or 1. Substituting (11) into both sides of (10) shows that the effective bulk
modulus of the multiphase fluid is given by
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which is just the harmonic mean or Reuss average of the constituents’ bulk moduli.

To check the consistency of our definition of ¢, we can show easily that
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If we define the average displacement of a fluid relative to the solid frame by
(14) Wiy)i = Pppoltimi = wsil

for v =g or I and the total relative fluid displacement by
(15) w; = Z’w(,y)i,
Y

then (13) becomes
(16) ¢ = —w; .

Equation (16) reduces to the standard definition for full saturation when only one
fluid saturates the pore space and is a natural generalization of this definition for
partially saturated materials.

The total relative fluid displacement w; defined by (15) is important in partial
saturation problems not only because of the analogy just developed with the fully
saturated problems, but also for convenience in applying boundary conditions in
practical problems. Berryman and Thigpen [44] have shown previously that unique-
ness of the solutions to the equations (1)-(3) demands the specification of either p
or the normal component of this same w; on the boundaries of the porous material.
Therefore, it proves most convenient to combine these equations so that u,); and w;
are the dependent variables. We will subsequently drop the subscript (s) on u; since
no confusion will arise and also define e = I,);. In addition, the zero subscripts on
density and volume fraction may also be dropped in the remainder of the analysis.

To determine the relations among p,¢, and e, substitute (11) and the first equa-
tion of (4) into (8) to eliminate Ap) for all ¢. Using known identities and rearrang-
ing terms, we find easily that

(17) p=M(¢-Ce



where the coefficients C and M are given by
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with

(20) o=1-K"/Kg,.

Substituting (12) into (18) gives

(21) C = {[(0 — d(s)/ Ky + bcs0/Kp) /o)

which is the standard result for single-phase saturation [53].

Next we suppose the body forces vanish and sum the equations (2) and (3) to
obtain
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where p =3, p(e). Dividing (3) through by ¢s), and rearranging terms, we find
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If an electrical tortuosity for a porous material is given by a = ¢F where ¢ is the
effective porosity and F is the effective electrical formation factor (ratio of the
conductivity of a conducting fluid to that of the insulating porous material when it
contains the conducting fluid), then in (23) and (24) a, is the electrical tortuosity
of the pore space occupied only by the gas, while o is the electrical tortuosity of
the pore space occupied only by the liquid. Introducing a Fourier time dependence
of the form ezp(—iwt) into (23) and (24), combining, rearranging terms, and keeping
the same names for the transformed and untransformed variables, we have
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In (26), #yso7=1or g as y=g or I. Inverting the matrix in (25) and summing
the results gives
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Using the expressions for w(.; from (25) again, we find
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where p; has been eliminated in the second step of (30) using (28).

The final form of these equations is found by substituting (30) into (22), using
(18) in the result and also in (28), and finally rearranging terms. The equations
then take the familiar form [54,55]
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where the inertial coefficients are given by
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while ¢ and M are given by (18) and (19). Thus, we find the remarkable result that
the form of the equations of motion for partial saturation and for full saturation
are the same — the only difference being that the inertial coefficients, as well as the
C and M coeflicients, are more complicated when the porous solid is only partially
saturated.



3. Biot’s Theory for Porous Materials with Inclusions. Now we will
change notation somewhat and consider two isotropic porous media (i.e., host and
inclusion) each of whose connected pore space is saturated with a single-phase
viscous fluid. The fraction of the total volume occupied by the fluid is the void
volume fraction or porosity ¢, which is assumed to be uniform within a constituent
but which may vary between the the host and inclusion. The bulk modulus and
density of the fluid are K; and pys, respectively, in the host. The bulk and shear
moduli of the drained porous frame for the host are K and p. For now we assume the
frame of the host is composed of a single constituent whose bulk and shear moduli
and density are K,,, g, and p,,,. Corresponding parameters for the inclusion will be
distinguished by adding a prime superscript. The frame moduli may be measured
directly [55-57] or they may be estimated using one of the many methods developed
to estimate elastic constants of composites [58,59].

For long-wavelength disturbances (A > h, where & is a typical pore size) prop-
agating through such a porous medium, we define average values of the (local)
displacements in the solid and also in the saturating fluid. The average displace-
ment vector for the solid frame is ¢ while that for the pore fluids is ;. The average
displacement of the fluid relative to the frame is @ = ¢(@y — @). For small strains,
the frame dilatation is

(37) e=e;+e,+e,=V-4,

where e,, e, e, are the Cartesian strain components. Similarly, the average fluid
dilatation is

(38) ef =V -if

(e; also includes flow terms as well as dilatation) and the increment of fluid content

is defined by
(39) (=-V- -4 =¢(e—ej).

With these definitions, Biot [1,2,30] shows that the strain-energy functional for an
isotropic, linear medium is a quadratic function of the strain invariants [60] I; = e, I,
and of ¢ having the form

(40) 2F = He? — 2Ce( + M2 — 4pl,,
where
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and 7;,7,,7. are the shear strain components. Our earlier definitions (5) and (6)
for partial saturation are completely consistent [42,61] with these definitions.
With time dependence of the form ezp(—iwt), the Fourier transformed version of

the coupled wave equations of poroelasticity in the presence of dissipation take the
form

(42) pV%i + (H — p)Ve — CV( + w?(pii + pyid) = 0,



(43) CVe — MV( + w?(psi + qi) = 0,

where

(44) p=2dps+(1-¢)pm
and

(45) q=psla/é +iY (&)n/rw].

The kinematic viscosity of the liquid is 5, the permeability of the porous frame is
x, and the dynamic viscosity factor [2,62] is given (for our present choice of sign for
the frequency dependence) by

(46) Y(€) = ZET(€)/I1+ 2T(6)fie],
where

(47) O
and

(48) ¢ = (wh?/n)3.

The functions ber(¢) and bei(¢) are the real and imaginary parts of the Kelvin func-
tion. The dynamic parameter h is a characteristic length generally associated with
(and comparable in magnitude to) the steady-flow hydraulic radius. The electrical
tortuosity « is a pure number related to the frame inertia which has been measured
[27] for porous glass bead samples and has also been estimated theoretically [12,24].
The electrical tortuosity a and the fluid flow tortuosity r are related by a = 7% = ¢F,
where F is the electrical formation factor.
The coefficients H,C, and M are given by [37.53]

(49) H=K+§,u+ch’,

(50) C={l(c—¢)/Km+¢/Esljo} ",
(51) M =CJo,

where

(52) c=1-K/Kp.

The wave equations (42) and (43) decouple into Helmholtz equations for three

modes of propagation if we note that the displacements ¢ and % can be decomposed
as

(53) Z=VY+Vxf, #=Vy+Vx¥,



where T,y are scalar potentials and §,¥ are vector potentials. Substituting (53) into
Biot’s equations (42) and (43), we find they are satisfied if two pairs of equations
hold:

(54) (V2 + k?)ﬁ: 05 )-(‘ = _FSB’
where T'; = ps/q and
(55) (V2+Ek%L)AL =0.

In this notation, the subscripts +,—, and s refer respectively to the fast and slow
compressional waves and the shear wave.

The wave vectors in (54) and (55) are defined by

(56) ki =w?(p— psTs)n

and
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where

(58) b= pM — psC, c=psM —qC, d=psH — pC, f =qH — psC,
with

(59) A=MH-C2

The linear combination of scalar potentials has been chosen to be

(60) A =T4T+ P,
where
(61) Ty =d/[(k+A/w®)? = b] = [(k+A/w?)? = f/c.

With the identification (61), the decoupling is complete.

Since (54) and (55) are valid for any choice of coordinate system, they may
be applied to boundary value problems with arbitrary symmetry. Biot’s theory
has therefore been applied to the scattering of elastic waves from a spherical in-
homogeneity [4]. The results of that calculation will be summarized in the next
section.

4. Scattering from a Poroelastic Spherical Inclusion. The full analysis
of scattering from a spherical inhomogeneity in a fluid-saturated isotropic porous
medium is quite tedious. Fortunately, much of this work has already been done [4]
and we may therefore merely quote the pertinent results here.

Let the spherical inhomogeneity (see Figure 1) have radius a. For the present,
we place no restrictions on the properties of the inhomogeneous region. Thus frame
bulk and shear moduli, grain bulk modulus, density, porosity, and permeability of
a solid inclusion may all differ from those of the host. Furthermore, bulk modulus,



Figure 1. A spherical inclusion in a porous medium could be the result of local
variations in fluid content, grain composition, porosity, permeability, etc.

density, and viscosity of the fluid in an inhomogeneous region may also all differ
from those of the host fluid. Suppose now that a plane fast compressional wave
is generated at a free surface far from the inclusion. Then, if the incident fast
compressional wave has the form

A
(62) i=3:—" expi(kyz — wt),
lk+

the radial component of the scattered compressional wave contains both fast and
slow parts in the far field and is given by

) uyy = (iky) tezpi(kyr — wt)/kyr[BST — B cos0 — BS (3cos20 + 1) /4]
63
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Then, with the definitions ki = k+a and k; = k,a and with no restrictions on the
materials, we find that
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Expansions of the other coefficients in the small parameter ¢ = C/K have been
given in [4]. However, for the present application, only the first two coefficients
are needed and these happen to be the ones known exactly at present. Of course,
the full scattered wave also contains transverse components of the compressional
wave, relative fluid/solid displacement, and mode converted shear waves. However,
the scattering coefficients for these contributions are linearly dependent on the the
coefficients in (63) and therefore contain no new information. It is sufficient then
to base our discussion on the expression (63).

As an elementary check on our analysis, we may first consider the limit in which
the porosity ¢ vanishes. Then the fluid effects disappear from the equations and
only the first line of (63) survives. Furthermore, it is not difficult to check [4] that

the coefficients BS” for n = 0,1,2 reduce to the well-known results for scattering
from a spherical elastic inclusion in an infinite elastic medium [58]. For example,

(66) B{Y) = —ird Ay(K' — K)/(3K' + 4p)

in this limit as expected.

These results have a multitude of potential uses. One straightforward appli-
cation is the calculation of energy losses from elastic wave scattering by randomly
distributed particles. A second important application is to use these results as the
basis for an effective medium approximation for the effective constants of complex
porous media. The second application is the one we address in the next section.

5. Generalization of Gassmann’s Equations. As noted previously, the
equations of poroelasticity have several significant limitations. For example, these
equations were derived with an explicit long-wavelength (low-frequency) assump-
tion and also with strong implicit assumptions of homogeneity and isotropy on the
macroscopic scale. Another restriction arises from the assumption that the pore
fluid is uniform and that it fully saturates the pore space. For the present appli-
cation, we assume that a single fluid saturates all the pore space for host as well
as inclusion and scattering is caused by microscopic heterogeneity only in the solid
properties.

Before deriving the main result, consider the problem of the porous frame with-
out a saturating fluid (or with a highly compressible saturating gas). Then, since
we take C = M = p; = 0 in this limit, each term of Eq. (50) vanishes identically and
the fluid dependent terms of Eq. (49) also vanish, leaving only the terms for the
elastic behavior of the porous frame remaining. Since no slow wave can propagate
under these circumstances, the second line of Eq. (63) disappears and only the fast
wave terms contribute to the scattering. This limit is formally equivalent to the
problem of elastic wave scattering from a spherical inclusion that has been treated
in detail previously (see [58] and other references therein). One effective medium
approximation (that we call the coherent potential approximation or CPA) requires
the volume weighted average of the single-scattering results to vanish. This method
simulates the physical requirement that the forward scattering should vanish at in-
finity if the impedance of the “effective medium” has been well matched to that
of the composite. The resulting condition is that the volume weighted average of

each of the B(Ps for n = 0 — 2 must vanish. Using the convention that the effective



constants for the composite porous medium are distinguished by an asterisk, the
formulas for the effective bulk (K*) and shear(z*) moduli for the drained porous
frame of a microscopically heterogeneous medium are

1 1
(67) K+ 2w <K(a‘r‘) + %u*>
and

1 1
(68) ,LL*—I—F*:<,LL(1':’)+F*>
where
(69) F = (u/6)(9K + 8u)/ (K + 2p).

The spatial(#) average is denoted by (-). The remaining constant to be determined
is the effective density which is just the average density [4]. Equation (67) follows
easily from the volume average of (66), while (68) follows similarly from the volume
average of B . Note that the equations for K* and p* are coupled and therefore must
be solved iteratively (i.e., self-consistently). Although the form of the equations
(67) and (68) is identical to that obtained for elastic composites, the results can be
quite different since the local constants K (z) and pu(%) appearing in the formulas are
frame moduli of the constituent spheres of drained porous material, not (necessarily)
the moduli of the individual material grains. Of course, since the formula reduces
correctly in the absence of porosity to the corresponding result for the purely elastic
limit, the user of Eqgs. (67) and (68) has some discretion about conceptually lumping
grains together to form a porous frame or treating them as isolated elastic inclusions.

Now we will restrict discussion to the very low frequency limit where

(70) T, =H/C
and
(71) r_=0.

With these restrictions, the relevant scattering coefficients reduce to

_ k2 CA 4 4
BT = th—t 4 K42 "o — C'(K + =
(72) 0 3HM'(K/+%;L)|:C( +3;1,—|—0'C) C( +3PJ+O'C):|,
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The resulting conditions on the effective constants are
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and

<K(:E)—K*+ [O'(f)—a*]c*> _a.

(7%) K@) +

Recall that the averages in (74) and (75), as elsewhere in this paper, refer to spatial
averages over (possibly) porous constituents of the overall porous aggregate. The
limitations on the assumed geometry of the resulting aggregate have been discussed
previously [63]. Note that (74) and (75) depend on the effective medium frame
moduli K* and p* determined by (67) and (68). The new constants determined by
(74) and (75) are C* and o*. The expressions for C* and ¢* are coupled as written

but may be decoupled after some algebra. The final expressions for these constants
are

(76) ¢ = C’*/ [< Ml(f) > + <UK((:B;*))1(;;1 >]
and

. o (&) 1
(77) 7 :<K(f)+%u*>/<K(f)+%p*>'

Notice that both constants are determined explicitly by the formulas, in contrast
to the frame moduli K= and p* which are determined only implicitly by (67) and
(68). The author has also shown [63,64] that (76) and (77) are completely consis-
tent with all known constraints [37,53] on the form of these coefficients. Further-
more, the coherent potential approximation (CPA) treated here is just one of three
approximations — including the average T-matrix approximation (ATA) and the
differential effective medium (DEM) — all of which satisfy the known constraints
on coefficients [64].

The same idea used to derive (76) and (77) has also been used to show [65]
that the speed of waves propagating through a mixture of liquid and gas in the low
frequency limit is given by Wood’s formula [66] as expected [37,40].

Recently Berryman and Milton [67] have also derived exact results for general-
ized Gassmann’s equations in composite porous media with two constituents. Some
of these exact results were first obtained [64] using the single-scattering approach
summarized here.

6. Anomalous Dissipation Caused by Inhomogeneous Fluid Perme-
ability. A convincing demonstration has been given by Mochizuki [68] that, if we
assume global fluid-flow effects dominate the viscous dissipation, Biot’s theory of
poroelasticity cannot explain the observed magnitude of wave attenuation in par-
tially saturated rocks. Since the same theory explains the wave speeds quite well,
it is reasonable to suppose that a small change in the theory may be adequate to
repair this flaw. Many explanations are possible of course, but within the context
of Biot’s theory the simplest postulate is to suppose that local — rather than global

fluid-flow effects dominate the dissipation [28,29]. We will distinguish two related
issues in this section which are summarized in the following questions: (a) Does



the physics of wave propagation require that the value of the permeability x ap-
pearing in Biot’s equations should be that for global flow or for local flow? Then,
if we can show that the value should be that for local flow, () does this change
in the interpretation make enough difference so the theory can explain the correct
magnitude for the attenuation?

To address the first question, we explore the consequences of assuming that
Biot’s theory should be applied at the local flow level rather than at the global
flow level. This assessment is easily done by examining the dispersion relations.
When the Fourier time dependence is e~** with angular frequency w sufficiently
low, Biot’s theory predicts [see Eq. (57)] the dispersion relations for the fast (+)
and slow (-) compressional modes in any homogeneous porous material to be

w . Py 27,242
78 B2~ |1+ iw—L(1 -2 /v
(78) P gp [t Ly
and

wqoH
k2 ~

(79) - MH - C?
where
(80) vi:H/pvv(%:C/pf’q(J:pfn/K"

The fraction of the total volume occupied by the fluid is the void volume fraction
or porosity ¢, which is assumed to be uniform. The bulk modulus and density of
the fluid are K; and ps. The bulk and shear moduli of the drained porous frame are
K and p. For simplicity we assume the frame is composed of a single constituent
whose bulk and shear moduli and density are K,,, gm, and p,,. Then the coefficients
H,C, and M are given by (49)—(52). The overall density is

(81) p=0ps+(1—¢)pm.

The kinematic viscosity of the fluid is » and the permeability of the porous frame
is k.
Defining the quality factor for the fast compressional wave Q. by

(82) K= S [14i/Q4],
+
we find [69] that @ is given by
(83) 1/Q4 = w%(l — v} [vl)2.

Since 1/Q, is proportional to the permeability, the attenuation is therefore great-
est in regions of high permeability. Thus, we might say that the regions of high
permeability control the attenuation.

In the very low frequency limit, the slow compressional mode is known to re-
duce to Darcy flow with slowly changing magnitude and direction as the driving
potential gradient oscillates sinusoidally [70-74]. Now consider a layered porous



material (whose constants depend only on depth z) with constituents having iden-
tical physical constants except for the permeability « which varies widely from layer
to layer but which has a constant value &, within the n-th layer (lying in the range
zn—1 < z < z, With zy = 0). Thus, the permeability is a piecewise constant function of
z. The thickness of the n-th layer is given by I, = 2, — z,—;. If we impose a potential
gradient along the 2-direction in such a layered material, it is well-known that the
effective permeability for fluid flow is found by taking the harmonic mean of the
constituent permeabilities, z.e.,

1 ln
(59 =3 3
where the total sample length L is given by the sum of the layer thicknesses

(85) L= I

From (84), we can conclude that the regions of lowest permeability dominate the
effective overall permeability for fluid flow through a porous layered medium. Thus,
we might say that the regions of low permeability control the fluid flow — at least
for this special choice of geometry.

The apparent attenuation of a fast compressional mode at normal incidence on
such a structure has two distinct components: (a) Reflection and mode conversion
at layer interfaces will have a tendency to degrade the fast wave, but this effect will
be quite small at low frequencies for the model structure we are considering. (b)
The attenuation within a layer is determined by the quality factor for that layer, as
shown by Eq. (82). Assuming the attenuation is small enough, we may approximate
(82) within any layer by ky(z) = (w/v4)[l +14/2Q+(2)], where the functions k. (z) and
Q+(z) take the piecewise constant values appropriate for the depth argument -.
Neglecting the small effects of reflection and mode conversion, the behavior of the
fast compressional wave at normal incidence is then easily seen to be given by

z z

w w 1
86 Aseapli [ dzhy(z) —iwt| > Ayenpli—z —iwt — — [do—r
(86) +ezp[10/ zky (2) “"} +ea,'p|:lv+z " v+0/ Z2Q+(z)},

where A, is the amplitude of the wave at z = 0. In writing (86), we have used the

piecewise constant property of the functions. The integral in the exponent is given
by

z

(87) /dz L _ 9Py /zdzn(z).

] 72Q4(2) C 2np

At the z = L boundary of the material, we have

(88) /dzn(z) = Zlnnn.



If the layering is periodic with period much less than either z or L or if it is statis-
tically homogeneous on this length scale, then we may approximate the integral in
the exponent of (86) using (87) and

z

(89) / dzk(2) = Koz,

0

where the effective permeability for attenuation measurements is given by the mean
(90) 1 P
Ko = I 4 nkn.

It is well-known that the mean is always greater than or equal to the harmonic
mean of any function; thus,

(91) kf < Kq.

In answer to our first query: the physics of wave propagation does dictate that
local-flow effects dominate the attenuation of the fast compressional wave. The
necessity of this conclusion is nicely illustrated in Figure 2. Suppose that a fast
compressional wave is incident on a layered material with alternating permeable
and impermeable layers. If the impermeable layers are very thin and have an
acoustic impedance closely matching that of the permeable layers, their presence
has a negligible effect on the propagating fast wave. The viscous attenuation of the
fast wave occurs solely in the permeable layers and magnitude of that attenuation
is completely determined by the permeability of these layers. By contrast, the
global permeability of this material in the direction normal to the layering vanishes
identically. If this null value were used in our predictions, the magnitude of the
attenuation would be grossly underestimated. Although this choice of geometry is
extreme, it clearly shows that errors in estimates of attenuation will arise if the
value of permeability for global flow is used.

Now, can the theory predict the correct magnitude for the attenuation even
with this change in the interpretation of the permeability factor? To predict the
wave attenuation from measurements of permeability, we need some independent
means of measuring the local permeability distribution. Normal laboratory flow
experiments will not suffice, because they necessarily measure the global perme-
ability. Omne promising method of estimating the local permeability uses image
processing techniques to measure pertinent statistical properties of rock topology
from pictures of cross sections [75,76]. This approach is still under development
and we will not attempt to describe it in detail here.

Another approach, which is ultimately much less satisfactory than the image
processing method but much easier to use at present, is to suppose that we can
obtain reasonable estimates of the local permeability x; from the known values of
the global permeability kg, the tortuosity r = (¢F)%, and the porosity ¢. To do
so requires some formula, so we will use a form of the Kozeny-Carman relation
derived by Walsh and Brace [77]. For tubes of arbitrary ellipsoidal (major and
minor axes a,b) cross-section the effective permeability of straight sections of such
tubes is given by & = (7/4A4)[a®®/(a® + b?)]. The porosity for an ellipsoidal tube is



Figure 2. Tlustration of a simple experiment to prove that the attenuation of the
fast wave depends on the local — not the global — value of permeability . A fast
wave incident normal to the impermeable partitions will experience a small but
finite attenuation even though the global permeability in this direction vanishes
identically.

¢ = mab/A and the specific surface area is well approximated by s ~ 2x[(a® 4 b?)/2]7 /A.
Then, a Kozeny-Carman relation satisfied by «, ¢, and s can be shown to be

_1¢

2 =
(9) K 232

for the effective permeability of a single tube oriented along the pressure gradient.
If the tube is at an angle @ to this gradient, then Walsh and Brace [1984] show that

(93) )=

2 5272’

where 7 = 1/cosf. If we suppose that (92) and (93) are fairly representative of the
material of interest, then (92) describes the maximum local permeability «; and
(93) the effective global permeability xz. We then conclude that

(94) KL =T kg = pFkg.

The tortuosity = has been measured for many sandstones; the values for samples
studied by Simmons, Wilkens, Caruso, Wissler, and Miller [78-80] lie in the range



2 < 7 < 5, with most values 7 ~ 2. To obtain estimates of attenuation close to
experiment [39], we need to increase the value of permeability used in Mochizuki’s
calculations [68] by a factor of 72 ~ 10. This requirement implies a tortuosity of = ~ 3,
which is clearly well within the established experimental bounds. A more detailed
analysis leading to the same qualitative conclusions has also been presented [69].
These arguments provide strong evidence for the plausibility of a local-flow explana-
tion of the observed discrepancies. However, a completely satisfying demonstration
must await the collection of the required data on local-flow permeability.

One unfortunate consequence of the observation that local permeability controls
attenuation is that measured attenuation in wet rocks cannot be used directly as
a diagnostic of the global fluid-flow permeability. Since the mean of the local
permeabilities will always be greater than the true fluid-flow permeability regardless
of the actual spatial distribution of the constituent x’s, the effective permeability
computed from attenuation measurements can nevertheless be used to provide an
upper bound on the desired global permeability.

Although the subject is really beyond the scope of this paper, in the context
of the present volume on Wave Propagation and Inversion we should mention that
indirect means of measuring the global permeability may still be viable. Seismic
attenuation tomography [81] may be used to backproject effective local attenuation
in a region from global attenuation data (line integrals). From estimates of local
attenuation, we may deduce estimates of local permeability. Then, from a regional
map of local permeability estimates, we can in principle compute the global per-
meability. Thus, although our results show that a simple direct measurement of
global permeability is impossible, it certainly does not prevent us from obtaining
the desired information from regional attenuation data.

7. Discussion. Why should we care about poroelasticity in general and slow
waves in particular? Both the theory and the preponderance of experimental results
have shown that, for earth materials containing some fluid at normal temperatures,
the attenuation of slow compressional waves is so strong in the relevant frequency
range (10-1000 Hz) that it is extremely unlikely that propagating slow waves will
ever be directly observed in a field experiment. If we can ignore the slow waves, then
the theory reduces to elasticity or viscoelasticity — which is clearly advantageous
both conceptually and computationally. However, we miss something important if
we try to compute wave propagation effects in the earth without using the equa-
tions of poroelasticity. The indisputable experimental evidence for the existence of
the slow compressional mode in real materials [11-13,15,18,21,27,34] implies that
mode conversions occur at every interface in a complex medium; a fast compres-
sional wave striking any boundary (even at normal incidence) is partially reflected,
partially transmitted, and partially converted into transmitted and reflected slow
compressional modes [16]. Even if we never see a propagating slow wave in the
field, the fast wave feels its presence as an additional attenuation mechanism that
operates at every interface. The slow wave therefore gradually bleeds energy out of
the propagating fast compressional wave into a highly damped viscous motion of
fluid in the pores. Thus, the slow wave itself acts as an additional source of unac-
counted for (and therefore anomalous) attenuation for those easily measured waves
that do propagate. This attenuation mechanism is not predicted by the theories



of elasticity or viscoelasticity. It may be possible to incorporate such effects into
these simpler theories, but it seems more natural to use the theory that predicts the
phenomenon. This is one practical reason why we should care about poroelasticity
and why it is important to develop a comprehensive theory.

What then are the prospects for a comprehensive theory of poroelasticity? It
appears likely that we will soon have a completely satisfactory linear theory of bulk
waves including effects of partial saturation and inhomogeneous frame materials. A
satisfactory nonlinear theory of bulk waves including effects of fracture, plastic flow,
and pore collapse is at a more elementary stage, but is still likely to be achieved by
the turn of the century. At present it appears that the most troublesome problems
are those involving surface waves rather than the bulk waves. Surface waves de-
pend critically on the nature of the equations of motion near interfaces. Using the
standard boundary conditions of poroelasticity [44,45], it has been shown that a
slow surface wave [9] or slow extensional wave [10] is expected only when a closed-
pore boundary condition applies at the porous surface. Yet, available experimental
data seem to show that such slow surface waves [18] do in fact propagate when the
open-pore boundary condition applies. It is possible that the presence of a thin
damage region close to the surface has a major effect on the conclusions of the the-
ory regarding the propagation of the surface waves. However, it could also be that
these experiments are pointing out still another subtle deficiency of the equations
we use to describe wave propagation in porous media.
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