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Abstract

Concrete is a good example of a composite material in which the inclusions (rocks and
sand) are surrounded by a thin shell of altered matrix material and embedded in a normal
matrix. Concrete therefore may be viewed as consisting of a matrix material containing
composite inclusions. Assigning each of these phases different linear elastic moduli results
in a complicated effective elastic moduli problem.

A new kind of differential effective medium theory (D-EMT) is presented in this paper
that is intended to address this problem. The key new idea is that each inclusion particle,
surrounded by a shell of another phase, is mapped onto an effective particle of uniform elastic
moduli. The resulting simpler composite, with a normal matrix, is then treated in usual D-
EMT. Before use, however, the accuracy of this method must be determined, as effective
medium theory of any kind is an uncertain approximation. One good way to assess the
accuracy of effective medium theory is to compare to exact results for known microstructures
and phase moduli. Exact results, however, only exist for certain microstructures (e.g., dilute
limit of inclusions) or special choices of the moduli (e.g., equal shear moduli). Recently,
a special finite element method has been described that can compute the linear elastic
moduli of an arbitrary digital image in 2-D or 3-D. If a random microstructure can be
represented with enough resolution by a digital image, then the elastic moduli of the random
microstructure can be readily computed. This method is used, after proper error analysis, to
provide stringent tests of the new D-EMT equations, which are found to compare favorably
to numerically exact finite element simulations, in both 2-D and 3-D, with varying composite
inclusion particle size distributions.



1 Introduction

Concrete is a composite material. A typical recipe contains a cement paste matrix and
inclusion particles of various sizes, ranging from the smallest sand grains of diameter 100um,
to the largest rocks of diameter 10 mm to 20 mm. However, upon closer examination, one
finds that the presence of the grains in the paste changes a thin layer of matrix material
surrounding each inclusion. The cement paste matrix in this shell is different, usually more
porous, than the bulk of the surrounding cement paste matrix. Typical widths of this layer
are in the range 10 pm to 30 um [1-3].

Concrete therefore consists of at least three distinct types of constituents. If the altered
shell of matrix material is associated with the grains, then the point of view may be taken
(and this will become our point of view) that concrete consistes of a matrix material con-
taining composite inclusions. Assigning each of these phases different linear elastic moduli
results in a complicated effective elastic moduli problem.

In fact, the problem is still more complicated. The “shell” around each inclusion has a
gradient of properties, since the cement paste matrix is least dense at the particle surface
and increases outwards to the full matrix density [2,4,5]. The dilute limit, with a single
spherical inclusion surrounded by a spherically symmetric gradient of elastic properties, can
be handled exactly [6-9]. But the real microstructure of concrete, with a wide particle size
distribution of inclusions, each surrounded by overlapping gradients of properties, is too
difficult to treat analytically, by numerical methods, or by effective medium theory (EMT).
However, it has been shown that a multi-scale model can be used in order to map this very
complicated microstructure into a simpler, but still complicated, microstructure, where the
shell layers can be treated theoretically as having uniform properties [6,10,11]. The three
phase composite described above then becomes appropriate for the concrete elastic moduli
problem.

Differential effective medium theory (D-EMT) for this microstructure has been developed

previously in several ways [12-17]. Predictions for the electrical properties of this microstruc-



ture have recently been checked against random walk simulations [18,19]. These simulations
are accurate and simple, but time-consuming, hence the need for effective medium theory.
The most accurate D-EMT for this application was developed using a new idea in differ-
ential effective medium theory (D-EMT) [19]. The key idea was that a spherical inclusion,
along with its surrounding thin shell of altered matrix material, was exactly mapped into a
new, slightly larger homogenized inclusion, which included the hard but poorly conducting
particle and the softer but better conducting shell, and which had a uniform conductivity.
The new system of effective particles embedded in the matrix could then be treated easily
using a differential effective medium theory (D-EMT).

A rather different approach to three-phase effective medium theory could be based on
the self-consistent formulas of Christensen and Lo [20,21], but as we shall show the method
presented here has considerably more flexibility in the range of complex microstructures that
can be incorporated into the model.

This new kind of D-EMT is extended to linear elastic properties in this paper. Similar
to the idea used for conductivity, a spherical inclusion, with a surrounding shell layer, is
mapped onto an effective particle of uniform elastic moduli. The problem then becomes
a simple composite composed of spherical particles, of varying sizes and elastic moduli,
embedded in a uniform matrix. This composite can then be treated in the usual D-EMT.

Except for some special models [22], the accuracy of most EMTs is often in doubt. From
the point of view of tailoring the approximation to the specific material microstrcture that
we want to model, EMTs of any kind tend to be uncontrolled approximations. Checking
the accuracy of an EMT by comparing its predictions to experimental results is inadequate
from the theoretical point of view because the microstructure and phase elastic moduli are
usually only approximately known. Observed discrepancies could be from the EMT, or
equally well could arise from the approximate knowledge of the experimental material. A
more satisfactory way of assessing the accuracy of EMT is to compare to essentially exact

(computational) results, where microstructure and phase moduli are controlled by the user.



But exact elastic results for non-trivial microstructures are rather rare, and only exist for
certain microstructures (e.g., dilute limit of inclusions) or special choices of the moduli (e.g.,
equal shear moduli) [23,24]. In the case of conductivity, the D-EMT results could be checked
on model concrete microstructures using accurate random walk simulations [19]. Recently, a
special finite element method has been described that can compute the linear elastic moduli
of an arbitrary digital image in 2-D or 3-D [25]. This method is used, after proper error
analysis, to provide stringent tests of the new D-EMT equations. The results are found to
compare favorably with the essentially exact finite element calculations, in both 2-D and

3-D, with a variety of simple inclusion size distributions.

2 Differential effective medium theory and effective
particle mapping

D-EMT [26,27] was chosen as the best candidate for the composite inclusion problem for
the following reason. The accuracy of an EMT is often linked to how well its percolation
properties match those of the experimental system being considered [18,28,29]. In D-EMT,
the inclusions are always discontinuous, and the matrix is always continuous. Concrete
has the same properties since the granular aggregate is fully surrounded by the cementing
matrix material. Thus, the microstructures of the theory and the problem of interest are
well matched. Furthermore, we want to be able to incorporate a range of sizes of particles
into the theory in a controlled way. It is not clear how to do this in a self-consistent three-
component model [20], but we will show that this is not difficult to achieve with the present
approach.

The standard D-EMT is a two-phase theory, or rather two topological phases, since each
inclusion can be a different phase by having different elastic properties. In the present
case, the thin shell of disturbed material around each granular inclusion causes conceptual

problems for D-EMT, since it introduces at least one more topological phase. To make use



of D-EMT in this setting, the question arises whether this shell should be treated as part of
the inclusion, or as part of the matrix?

One answer to this conceptual dilemma is to construct versions of D-EMT in which
the shell regions are either unambiguously inclusion or matrix. Since the shell regions,
disregarding overlaps between shells, will necessarily assume the same shape as the spherical
inclusion particles, the option of making the shell regions part of the inclusions seems a most
appropriate one. This is accomplished by mapping each inclusion particle together with its
accompanying shell into a single effective particle, with size sufficient to incorporate both
and with uniform elastic properties. This idea is illustrated in Fig. 1, and will be developed
more fully below. Thus, the effective medium theory that we develop will be for a material

having a matrix that contains composite inclusions.

2.1 Standard D-EMT

In the usual D-EMT [27], when a particle with elastic moduli K, and G, is embedded in a
matrix with elastic moduli K, and G,,, the dilute limit is used to generate an approximate
equation that can be solved for the effective elastic moduli [27]. In the dilute limit, the value
of ¢, the volume fraction of particles, is small enough so that the particles do not influence

each other. The effective elastic moduli, K and G, are then given by [30]:

K = K, + Kpke + O(c?), (1)

G = Gy + Gpge + O(c?), (2)

where k£ and g are dimensionless coefficients. These coefficients are often called the dilute
limit slopes or the intrinsic moduli [31], and are functions of both the shape of the particle,
and the ratios Ilf—i and g—i The higher order terms in the ¢ expansion come from interactions
between particles, and so are negligible in the dilute limit.

For circular particles in a 2-D matrix and spherical particles in a 3-D matrix, these dilute



limits are known. For circular particles in 2-D, the values of £ and ¢ are:

(Km + Gn) (K, — Kyy,)

b= Kn(Ky+Gp) (3)
— 2(Km + Gm) (Gp — Gm) (4)
g G (Km + Gp) + Gp(Km + Gn)

For spherical particles in 3-D, the values of k£ and ¢ are:

— 3
5(Km + %Gm)(Gp — Gm)
9= B . (6)
3Gm(Kp + §Gm) +2G, (K + 2G1p)

The dilute limits are now used to generate approximate differential equations suitable to
estimate the elastic moduli when arbitrary amounts of the included phase are introduced
into the matrix. Suppose that a non-dilute volume fraction ¢ of particles have been placed
in the matrix. The effective elastic moduli of the entire composite system are now K (¢) and
G(¢), where ¢ = 1 — ¢ is the matrix volume fraction. The resulting system of matrix plus
particles is treated as a homogeneous material. Suppose then that additional particles are
added by removing a differential volume element, dV', from the homogeneous material, and
replacing it by an equivalent volume of the inclusion phase. The new elastic moduli, K +dK

and G + dG, are given in the dilute limit by

K+dK:K+Kk(K,G)%, (7)
dv
G+dG =G +G g(K,G)5r, (8)

where V' is the total volume and k(K,G) and g(K, G) are the same quantities as those in egs.
(1) and (2), but with the replacement K,,, — K and G,, — G. This is the key approximation
that is made in order to generate the standard two-component D-EMT. When the volume

element dV was removed, only a fraction ¢ was actually matrix material, so that the actual



change in the matrix volume fraction, d¢, is given by
av
d¢p = —p—. 9

Making this substitution, eq. (8) then reduces to the coupled set of equations

dK

dG
d_qﬁ = —gG/9. (10)

These equations are coupled via the k£ and ¢ terms, which depend on the values of K and GG
for the matrix at the given value of ¢.

The above has been written for a single size inclusion. For a size distribution of inclusion
particle diameters {b;}, the theory is only slightly more complicated. Some composites
might also have different elastic moduli for different sizes of particles. A general way of
characterizing the inclusion size distribution is by specifying the diameter of each type, d;,
j =1, M, where M is the number of different kinds of particles, and f; is the fraction of the
total inclusion volume that is taken up by the j-th kind of particle, with 3=, f; = 1. The
elastic moduli of the j-th kind of particle is given by K; and G ;.

In fact, it makes some difference to the final results just how (i.e., in what order) the
various inclusion types are mixed into the composite [14]. We have chosen to assume the
inclusion distribution is maintained as a fixed quantity throughout the mixing process. The
way this affects the D-EMT is seen in the dilute limit, or the values of k£ and g, which become
(k) = X, fik; and (g) = X, f;g;- These slopes are first averaged over the inclusion particle
size distribution before being used in the formula for the dilute limit. The D-EMT is then

built up the same way as for a single kind of particle, but using the average slopes.



2.2 Effective particle mapping

It has been long known that a spherical particle, surrounded by a spherical shell of different
elastic moduli, can be exactly mapped into a new, uniform property spherical particle, which
is as large as the old particle plus shell combined [21,32,33]. This can also be done for a
circular particle surrounded by a circular shell.

Let the interior particle be phase 3, with diameter b, and the shell material be phase
2, with outer diameter a. The phase label 1 is reserved for the matrix. Figure 1 shows a
schematic of such a mapping. Ref. [33] contains the formulas for such a mapping in 3-D,
for both the effective properties K and G, and for GG in 2-D. The 2-D mapping for K is also
included below. Note that in Ref. [33], in 3-D, label i is the same as 3 here, and label m is
the same as 2 here. In 2-D, label f is the same as 3 here, and label m is the same as 2 here.
Also, in both 2-D and 3-D, v; is the Poisson’s ratio for phase i.

The 3-D results are presented first. The effective G is the solution to the following

quadratic equation (taking the positive square root),
A(G/G9)* +2B(G/Gy) +C =0 (11)
with the coefficients given by:

A = 82(4 — 5uy)mp'? — 2[632m5 + 2mms]p”® + 2522mp®® —
502(7 — 12vy + 8v3)mep + 4(7 — 1012)m2ms,

B=-2z(1- 51/2)771])10/3 + 2[632n2 + 2771773]]07/3

—252219p°"% + 752(3 — v3)norep + 2(151/2 — T)noms,

C = 4z(5v5 — T)mp*®® — 2[63215 + 2m13]p" /2

+2522m0p°"% + 252(V2 — T)nap — (7 + 513) a7,

m = 2(7 — 10u,)(7 + 5v3) + 105(v5 — 1),

ne = z(7 + 5v3) + 35(1 — v3),
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T3 = Z(8 - 101/2) + 15(1 - VQ),
Z = G3/G2 - 1,

and p= (b/a)’.

Note that the subscripts 1, 2, and 3 for the n; variables should not be confused with the
phase labels.

The effective K is given by:

C(Kg —_ KQ)
K=K,+ (Ks—K3) (12)
1+(1- c)(Ker%G?)

For 2-D, the plane strain shear modulus, 3, is used from Ref. [33], but with the notation
of this paper. The effective G is given by the solution of the following quadratic equation

(taking the negative square root),
A(G/G2)* +2B(G/Gy) +C =0 (13)
with the coeflicients given by:

A=3p(1 = p)*(r = 1)(r +m3) + [r12 + Moz — (r12 — m3)p° [P (r — 1) = (r2 + 1)),

B = =3p(1—p(r = ) +75) + e + (= Dp+ Ul — )+ 75) = 20 — 75)p°
501+ 1) = Dl + 0+ (o — m)p”)

C =3p(1 = p)*(r = )(r +n3) + [rmz + (r = )p + 1[r + 03 + (rnz — 13)p°,

m=3—4y;, for i=2,3,

r = G3/Go,

and p= (b/a)’.



The effective K is given by:

K — p(Ky + Go) K3 + (1 — p) (K3 + Ga)ks
T p(Ky 4+ Go) + (1 —p)(Ks + Gy)

2.3 New D-EMT

The resulting effective particle is now be treated as the inclusion phase in usual D-EMT, as
described above. When an inclusion particle size distribution is used, the functions k(K, G)
and g(K, @) are averages over this size distribution, as was stated above. The differential
equations can be easily solved numerically by a 4th order Runge-Kutta method [34, 35].

There are a few differences, however, involving the effective inclusion volume fraction.
Each particle is now of diameter a; = b; + h;, where h; is the shell thickness for the j-
th kind of inclusion, so that the volume fraction of “effective inclusions” now goes to the
renormalized value ¢, not ¢. The value of ¢ must be known in order to know where to
terminate integration of the D-EMT differential equations, which start at ¢ = 0.

These differences can be determined simply by considering the number of particles of a
certain type. If V; is the total volume of the j-th kind of particle, and Nj is the total number

of this kind of particle, then

T
N5 =V, (15)
and, therefore,
Njm. s _ Vi
V 6(b.7) V f] ¢, ( 6)
T
ng(bi)* = fic, (17)

where V' is the total volume of the system and n; is the number of particles of type j per

unit total material volume.
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Now the new values of f; and ¢, f; and ¢/, are defined by rewriting the previous equation:

al = fic. (18)

U

>
<
<

The values of f; and ¢’ can also be defined directly by

M
CI — znj%a?, (19)
j=1
f’. = La? (20)
! Zz‘j\il nia;”'

Combining the above equations, we can then derive forms for f; and ¢’ that involve only

_ 3713,
fi» ¢, and o = a} /b3

p_ o fioy
I = Y2, fic’ 2
M
d=c) fia; (22)
7j=1

It should be noted that while the value of ¢ was for non-overlapping aggregate particles,
the value of ¢’ is for the volume occupied by each aggregate particle and its surrounding
shell, where the shell layers are assumed to not overlap. In a real concrete, these shells do
overlap, which can cause percolation phenomena [36]. This treatment of the shell volume
fraction is another approximation of the D-EMT method. In the numerical results described
in the next section chosen to check the D-EMT, the shell regions actually do not overlap,
and therefore are consistent with the assumptions built into the theory.

In summary, a D-EMT calculation is performed as follows. First all the different kinds
of composite inclusions are mapped to effective particles, with new moduli and sizes. Next
the inclusion particle size distribution is used to compute ¢ and f]'-. Then the differential

equations in egs. (5) are solved numerically using a 4th order Runge-Kutta method, where
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the slopes (k) or (g) are averaged over the effective particle size distribution f;. Note
that for spherical particles, the new diameters of the effective particles, a;, do not come in
explicitly into any of the equations for k and g, but only in the definitions of f; and ¢'.
For many materials, including concrete, the inclusion particle size distribution is given by a
sieve analysis, where partial volume fractions f; refer to the amount lying inside a certain
diameter range. This case can be easily converted to the one considered here, by dividing
each range into several points, and dividing up the volume in that range appropriately. The
actual FORTRAN software used to calculate the D-EMT results in this paper is available

on the Internet [37].

3 Finite Element Computations

A recent finite element method for digital images [25] was used to generate data with which
to check the results of the D-EMT. Of course, the most important question is: how accurate
are the finite element method results? Since these results are for concentrated, random
systems, there are no exact analytical data against which to check the numerical results.
Fortunately, by careful consideration of the possible sources of errors, one can establish the
accuracy of the numerical data.

These numerical computations are carried out by first generating the random microstruc-
ture desired by building a digital image, in 2-D or 3-D. Each pixel is then treated as a bi-linear
element (2-D) or tri-linear element (3-D), so that the entire digital lattice is treated as the
finite element mesh. The elastic equations are written as a variational principle, which is
then minimized over the digital lattice. The effective moduli are usually defined by a stress
average, although they could be defined by an energy average [24].

Because of the structure of the algorithm, there are three main sources of error. These
include: (1) finite size effect, (2) digital resolution, and (3) statistical variation [38].

The finite size effect comes about because any given digital image, even with periodic

boundary conditions, can only represent a small part of a large random solid. Here we are
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thinking of inclusions embedded in a matrix. There can be errors induced if the sample is not
large enough to possess enough inclusions to be statistically representative. This sampling
error can be assessed by running several different size samples, and seeing whether the results
change between system sizes. In the samples considered, the inclusion size, in terms of pixels,
stays the same, so that samples having larger lattices contain more inclusions.

The digital resolution error comes from using square or cubic pixels to represent the
inclusions. Even if the inclusions had the same shape as the digital lattice, there would still
be a resolution error since one is representing continuum equations with a digital lattice. The
size of this error can be checked by holding the number of inclusions constant, and varying
the size of the lattice so that there are more or less pixels per unit length.

The statistical variation error source simply comes about because the systems under
consideration are random ones. Therefore, for a given concentration of inclusions, there are
many ways in which the inclusions might be randomly arranged. Each arrangement will
have somewhat different elastic moduli, in general. The size of this source of error can be
assessed by computing the elastic moduli of several different realizations of the same system
(same size lattice, same number of inclusions).

Figure 2 shows the 2-D 10002 systems that were used to check the D-EMT results. There
were three sizes of inclusions. On a 1000 size digital lattice, these had outer-inner diameters,
in pixels, of 121 — 99, 91 — 69, and 61 — 39. The experience of many previous results had
shown that having the diameter of the largest inclusion less than one-eighth of the size of
the unit cell would make any finite size effects negligible. Holding the number of inclusions
fixed, runs were made at sizes of 500% and 20002, with only 1 — 2% variation, so that the
size used for all the runs was 1000%. The statistical variation for 10002 size systems was very
small, and so was neglected.

The inner particle had Young’s modulus F5 = 5.0 and Poisson’s ratio v3 = (.2, the matrix
had F; = 1.0 and v, = 0.3, while the shell had v, = 0.3 and a Young’s modulus that ranged

from 0.1 to about 10.0. Two systems were chosen, with matrix area fractions of about 0.3
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and 0.5. Exact details of the microstructures considered are displayed in Tables 1 and 3.
These details are given for future reference, as the results are almost unique in being highly
accurate results for random, non-dilute systems.

In 3-D, there were two systems considered. The first used only one size of composite
sphere, with a ratio of outer to inner diameters of 1.75. The ratio of the unit cell size
compared to the particle outer diameter size was chosen to be about 7.1, which makes finite
size errors negligible. The digital resolution effect was analyzed by running the exact same
geometry at sizes of 1003, 2003, and 3003. Figure 3 shows four non-consecutive parallel
slices of the 3003 system. A full size range was only run for E; = 0.1 and 10.0, which were
the limits of the shell stiffness. Other moduli were the same numerically as in 2-D. It was
found that, at E5 = 0.1, the resolution error was essentially zero, as all three systems gave
almost exactly the same answer, within less than 0.1%. However, at E; = 10.0, there was a
3.7% drop in bulk modulus and 5.6% drop in shear modulus between the 100® and the 2003
systems. There was only a 0.5% further drop in bulk modulus and 0.8% in shear modulus
when going to the 300% system, so it was decided that the 200® system would give adequate
accuracy for all the shell moduli. For this size system, the outer particle diameter was 28
voxel widths, while the inner diameter was 16 voxel widths.

The second 3-D system was 2002 in size, and had two size spheres, with outer and inner
particle diameters of 28 — 16 and 14 — 8. Judging from the data obtained on the single-
sphere results, this choice should also give adequate accuracy, though it was not as carefully
checked as were all the other systems. The detailed parameters used for both 3-D systems
are presented in Tables 2 and 3. Figure 4 shows four parallel non-consecutive slices of the

2002 system used.

4 D-EMT Results

The D-EMT equations were solved for the four (two 2-D, two 3-D) different microstructures

for which finite element results were obtained. By varying both the microstructure and the
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shell stiffness, a range of data was obtained to provide a rigorous test of the D-EMT results.

Figures 5 and 6 show the comparison between the accurate finite element results for the
2-D microstructures (symbols) and the D-EMT results (lines). Both graphs show excellent
agreement, with the best agreement being at the higher matrix area fraction (Fig. 6). This is
not surprising, as the highest matrix area fraction has the fewest inclusions, and so is closer
to the dilute limit, where the D-EMT is virtually exact. However, even for the 0.3 matrix
area fraction system, Fig. 5, the agreement is still very good. Tables 4 and 5 show the actual
numbers in the graphs, for closer comparison and future reference. Also note that as the
matrix area fraction decreases, the moduli curves also become steeper. This is because the
shell area fraction (cy) is becoming larger, and so increasing its moduli has a greater effect
on the overall moduli.

Figure 7 shows the comparision between D-EMT and finite element results for the 3-D
system with one size of inclusions. The agreement is excellent, as can also be seen in Table
6. Figure 8 shows the same kind of comparison but for the two-size sphere 3-D system. The
agreement in this case between D-EMT and finite element data is almost as good as in Fig.
7. The data for this case is in Table 7. It should be recalled here that the finite element
results for the two-size sphere 3-D system were not checked as thoroughly as were the other
systems, so there could be a larger degree of error in these results. It was found in the
one-size sphere 3-D system that increasing the system size for the larger values of E5 tended
to decrease the overall moduli by a few percent. If the numerical results in Fig. 8 were to

drop by only a few percent, the already good agreement would be substantially improved.

5 Discussion and Summary

One limitation of the D-EMT equations is in representing microstructure of composites.
In concrete, for example, several modeling and experimental studies have shown that in a
typical concrete, the shell regions are themselves percolating [36,39,40]. The form of D-

EMT considered in this paper will not reflect this fact. The model microstructures used
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to test the D-EMT were carefully constructed to have non-overlapping and therefore non-
percolating shell regions. However, whether or not percolation of a phase matters to the
overall properties depends on the contrast of its properties with those of the surrounding
phases [4,41]. In concrete, the shell moduli probably do not differ at most from the matrix
by a factor of 2 — 5, which is not enough contrast for percolation to be important [4]. So
this deficiency in D-EMT should not significantly affect the accuracy of D-EMT for the
concrete problem. However, if a different problem were to be considered, for example fluid
permeability [4], where the contrast between shell permeability and matrix permeability is
on the order of 100 or more, then most likely D-EMT would fail, as the percolation of the
shell regions would then be crucial. In that case, any approach not taking the thin shell
layer percolation into account is unlikely to be accurate.

Since EMT is an uncertain approximation, the results of this paper are especially im-
portant in carefully showing the expected accuracy of the D-EMT equations. This paper
showed that the new form of D-EMT worked very well for the class of problems considered.
Using the D-EMT for a material like concrete, where the particle size distribution of the
inclusions is quite a bit larger (about two orders of magnitude) than that studied here has
not been tested. The main difficulty comes in finding a numerical representation of the
structure using a digital image. The actual shell in concrete is also much thinner than has
been considered. It is conceivable that the errors incurred using the D-EMT for a material
like concrete may be significantly larger. But the excellent agreement with the numerical
data found here strongly suggests that successful extensions to concrete are possible.

Tables 4-7 in this paper should be useful for other workers who wish to test various
forms of EMT or other approximate formulas, by listing accurate data for the linear elastic
properties of non-trivial random systems. Using the information contained in Tables 1, 2,
and 3, the microstructures can be recreated easily, in case new numerical methods need to
be tested. Modern computers and computer methods can now be used for the quantitative

testing of approximate micromechanics theories on non-trivial, non-analytic microstructures.
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This will allow a better sorting of various equations into areas of greatest usefulness, and
should inspire the creation of better, more accurate choices among the various possible

theories available.
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Figure 1: The mapping of a composite inclusion particle into an effective particle whose
diameter is the diameter of the outer shell. The figure shows a cross-section of a sphere (or
a circle) taken through the center.
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Figure 2: Gray-scale pictures of the 2-D models used to test the D-EMT predictions. Using
concrete language, the dark gray is the matrix, the middle gray is ITZ, and the lightest gray
phase is the bulk matrix phase. There are three sizes of aggregates in this picture, and the
matrix area fraction is 0.3 (left) and 0.5 (right).
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Figure 3: Four 300% slices from the 3-D monosize sphere model used to test the D-EMT
predictions. Using concrete language, the dark gray is the matrix, the middle gray is ITZ,
and the lightest gray phase is the bulk matrix phase. The matrix volume fraction is 0.668.
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Figure 4: Four 2002 slices from the 3-D two size sphere model used to test the D-EMT
predictions. Using concrete language, the dark gray is the matrix, the middle gray is ITZ,
and the lightest gray phase is the bulk matrix phase. The matrix volume fraction is 0.517.
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Figure 5: Showing the D-EMT results for K and G compared to the numerical results for
the 2-D 0.3 matrix area fraction model. The abscissa is Ey/F;.
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Figure 6: Showing the D-EMT results for K and G compared to the numerical results for
the 2-D 0.5 matrix area fraction model. The abscissa is Ey/F;.
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Figure 7: Showing the D-EMT results for K and G' compared to the numerical results for the
monosize sphere 3-D model. The matrix volume fraction was 0.668. The abscissa is Ey/E.
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Figure 8: Showing the D-EMT results for K and G compared to the numerical results for
the two size sphere 3-D model. The matrix volume fraction was 0.517.The abscissa is Ey/E.
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Table 1: Parameters defining the 2-D microstructures. N = number, L. = large circles, M =
medium circles, S = small circles, and c is area fraction. Phase 1 is the inner circle, phase 3
is the matrix, and phase 2 is the shell material.

NL NM NS C1 Co C3
36 28 35 0.303 0.275 0.422
26 20 25 0.499 0.198 0.303

Table 2: Parameters defining the 3-D microstructures, which had either one or two sizes of
spheres. The numbers are all for 200° systems. N = number, L = large spheres, S = small
spheres, and c is volume fraction. Phase 1 is the inner sphere, phase 3 is the matrix, and
phase 2 is the shell material.

NL NS’ C1 Co C3
230 0.668 0.269 0.063
220 900 0.517 0.392 0.091

Table 3: Areas of circles and volumes of spheres used in pixels and voxels.

Circle diameter Sphere diameter Area (pizel #) Volume (vozel #)

121 11476

99 7668

91 6488

69 3720

61 2912

39 1184
28 11536
16 2176
14 1472
8 280

30



Table 4: A list of numerical data and D-EMT results for the 2-D, 0.3 matrix area fraction
system.

E;/E, K(data) K(D-EMT) G(data) G(D-EMT)

0.1 0.320 0.319 0.186 0.187
0.3 0.645 0.643 0.364 0.378
0.5 0.855 0.854 0.479 0.495
0.7 1.005 1.006 0.564 0.580
0.9 1.120 1.123 0.631 0.644
1.5 1.351 1.360 0.772 0.775
2.5 1.568 1.580 0.910 0.897
3.5 1.702 1.714 0.995 0.971
4.5 1.797 1.809 1.055 1.023
5.9 1.872 1.883 1.101 1.063
6.5 1.935 1.944 1.138 1.096
7.5 1.988 1.997 1.168 1.123
8.5 2.036 2.044 1.194 1.147
9.5 2.079 2.086 1.216 1.168
10.5 2.119 2.125 1.236 1.186

Table 5: A list of numerical data and D-EMT results for the 2-D, 0.5 matrix area fraction
system.

E»/E; K(data) K(D-EMT) G(data) G(D-EMT)

0.1 0.401 0.397 0.226 0.227
0.3 0.665 0.663 0.370 0.378
0.5 0.812 0.811 0.449 0.460
0.7 0.910 0.910 0.502 0.513
0.9 0.979 0.981 0.540 0.551
1.5 1.109 1.114 0.614 0.621
2.5 1.218 1.226 0.677 0.680
3.5 1.280 1.289 0.713 0.713
4.5 1.321 1.332 0.737 0.735
3.5 1.353 1.365 0.755 0.752
6.5 1.378 1.391 0.768 0.765
7.5 1.399 1.413 0.778 0.776
8.5 1.418 1.432 0.787 0.785
9.5 1.434 1.449 0.795 0.793
10.5 1.449 1.464 0.801 0.800
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Table 6: A list of numerical data and D-EMT results for the 3-D, 0.668 matrix volume
fraction, one sphere system (Fig. 7).

E»/E; K(data) K(D-EMT) G(data) G(D-EMT)

0.1 0.455 0.436 0.233 0.238
0.3 0.613 0.602 0.300 0.311
0.5 0.720 0.713 0.346 0.357
0.7 0.799 0.795 0.381 0.392
0.9 0.861 0.858 0.410 0.420
1.0 0.887 0.886 0.422 0.432
2.0 1.058 1.063 0.510 0.517
3.0 1.157 1.160 0.565 0.569
4.0 1.214 1.224 0.603 0.606
5.0 1.260 1.271 0.633 0.635
6.0 1.296 1.307 0.657 0.657
7.0 1.326 1.336 0.678 0.676
8.0 1.350 1.360 0.695 0.692
9.0 1.371 1.381 0.710 0.706
10.0 1.390 1.399 0.723 0.718

Table 7: A list of numerical data and D-EMT results for the 3-D, 0.517 matrix volume
fraction, two sphere system (Fig. 8).

E»/E; K(data) K(D-EMT) G(data) G(D-EMT)

0.1 0.346 0.327 0.183 0.189
0.3 0.537 0.526 0.269 0.283
0.5 0.676 0.668 0.331 0.346
0.7 0.785 0.779 0.381 0.396
0.9 0.874 0.869 0.423 0.437
1.2 0.983 0.980 0.476 0.487
1.5 1.071 1.075 0.521 0.533
2.0 1.189 1.187 0.584 0.589
4.0 1.479 1.475 0.755 0.746
6.0 1.650 1.639 0.868 0.846
8.0 1.772 1.753 0.953 0.919
10.0 1.866 1.837 1.022 0.975
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