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Abstract. When an inverse problem can be formulated so the data are minima of
one of the variational problems of mathematical physics, feasibility constraints can
be found for the nonlinear inversion problem. These constraints guarantee that op-
timal solutions of the inverse problem lie in the convex feasible region of the model
space. Furthermore, points on the boundary of this convex region can be found in
a constructive fashion. Finally, for any convex function over the model space, it is
shown that a local minimum of the function is also a global minimum. The proofs
in the paper are formulated for definiteness in terms of first arrival traveltime inver-
sion, but apply to a wide class of inverse problems including electrical impedance
tomography.

1. Introduction

In medical x-ray tomography [Cormack 1963; Hounsfield 1973], measurements
of x-ray attenuation for straight rays that pass through the body provide a set of
line integrals for analysis. Then, the classical methods of tomography [Gordon,
Bender, and Herman 1970; Gilbert 1972; Herman 1980; Natterer 1986] may be
applied to reconstruct a two-dimensional function from the set of line integrals.
Backprojection along the known straight ray paths in these problems is a typical

method used for such reconstructions. The attenuation data are then used to
generate a picture of a slice through the inhomogeneous density distribution of the

body. This picture may subsequently be used for purposes of diagnosis.
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Tomography also has many uses outside the field of medicine. Some of these
uses include electron microscopy [Gordon, Bender, and Herman 1970; Gilbert 1972;
Herman 1980; Natterer 1986], acoustical and optical tomography [Schomberg 1978;
Kak 1984; Natterer 1986], radio astronomy [Bracewell and Riddle 1967], and seismic
tomography [Nolet 1987]. In geophysical applications to the whole earth [Aki,
Christoffersson, and Husebye 1976; Aki and Richards 1980] or to smaller scale
reconstruction problems such as borehole-to-borehole scanning with either seismic
or electromagnetic probes [Bois, LaPorte, Lavergne, and Thomas 1972; Lager and
Lytle 1977], the assumption of straight ray paths, although very common, is often a
poor approximation [Dines and Lytle 1979; Lytle and Dines 1980; Justice, Vassiliou,
Singh, Logel, Hansen, Hall, Hutt, and Solanki 1989a,b]. Using both wave amplitude
and phase in the reconstruction can improve the results dramatically [Wolf 1969;
Mueller, Kaveh, and Wade 1979; Devaney 1984] if a starting model of sufficient
accuracy is known. Thus, progress on the reconstruction problem with ray bending
might be made if some method for finding good starting models could be found. A
new iterative algorithm for computing such a starting model from traveltime data
is therefore highly desirable.

In a series of papers [Berryman 1989a; Berryman 1989b; Berryman 1990], the
author has developed a stable iterative reconstruction method for first arrival trav-
eltime inversion. The general theory behind this new approach and its extensions
will be described in the present paper. The main idea behind the new approach may
be summarized as follows: When an inverse problem can be formulated so the data
are minima of one of the variational problems of mathematical physics, feasibility
constraints can be found for the nonlinear inversion problem. These constraints
guarantee that optimal solutions of the inverse problem lie in a convex feasible
region of the model space. Furthermore, points on the boundary of this convex
region can be found in a constructive fashion. For any convex function over the
model space, a local minimum of the function is also a global minimum. In light of
the structure induced on the model space by the feasibility constraints, we can also
obtain a series of results about the structure of the solution set that would not be
possible to establish otherwise. Although these ideas were first presented for trav-
eltime inversion problems, the methods apply to a wide class of inverse problems
including electrical impedance tomography.

The four main goals for the paper are these: (a) to establish before a mathemat-
ical audience that the idea of using variational /feasibility constraints for inversion
is both rigorous and applicable to a wide class of physical problems, (b) to provide
elementary proofs that will be accessible to a broad audience (including physicists,
geophysicists, engineers, etc., as well as mathematicians) of the consequences of
this idea, (¢) to present the proofs in an abstract setting so as to be independent of
the particular choice of discretization made in practical algorithms for solving the
inverse problem, and (d) to summarize one new reconstruction algorithm based on
these ideas.

For definiteness, we use first arrival traveltime inversion as our primary example.
However, it will become clear that the methods developed here apply to a wide
class of inverse problems. Whenever the data can be chosen to be the minima
of one of the variational problems of mathematical physics, variational constraints
can be introduced and the concepts of feasible set and feasibility boundary follow



Figure 1. Diagram to illustrate the computation of the traveltime when the model
is composed of cells of constant slowness.

immediately [Berryman 1989b; Berryman 1990].

2. Convexity Properties of Seismic Inversion

Our principal example will be first arrival traveltime inversion. The problem is
this: Given the locations of sources and receivers of some type of exciting wave (e.g.,
acoustic, seismic, or electromagnetic) and the first arrival traveltimes T; for waves
propagated between the m pairs of sources and receivers (labelled by i = 1,...,m),
deduce the wave speed v(#) in the region probed by these waves. For iterative
methods involving the use of least-squares methods, it is common to solve for
the reciprocal of the wave speed s(%) = 1/v(%) which is the wave slowness. For
practical applications, a rectangular grid is generally chosen and the wave slowness
is discretized either by treating it as constant in the cells determined by the grid or
by specifying values of slowness at the nodal points and choosing some interpolation
scheme (such as bilinear) between the nodes. For either choice of discretization, the
model slowness is determined by a vector s¥ = (sq,...,s,), where n is respectively
either the number of cells or the number of nodes. Thus, in terms of the practical
applications, we can speak of a particular model slowness s as a point, 7.e., a point
in the model vector space.

Fermat’s principle [Born and Wolf 1959] says that the first arrival traveltime
for the i-th ray path is given by

ti(s) = min / s dIlPath) = / s dl[s] (1)

where 17" is the arc length along any connected path between the source and



receiver and where [7[s] is the arc length along a ray path that minimizes the integral
of the traveltime for the i;-th path and wave slowness s. Figure 1 illustrates the
computation associated with (1.1) for a particular choice of model discretization,
1.€., for cells of constant slowness. If more than one path minimizes the traveltime,
then I7[s] is any particular choice among those minimizing the traveltime. Since the
slowness is a positive quantity, the traveltime can never vanish unless the source
and receiver are located at the same point. We exclude this case, so the traveltime
is also a strictly positive quantity.

Some easy but important facts follow from the variational definition (1) of the
first arrival traveltime. They are given in these lemmas:

Lemma 1. (Concavity and Homogeneity) The traveltime ¢;(s) is a concave and
homogeneous function of the model slowness s.

Proof: First, note that, for s; >0, s >0, and 0 < A< 1,

ti(sl) = /51 dl:[sl] S /81 dl;[ASl + (1 — A)Sg] (2)

and

ti(s2) = /sz di[s2] < /32 dii[As1 + (1 — A)s2] (3)

both follow immediately from the definitions in (1). Then, taking the appropriate
linear combination of the inequalities in (2) and (1.3) with 0 <X <1, we have

)\ti(sl) -+ (1 — )\)ti(SZ) S ‘/[)\51 + (1 — )\)52] dl;‘[)\sl + (1 — )\)82] (4)
= ti()\sl + (1 — A)Sg)

thus completing the proof that ¢;(s) is a concave function. That the traveltime is
homogeneous in slowness so t;(ys) = vt;(s) follows easily from the statement (1) of
Fermat’s principle.

Lemma 2. (Scale Invariance of Ray Paths) A ray path with arc length 7;[s] that
minimizes the traveltime for s also minimizes the traveltime for ys where v is any
positive scalar.

Proof: Lemma 2 follows immediately from the homogeneity property of ¢;(s).

Next we need to introduce the notion of a feasible set of model slownesses
and the associated feasibility boundary. The introduction of these physically-based
feasibility conditions is the principle new contribution from which the rest of the
present results follow.

The concept of feasibility sets arises commonly in the study of nonlinear pro-
gramming techniques [Fiacco and McCormick 1968]. Algorithms for practical solu-
tion of the inverse problems discussed here fall into this class — although inverse
problems tend to be substantially more difficult than the optimization problems
typically considered (since the constraints are implicit rather than explicit). Feasi-
bility constraints for inverse problems have been introduced elsewhere [Berryman
1989b; Berryman 1990]. We will present only a brief outline of the motivation here.

The inverse problem for first arrival traveltime is to determine a slowness model
s given a set of measured traveltimes 7; between pairs (labelled by index i) of



sources and receivers whose locations are known. Omne method for solving the
inverse problem is to guess a model s, that might have given rise to the measured
data, compute the set of traveltimes ¢;(s,) for the trial model, and then use some
method (often based on least-squares fitting) to update the model and obtain a
better fit to the data. However, such programming methods are generally limited
by the fact that it may be computationally difficult to find the exact 1*[s,] associated
with the trial slowness. For this reason, we define a trial traveltime

‘r;p")(s) = /sdlgpi) (5)

for arc length 19 associated with the trial ray path p;. Then, neglecting experi-
mental error in the T;s and defining s, as an exact solution of the inverse problem,
then s, clearly satisfies

T; = ti(s0) < 779 (s0) (6)

for all source-receiver pairs ; and any trial ray path p; between them. Thus, in
trying to formulate a constructive method for locating an s, it is useful to consider
splitting the model space into two parts: (a) a feasible part whose members s are
like sy in that they satisty the constraints

T; < Tlgpi)(s) (7)

for all source-receiver pairs i and all ray paths in the trial set and (b) a nonfeasible
part whose members s violate at least one of the inequalities (7) for some ray and,
hence, are unlike s,.

With this motivation, we can now distinguish between local (path dependent)
feasibility sets F{r} and the global (path independent) feasibility set F as in other
recent publications [Berryman 1989b; Berryman 1990]. We will also be able to
establish a definite relationship between these two types of feasibility set.

Definition: The (local) feasible set F{} of slownesses for the nonlinear traveltime
inversion problem is given by F{r} = {s|r(")(s) > T;,i = 1,...,m} where the T;s are the
measured traveltime data and {p} is a particular set of trial ray paths.

Definition: The (global) feasible set F of slownesses for the nonlinear traveltime
inversion problem is given by F = {s|ti(s) > T;,is = 1,...,m} where the T;s are the
measured traveltime data and all the T;s are finite.

Definition: Let © = {s|s > 0} be the physical set of slownesses. Then, we define

the absolute or physical feasible sets as A = FNY and At} = F{rt 0o, Note that ©
is a convex set.

Theorem 1. The (global) feasible set F is a nonempty convex set. All points
on the boundary of F are determined by finding, for each model s > 0, the smallest
value of the scalar 4 such that ¢;(ys) > T; for all i =1,...,m.

Theorem 2. The (local) feasible set F{#} is a nonempty convex set. All points
on the boundary of F{r} are determined by finding, for each model s, the smallest
value of the scalar v such that 9 (ys) > T; for all i = 1,...,m.

Proof: If s; and s, satisfy the feasibility constraints t;(s) > T; for all i and if
0<A<1, then



follows from the concave property of the traveltime function. Thus, As; + (1 — A)s,
also satisfies the feasibility constraints and the feasible set F is therefore convex.

The set F is nonempty because for any slowness s we can always find a finite
value of the positive scalar v such that ¢;(ys) = vt;(s) > T; for all i = 1,...,m. This re-
sult follows from the positivity of ¢; and the finiteness and positivity of the measured
traveltimes. Furthermore, the smallest such scalar is given by

Ymin(s) = maz T;/ti(s), (9)

so we can locate the feasibility boundary in the direction of s which is then given
by the point vmi.(s)s. This completes the proot of Theorem

The proof of Theorem 2 is completely analogous — just replace ¢;(s) everywhere
by 7#9(s) and note that

Ti(pi)(A31 + (1= A)s2) = )\Tz'(pi)(ﬂ) +(1- )‘)Ti(pi)(sz)’ (10)

i.e., that 7*? is a linear function of s.
Corollary 1. The physical feasible sets 4 and A{?} are nonempty convex sets.

Proof: The sets A4 and AP} are both the intersections of convex sets and therefore
convex. That the intersection of these convex sets is nonempty is clear from the

proofs of Theorems 1 and 2.

Remark: We would like to avoid cluttering the remainder of the paper with
constant reminders that the physical space is limited to the set ©. All our results
on convexity should be followed by a step finding the intersection of the set under

study and ©. We assume that, from now on, the reader will supply this step in each
case.

Corollary 2. The global feasible set F is the intersection of the local feasible
sets F{#} for all possible sets of ray paths.

Proof: First, the intersection of all local feasible sets is a convex set. Let I be
the intersection. Then it is convex if As; + (1 — A)s, lies in I for every s; and s, in
I and 0 < X < 1. But if s; and s, are in I, then they lie in each individual convex
region and, hence, so does the convex combination.

Second, since it follows from Fermat’s principle for first arrivals that
tis) < 7 (s), (1)
we want to consider the values of the scalar v such that
T; < ti(ys) < 7% (). (12)
Let v} be the minimum such v for r*) defined by
Taiin(s) = maz T/ (s). (13)

Then, it follows immediately from (12) that

’Vj:np;};z(s) < 'Ymin(s) (14)



Figure 2. Tllustration of the distinction between local and global feasibility bound-
aries. Local feasibility is determined by the traveltime data and one set of ray
paths. Global feasibility is determined by the traveltime data and by all possible
sets of ray paths (Corollary 2) or by the optimum ray paths for a given direction
in the model space (Theorem 1).

for every set of ray paths and every s. Thus, the global feasibility boundary is
bounded below by the local feasibility boundaries for all sets of ray paths {p}.
Furthermore, equality in (14) is achieved when the set of ray paths {p} is one
that minimizes the traveltime. So the intersection of all the local feasibility sets
is convex and has the same extreme points as F. It follows that the intersection
set I and the global feasibility set F must be the same. This completes the proof
of the Corollary. Figure 2 illustrates the distinction between the local and global
feasibility boundaries.

Next we introduce the concept of feasibility violation number and determine
the convexity properties (or lack thereof) to be asssociated with this function. The
feasibility violation number is another useful concept that arises in the practical
applications to be described later. The feasibility constraints bound the region
where the feasiblity violation number is zero everywhere. By counting the number of
violations present as we move away from the feasibility boundary into the infeasible
region, we obtain a useful measure of how far a model point is from the feasibility
boundary without doing a prohibitively expensive computation [Berryman 1989b;



Berryman 1990].

Definition: The feasibility violation number at s for a given set of ray paths {p}

is defined to be
NiP}(s Ze 779 (s)) (15)

where the step function 6(z) is defined by

_Jo, forz<o;
0(z) = { 1, forz>o. (16)

Definition: The set V{r}(n) is given by VI{P}(n) = {s|n > N{Pi(s)}, where n is a
non-negative integer and {p} is some set of ray paths. The set so defined is the set
of all slowness models s that violate n or fewer than n of the feasibility constraints.

To see that the set V{P}(n) is generally a nonconvex set, suppose s; violates
constraint ; but not j, while s, violates 5 but not i. Then, for some choices of s;, s»,
and ), it is possible for the convex combination to violate both constraints i and j.
Unless this point has also simultaneously ceased to violate some other constraint
(which cannot happen for example if » = 1), the point lies outside the set and V{r}(n)
is therefore nonconvex.

On the other hand, if s; and s, satisfy the feasibility constraint TZ-(pi)(S) > T; for
some i, then As; + (1 — ))sy also satisfies it from the property (10) of the traveltime
trial function. Thus, V{?}(n) is nonempty and includes both the global and local
feasible sets which are also nonempty

F c Fir} c viP}(n), (17)
Furthermore, if m > ny, > ny + 1, then it is clear that

VPt (ny) c VIPk(ny). (18)

3. Convex Programming for Seismic Tomography

We will first define convex programming for first arrival traveltime inversion.
Then we present some basic Theorems about convex programming in this context.
Finally, we give a discussion of implications for practical implementations.

Definition: Let ¢(s) be any convex function of s. Then the convex nonlinear
programming problem associated with ¢ is to minimize ¢(s) subject to the global
feasibility constraints ¢;(s) > T; for i = 1,.

Definition: Let v (s) = 3, wi(r¥* )( ) — ~)2 for some set of ray paths {p} where
the w;s are some positive weights. Then the convex linear programming problem
associated with ("’ is to minimize 4{?!(s) subject to the local feasibility constraints
'ri(pi)(s) >T; fori=1,...,m

Theorem 3. Every local minimum s* of the convex nonlinear programming
problem associated with ¢(s) is a global minimum.

Theorem 4. Every local minimum s* of the convex linear programming problem
associated with (") (s) is a global minimum.



Proof: (Also see [Fiacco and McCormick 1968].) Let s* be a local minimum.
Then, by definition, there is a compact set C such that s* is in the interior of CNn F
and

p(s7) = minp(s). (19)
If s is any point in the feasible set F and 0 < X <1 such that As*+(1-X)sisin CNF,
then

pls) » EOTHUZNI 200 D) 2200 ey (20)

The first step of (20) follows from the convexity of ¢ and the second from the fact
that s* is a minimum in C N F. Convexity of F guarantees that As* + (1 - ))s is in
the feasible set. This completes the proof of Theorem 3.

To prove Theorem 4, we first need to establish that 4/?}(s) is a convex function
of s. This fact follows from identity (10), the convexity of the function f(z) = 22,
and the convexity of a sum of convex functions. We see that

[ri(Ass + (1= N)sz) = T3 = (1) + (1 = Mri(s2) = T
= Ari(s1) = T + (1 = (o) — T (21)
A1 = N (7i(s1) = il

so %P} (s) is a convex function. The remainder of the proof of Theorem 4 follows
that of Theorem 3 with 4/} replacing .

Finding useful convex functions for nonlinear programming is a challenging and
unsolved problem. For example, if ¢(s) is chosen to be the convex function — 3", ¢(s)
(because t;(s) is concave), or 3. 1/(t;(s)—T;) (because the harmonic mean is bounded
above by the arithmetic mean), or — 3, log(t;(s) — T;) (because the geometric mean is
bounded above by the arithmetic mean), each choice is a convex function of s, but
the minima occur for large (actually infinite) values of s and have nothing to do with

the inversion problem. However, many useful convex functions (including ¥i%*(s))
are available for the linear programming problem, and any convex function available
for that problem may also be used in the nonlinear programming problem. We will
now consider some convex and some nonconvex functions that are important in
programming for inversion.

One important nonconvex function of s is the weighted squared error in the
traveltime given by

Po(s) = Z wilti(s) = Ti]’, (22)

where the w;s are some positive weights [Berryman 1989a]. Techniques that seek to
minimize the squared error are probably the most abundant in the literature, and
therefore any new insight into the behavior of this function relative to the feasibility
boundary is of great practical significance. We can determine the smallest value of
¥o(vs) for all models with the same relative distribution of slowness but differing
scales by varying the scalar vy to find the minimum. Elementary analysis shows that

> witi(s)T;

1) = T e e



Note that (23) was obtained using only the homogeneity property of ¢;(s). Substi-
tuting (23) for v in v, (vs), we obtain

sl = talrue)s) = 3wt - et (21

Note that ,(c(s)) is a function of s independent of scale. Thus, (24) provides a
scalar that is characteristic of slowness distributions of the form +s.
Lemma 3. (Infeasibility of Scaled Least-Squares Points) The scaled least-

squares point o(s) = vs(s)s either solves the inversion problem or lies outside the
feasible set F.

Proof: It follows from (23) that

0= Zuut [’Yls z sztz [t 'Yls ) ) - Ti] (25)

Since the t;s and w;s are all positive, it follows either that
ti(o(s)) = T; = 0 for all ¢ (26)

or that
t;(o(s)) = T; < 0 for some . (27)

If (27) is true, then one of the feasibility constraints is violated at the point o(s) so
this point lies outside F. If (26) is true, then o(s) solves the inversion problem.

Homogeneity is the only property of ¢;(s) used in (22)-(1.27). Therefore, we can
immediately prove the corresponding statement for the path dependent problem.
In the equations (22)-(1.27), let t;i(s) — 7%(s), yis(s) — v (s), vo(s) — i (s), and
o(s) — oiP}(s). Then it is clear that the following statement is true.

Lemma 4. (Infeasibility of Scaled Least-Squares Points) The scaled least-

squares point o{?}(s) = 7}(s)s for a particular set of ray paths {p} either solves
the inversion problem or lies outside the feasible set F{r}.

Then, the next important Theorem is an easy consequence of Lemmas 3 and 4.
Theorem 5. (Infeasibility of Least-Squares Points) If s* is a global minimum

of either 4 (s) or ¥{*!(s) for some choice of ray paths {p}, then s* either solves the
inversion problem or lies outside the feasible set F.

Proof: If s* is a global least-squares point, then it is also a scaled least-squares
point for distributions of the form vs*. Thus, Lemmas 3 and 4 apply to s*. Lemma
3 implies that the Theorem is true for ¢y(s). When Lemma 4 is pertinent, the point
s* lies outside of F{*} and, therefore, outside of F. Thus, the Theorem is true.

In nonlinear programming [Fiacco and McCormick 1968], it is common to dis-
tinguish between “interior methods” and “exterior methods.” As the names imply,
interior methods require the trial solutions at each stage to lie inside the feasible
set while exterior methods try to approach the optimal solution from outside the
feasible set. The significance of Theorem 5 is that the many methods of inversion
based on least-squares minimization are all “exterior methods.” This fact has ap-
parently escaped notice until recently. The minimum of the least-squares error in



the predicted data will virtually always (unless a solution has been attained) lie
outside the feasible set. This fact is important for programming purposes since it
suggests steps that can be taken to improve the current trial model slowness. In
particular, to gauge the merits of models relative to a given set of trial ray paths,
the feasibility violation number (15) may be used effectively to provide a crude but
also computationally inexpensive measure of the distance from the trial model to
the feasibility boundary. This technique has proven very effective in applications
to traveltime inversion [Berryman 1989b; Berryman 1990].

Note that (s) is nonconvex, whereas (! (s) is convex (see the proof of Theorem
4).

Another important convex function is

¥} (s) = v (s) + plls — sol (28)

where 4 is a non-negative scalar and sy is any point in the slowness model space.
Clearly 47} (s) = i (s) when x = 0. One possible choice of norm is

1
lls = sof|2 = 5/(3_ so)cd®a, (29)
Q

where Q is the volume of the region probed by the experiment and ¢(z) > 0 is
a positive weight that we will call the coverage function [Berryman 1989a]. The

function ¢{?}(s) is convex because it is the sum of two convex functions of s.
Lemma 5. Let R/P}(5) = {s|¢"!(s) < ¢[7(5)}. Then, the set R}}(5) is convex.
Proof: If "}(s;) < k and 4/?}(s,) < k, then from the convexity of this function

we have
PP (s + (1= N)sz) < AP (s1) + (1= Ny P (s2) < k. (30)

Taking k = ¢ #*(5). it follows that the set R’ (s) is convex.
Remark: An immediate consequence of Lemma 5 is this: The global minima

of {7} (s) form a convex set. Then we have the following extensions of Theorems 4
and 5.
Corollary 3. The (local-global) minima s* of the convex linear programming

problem associated with 3{#’(s) form a convex set.

Proof: Theorem 4, Lemma 5, and the fact that the intersection set RF (s*)nF{r}
is convex.

Corollary 4. The global minima of 4{?!(s) for any choice of ray paths {p} form
a convex set that either contains all solutions of the inversion problem or has no
intersection with the feasible set F.

Proof: Theorem 5, Lemma 5, and the preceding Remark.

The convex sets constituting the minima in Corollaries 3 and 4 are the same
only if they completely solve the inversion problem. Otherwise they are disjoint
and distinct sets. To understand more fully the significance of these sets, we will
introduce the concept of ghosts [Smith, Solmon, and Wagner 1977; Griinbaum 1980;
Louis 1981].



Definition: A ghost is a nonzero model point g (not in ) in the null space of
the traveltime operator for a particular set of ray paths, z.e., such that

P g)=0, forall i=1,...,m. (31)

Thus, if s; and s, are two distinct models with the same trial traveltimes for all
¢ so that
7 (s1) = 77 (s2), (32)

then clearly
P sy = 55) =0 (33)

for all : and the difference g = s; — 52 # 0 is a ghost. The solution of the inversion
problem is therefore unique (i.e., the convex solution set contains one and only one
member) iff the null space of the traveltime operator corresponding to the solution
ray paths is empty. If the convex solution set has two or more distinct members,
then there is at least one ghost and an infinite number of solutions in the set.

To finish clarifying the structure of the solution set, we establish two more
results.

Lemma 6. Let H” = {s|77?(s) = T;}. Then H"’ is a convex set.

Proof: If s; and s, are members of H*', then
7P (Asi 4 (1= N)sa) = AP (s1) 4 (1 = N7 (55) = To. (34)

Remark: If the slowness space has been discretized into cells of constant slow-
ness as in [1-3], then each set H/*' is a hyperplane in the model vector space [2,3].

Theorem 6. Let 1P} = {s|7P9(s) = T}, for i = 1,...,m or for some subset of the
is}. Then the set 1P} is convex.

Proof: The set IP} is the intersection of all the sets H!*' or the intersection of

some subset of this collection of sets. Being the intersection of convex sets, I} is
convex.

Remarks: For inconsistent data (measured traveltimes T; with errors) or for poor
choices of ray paths {p}, the set I{?} may be empty. For cells of constant slowness,
each nonempty set I{?} consists of overlapping intersections of hyperplanes.

As an example of the application of these results to practical problems, suppose

*

s* is a point where {"!(s) is minimum. For definiteness, suppose further that

rP}(s*) = T; for all i. So the point s* seems to solve the inversion problem for
the set of ray paths {p}. However, {p} may not be the optimal set of ray paths
for s*, i.e., we may find t;(s*) < 77} (s*) for some or all i. In this situation (which
would be fairly typical in practice if we also include some slight errors due to
numerical roundoff in these supposed equalities), the apparent agreement between
the predicted traveltimes and the data is actually spurious to some degree — often
to a large degree.

If there are other models that satisfy the data for the same set of ray paths,
Corollary 4 shows that the set of all such models forms a convex set. This convex set
either contains all solutions of the inversion problem and therefore lies exactly on the
boundary of the global feasible set F, or — the more likely situation — this set does



not solve the problem at all and actually is a convex set of infeasible points. The
reason this latter situation is more likely is because in practical implementations
we are virtually always working with an approximate set of ray paths. Thus, in
programming for inversion, it will often be true that it is counterproductive to try
to find models that produce optimum fits to the traveltime data for a given set
of (approximate) ray paths. Trying to obtain such optimum fits, as is often done
in least-squares or other inversion techniques based only on the magnitudes of the
traveltime errors regardless of sign, is programming to fit the noise rather than the
signal. This is one of the reasons that such methods so often fail.

4. Implications for Other Inverse Problems

The methods and results presented here apply to a wide class of inverse prob-
lems. The proofs were given for the sake of definiteness in terms of the first arrival
traveltime inversion problem, but they apply equally to any problem that can be
formulated so the data are minima of the pertinent variational problem.

For example, suppose that we wish to invert electrical boundary measurements
to obtain the interior conductivity distribution of a body [Kohn and Vogelius
1984; Kohn and Vogelius 1985]. This problem is now commonly known as elec-
trical impedance tomography [Henderson and Webster 1978; Dines and Lytle 1981;
Wexler, Fry, and Neuman 1985; Barber and Brown 1986; Daily, Lin, and Buscheck
1987; Yorkey, Webster, and Tompkins 1987; Gisser, Isaacson, and Newell 1988;
Lin and Daily 1988]. Then, the set of powers — electrical energy dissipated while
current is injected between pairs i of electrodes {P;} — is the pertinent data set.
The variational formulation (Dirichlet’s principle) states that

pi(0) = min / o[ V(D2 @3y = / o|Vé:[o]? d*z, (35)

¢'5:t7‘7}al)
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where ¢; (%) is the trial potential field for the i-th injection pair and ¢;[0](Z) is
the potential field distribution that actually minimizes the power dissipation for
conductivity distribution o(#). We define a trial power dissipation by

ﬁg‘ﬁz)(o_) — /a_lvtﬁgm‘ial)lZ dSJL‘. (36)

Then, the correspondence between first arrival traveltime inversion and electrical
impedance tomography is this:

s — o,
ti(s) — pi(o),
() = 5" (9),
AP [ygltriad 2 g,
di;[s] — |V¢;[o]|* &z,
T, — P;.
All the concepts such as feasibility constraints and feasible sets carry over immedi-
ately since
P; = pi(00) < pi(0) (37)



must again be true if o, is a solution of the inversion problem.

Another remarkable fact is this: For the electrical impedance tomography prob-
lem, there are actually two different sets of feasibility constraints. One set is for
the variational method (Dirichlet’s principle) outlined above. The other is for its
dual (Thomson’s principle). The existence of dual variational principles will be a
general result whenever the variational principles involved are true minimum prin-
ciples. Fermat’s principle is actually not in this class since it is only a stationary
principle; but for first arrival traveltime inversion, it is nevertheless valid to treat
this principle as a minimum principle, since the data are truly minima. Further
discussion of the feasibility constraints for electrical impedance tomography may
be found in Berryman and Kohn [1990].

5. Discussion of Convexity Results

If a minimum of an objective function has been attained in programming for
nonlinear inversion, several questions often come to mind: “Is this a local or a
global minimum?” “If more than one local minimum is found, how are the minima
related to global minima?” These issues have been at least partially clarified by
Theorems 3-6 and Corollaries 3 and 4.

The observation that variational constraints rigorously imply the existence of
feasible sets of trial models for inversion problems has played a crucial role in the
analysis presented here. Only the proofs of Lemmas 1, 2, 5, and 6 and Theorem 6 are
independent of the definitions of the feasible sets. These constraints are therefore
vital in our efforts to elucidate the nature of solution sets for inversion problems.
They have also proven to be vital for improving the behavior of iterative numerical
techniques for solving the inversion problems [Berryman 1989b; Berryman 1990].

6. Reconstruction Algorithm

Many reconstruction algorithms making use of the feasibility constraints are
possible. Only one will be summarized here.

Practical algorithms for reconstruction must be formulated in terms of discrete
variables. Therefore, the notation used in this section will differ slightly from that
used in the preceeding sections. To set notation, let  be the computed traveltime
vector such that 7 = (m,...,7,), where 7, is the traveltime along the i-th ray path
(a superscript / denotes the transpose), and let T such that 77 = (T3,...,T,,) be the
measured traveltime vector along the same set of ray paths. We form our model
in two-dimensions by dividing the rectangular region enclosed by our sources and
receivers into rectangular cells of constant slowness. Then, s is the model slowness
vector s’ = (s1,...,8,), With s; being the slowness of the j-th cell. For forward
modeling, s and 7 are related by the equation

Ms =, (38)

where M is an m xn matrix whose matrix elements /; ; are determined by the length
of the i-th ray path as it passes through the j-th cell. Eq. (38) simply states that
the total traveltime along a ray path is the sum of the traveltimes through each of
the cells traversed by the ray. To find M, we use a modified version of the two-point
bending algorithm of [Prothero, Taylor, and Eikemeyer 1988].

To solve the inverse problem, the forward problem (38) is now replaced by the



m feasibility constraints
(Ms); > T (39)

This fact follows from Fermat’s principle: the first arrival necessarily followed the
path of minimum traveltime for the model s. Thus, (39) must be satisfied by any
ray path matrix M if s is the true model and therefore any model that violates
(39) along any of the ray paths is not a feasible model. An exact solution to the
inversion problem is found if and only if all of inequalities in (39) become identities
for some choice of model slowness vector s.

The feasibility violation number defined in (15) is now given explicitly for any
combination of ray path matrix M, slowness vector s, and measured traveltime
times T by

Nu(s) = ZO[TZ- — (Ms)s). (40)

This formula amounts to counting the number of rays that violate the constraints
(39). This number equals zero in the feasible region. Furthermore, it is a mono-
tonically increasing function of distance from the feasibility boundary — once one
of the hyperplanes of (39) is crossed we never cross it again if we keep moving in
the same direction. Thus, this number is cheap to compute and gives us a rough
idea of how close we are to the feasibility boundary.

The key ideas behind one new reconstruction algorithm may now be summarized
as follows: Given a set of transmitter-receiver pairs and any model slowness s,
Fermat’s principle may be used to find the ray path matrix M associated both with
s and with any slowness ys (where v > 0) in the same direction as s. An optimum
scale factor ¥ may be found by doing a weighted least-squares fit to the traveltime
data. The best weights to use are described in detail elsewhere [Berryman 89a].

Having found the optimum slowness s, = s in the given direction, we next
attempt to improve the model by finding another direction in the slowness vector
space that gives a still better fit to the traveltime data. As many others have
done, we first compute a damped least-squares [Marquardt 1963; Aki and Richards
1980; Nolet 1987; Bording, Gersztenkorn, Lines, Scales, and Treitel 1987; Scales,
Gersztenkorn, and Treitel 1988] solution s,. Next we note that both of the points
found so far are guaranteed to lie in the nonfeasible part of the vector space — at
least one and generally about half of the ray paths for both of these models will
have traveltimes shorter than that of the measured data. Furthermore, although
the point s, gives a better fit to the traveltime data, this fit is certainly spurious to
some extent because it is based on the wrong ray-path matrix; the ray-path matrix
used in the computation of s, from s, is the one that was correct for slownesses
along the direction s,. Thus, both of the points we have found so far are off the
feasibility boundary and the second point s, is of questionable worth also because
its value was obtained in an inconsistent manner.

Recall also that the solution of (38), if one exists, must lie on the feasibility
boundary. So we would like to use s, and s; to help us find a point on this boundary
that is optimum in the sense that it is as consistent as possible with the ray path
matrix M, with the measured traveltimes T, and with the feasibility constraints.
The fact that traveltime error may be reduced by moving in the direction of s, may
still give us an important clue as to the best direction to move in the vector space,



Figure 3. A snapshot of the main features of one new reconstruction algorithm
during one iteration step. The axes are the slownesses for any two cells (j and k)
in the model space. Point s; is the initial value for the next step of the iteration
sequence. Point s, is the damped weighted least-squares solution. Point s is a
simple linear combination of s, and s, chosen so it has the least feasibility violations.
Point s; is the unique point on the feasibility boundary in the same direction as s;.

i.€., we may want to move in the direction s, —s, but perhaps we should stop before
we arrive at s,. How far then should we move in this direction?

If we consider Figure 3, we are reminded that the feasible region is convex.
Therefore, there may exist a point between the points s, and s, that is closer to the
feasible region than either of the two end points. If we could find this point s; and
then scale up to the point in the same direction lying on the feasibility boundary,
then we have found sy in the figure. In principle, it is possible to find the point on
this line closest to the feasibility boundary. But it is much easier to compute the
feasibility violation number Ny (s). As we move along the direction s, — s, from s,
we generally find that this number achieves a minimum value at some intermediate
point. This point of minimum Ny,(s) is the point s; in the figure.

Now it is possible to prove that all three of these points are distinct unless we
have found an exact solution to the inversion. So unless we have already solved the
problem, these three points form a triangle and the size of the triangle provides an
estimate of how far we are from a solution.



These ideas have all been repeatedly confirmed in a large number of reconstruc-
tions on synthetic examples and on real seismic and electromagnetic traveltime
data. Examples (including color illustrations) may be found in the references [Ber-
ryman 89b; Berryman 90]. Whereas the standard damped least-squares method
typically becomes unstable after several iterations when the contrasts are high, the
new algorithm is completely stable and gives reasonable results.

7. Discussion of Reconstruction Algorithm

For real problems with high contrasts and noisy data, a damped least-squares
method generally does not converge and no criterion is has previously been available
to determine when to terminate the iteration sequence. However, by modifying the
damped least-squares approach using the information available in the the feasibility
criteria, the resulting algorithm converges relatively quickly to a solution in its
convex soution set. Stable iteration to such a convergence set is the most that could
be expected when the traveltime data have errors and are therefore inconsistent.
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