WEIGHTED LEAST-SQUARES CRITERIA
FOR ELECTRICAL IMPEDANCE TOMOGRAPHY

Jeffrey S. Kallman

James G. Berryman
Lawrence Livermore National Laboratory
Electronics Engineering

P. O. Box 808 L-156
Livermore, CA 94550

Abstract — Methods are developed for design of electrical impedance tomographic re-
construction algorithms with specified properties. Assuming a starting model with con-
stant conductivity, an algorithm with the following properties is found: (1) The optimum
constant for the starting model is determined automatically. (2) The weighted least-squares
error between the predicted and measured power dissipation data is as small as possible.
(3) The variance of the reconstructed conductivity from the starting model is minimized.
(4) Potential distributions with the largest volume integral of gradient squared have the
least influence on the reconstructed conductivity, and therefore distributions most likely
to be corrupted by contact impedance effects are deemphasized. (5) Cells with most cov-
erage tend to deviate least from the background value. The resulting algorithm maps the
reconstruction problem into a vector space where the contribution to the inversion from
the background conductivity remains invariant, while the optimum contributions in or-
thogonal directions are found. For a starting model with nonconstant conductivity, the

reconstruction algorithm has analogous properties.
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Introduction

In [1], Berryman describes a weighted least-squares method for linear traveltime to-
mography that has a number of desirable properties. In this paper we develop a weighted
least-squares method for electrical impedance tomography that has similar properties. In
the past electrical impedance tomography has been used to find conductivity models con-
sistent with measured potentials due to injected currents. We work the problem from a
different perspective, one which is a closer analog to the traveltime tomography problem.
Our goal is to find a conductivity model consistent with measured power dissipation data
(within some specified measurement tolerance). This dissipation data is acquired by in-

jecting a current between two electrodes and measuring the voltage between the electrodes.

First, let us clarify the analogy between electrical impedance tomography and trav-
eltime tomography. In traveltime tomography we try to determine the distribution of
slowness s = 1 (where v is the wave velocity) in a region between a set of wave sources and
receivers of known position given first arrival timetime data ¢; measured between the m
pairs of sources and receivers (indexed by i = 1,...,m). The data are the times ¢ it takes
for waves to get from sources to receivers. Assuming that the waves are of a high enough
frequency to be treated as if they were traveling along rays, the waves that move most
quickly from sources to receivers have particular ray paths. For the i-th source-receiver
pair, Fermat’s principle says that the first arrival traveltime for the i-th ray path is given

by
ti(s) = / sdlPeth) (1)

?oth) is the arc length along the path between the source and receiver that minimizes

where 1!
the traveltime. Since the slowness can never be negative or zero, this integral is always
positive unless the source and receiver are in the same place. This case is excluded, so

traveltime is strictly positive.

Similarly, in electrical impedance tomography we try to determine the distribution of
conductivity o in the region between and around a set of current sources and sinks of
known position given power dissipation data p; measured between the m pairs of sources
and sinks (indexed by i = 1,...,m). The data are the powers p that are dissipated when
the currents are applied. For the i-th source-sink pair, Dirichlet’s principle states that the

power dissipated is
)= [ olvao)fds )

where ¢;(o) is the potential field which minimizes the power dissipation for the conductivity
distribution ¢(%). Since the conductivity is never negative, the power dissipation is also

strictly positive.
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From the previous two paragraphs it should be clear that the following quantities are
analogous to each other: slowness s is the analog of conductivity o, differential arc length
A" is the analog of the differential squared magnitude of the electric field |Vg;(o)Pd*z,
and the first arrival traveltime ¢,;(s) is the analog of power dissipation p;(c). With these

preliminaries out of the way, we can continue.

Let p be the measured power dissipation, an m-vector such that p” = (py,...,pn) Where
p; is the power dissipation of the i-th current probe (a 7 superscript implies the transpose).
Although various methods of parameterizing conductivity models have been studied, we
restrict our attention here to a model based on cells of constant conductivity. Thus, if
we are working on a two-dimensional cross section and have a rectangular geometry, we
may form our model conceptually by dividing the region between and around the current
injection points into rectangular cells of constant conductivity. On the other hand, if our
problem is three-dimensional, the cells are blocks of constant conductivity. Then o is the
model conductivity n-vector ¢” = (4,...,0,) With o; being the conductivity of the j-th cell,
satisfying
Ko=p (3)

where K is an m x n matrix whose matrix elements k;; are determined by the square
magnitude of the electric field of the i-th current probe through the j-th cell of the model

(i.e. kij= [, |Vé:i|>d®z). This matrix will be called the E-square matrix. In general, we

do not have good a prior: approximations to the square magnitude of the electric field if
the medium is very inhomogeneous (i.e., having contrasts of 15% or more). However, for
the present application, we will assume that the E-square matrix has been fixed with a

known set of (what are possibly trial) square magnitudes of the electric field.

We do not restrict our analysis to small changes Ao in ¢ relative to some known back-
ground [2,3]. We take explicit account of the fact that the linear weighted least-squares
problem we study is actually derived from a nonlinear reconstruction problem. The (pos-
sibly) substantial uncertainties in the E-square matrix K due to nonuniform conductivity
effects are acknowledged and treated from the outset. The importance of this point of view
derives from the fact that the errors introduced into the reconstruction by a poor choice
of K may be far more significant than the measurement errors introduced through p. The
method developed here will ultimately be used as one step in a comprehensive nonlinear
inversion algorithm such as that of Dines and Lytle[4]. However, we should emphasize that
the analysis of the present work is still restricted to the linear inverse problem associated

with (3). Extensions to the nonlinear inversion problem will be presented elsewhere [5].

Once a set of trial E-squares and corresponding values of k; ; = [ |V¢;|?d*z are known
)] cell; )

the model vector ¢ may be underdetermined if m < n or overdetermined if m > n. Thus,
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finding a “solution” to (3) requires the use of a generalized inverse [6] which in turn often
implies a least-squares estimate [8] of the model conductivity vector. A general objective

function to be minimized might have the form suggested by Herman[9]
au(0)=(p— Ko)"Wi(p — Ko) + p(o — o0) T Wa(o — 03), (4)

where W, and W, are (respectively) m x m and n x n real, symmetric weight matrices,  is
some scalar determined by the relative importance of the second term compared to the
first, and p, is some special background value of the power dissipation vector to which the
final result should be close. Many criteria have been proposed in order to ensure a unique
solution to the reconstruction problem. For example, positivity of both the power dissi-
pation vector p and the conductivity o is clearly required for any physical model, but for
electrical impedance tomography maintaining the positivity of p and o is seldom a prob-
lem. Therefore, we will make no special effort to control this feature through the objective
function itself. Some of the most important features of the reconstructed conductivity
needing control are: (i) The (weighted) least-squares error between the measured and pre-
dicted power dissipation data should be as small as possible. () For linear tomographic
inversion with a good starting model, the variance of the reconstructed conductivity from
the specified background should be as small as possible for the given data [10]. (#7) The
(possibly weighted) mean conductivity should be the best possible in some sense. Addi-
tional criteria that have been proposed for the analogous case of traveltime tomography
include: (7v) Rays of greatest length should be weighted least in the reconstruction [11].
This is analogous to putting the least weight on the most diffuse current distributions.
(v) Cells with the most ray coverage in them should be the ones with the most accurate
reconstructed values. This is analogous to saying that cells with the most power dissipated

in them should be the ones with the most accurate reconstructed values. The motivation
for each of these criteria and the impact they have on determining the values of the weights

and other constants in (4) will be developed more fully in the discussion that follows.

As shown by the application to both traveltime tomography and electrical impedance
tomography, the techniques developed here may be used in many currently existing least-

squares tomographic inversion methods.
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Homogeneous Background

We treat the minimization problem for homogeneous background o, in this section,
and then generalize to more complex background conductivities in the next section. In a
comprehensive nonlinear inversion algorithm, we often expect constant conductivity to be

the initial guess.

A. Optimum homogeneous conductivity

The crudest sort of reconstruction one can imagine is to take the available data and
form the optimum constant conductivity vector consistent with that data. By optimum
constant, we mean that it uses all the data, that it produces a minimum error in some
appropriate least-squares functional, and that it agrees with the exact result if the medium
is actually constant. If the medium is homogeneous (constant conductivity), the exact value

for the conductivity is easily seen to be given by

pi
Sp = (5)
fVolume |v¢l |2d3£E

for any particular measurement i, or by

— Ez Di
B ZZ fVolume |V¢z|2d3:l: (6)

S0

where p; is the power dissipated due to the :th current probe and [, ,  |V¢;>d*z is the
integral of the squared magnitude of the electric field vector due to current probe i over
the entire volume. The conductivity scalar s, is the total power dissipated by the current
probes in all measurements divided by the sum of the integrals of square magnitude of the

electric field over all space.

When the medium is not actually homogeneous, a least-squares error criterion can be

used based on minimizing the functional

Y(s) = (p — Ksv)"Ws(p — K sv), (7

where W3 is another m x m real, symmetric weight matrix and +7 = (1,...,1) is an n-vector

of ones. The minimum of (7) occurs when
vI KTW3(p — Ksov) = 0, (8)

or equivalently when
'UTKTW3p

0= TKTWsKv'
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Now Eq. (9) can be simplified by introducing some new notation. Define the row sums

R; and column sums C;

m

|Vi|>d®z, Ci=> kij= Z/V |Vi|>d®z. (10)
=1

i=1 olume;

Ri=S ki;=

olume

The quantity R; is seen to be the integrated square magnitude of the electric field for
current probe i over the entire volume. The quantity C; is the sum over all current probes
i of the integrated square magnitude of the electric field in cell j, so we will call this the
“coverage” of cell j. Any cell with C; =0 is uncovered and therefore lies outside the span
of our data for the present choice of current paths. We retain only the covered cells in the
reduced conductivity vector & of length 7 < n. The matrix K may similarly be reduced to
K by deleting the corresponding columns of zeros. Finally, define diagonal m x m and 7 x #
matrices R and C respectively whose diagonal elements are given by the nonzero sums in
(10). For simplicity, we assume that # = n in the following discussion. Then, the diagonal

matrices R and C are given by

and

Gy
cz( ) 0
Ch

Now in addition to the n-vector v we have already introduced, we define «T = (1,...,1), an
m-vector of ones. Then,
Kv = Ru (13)

and
KTu=Cv (14)

follow easily from the definitions. Substituting (13) into (9) we obtain

uTRW3p

= 37 1
O~ WTRW5Ru (15)

S

For comparison, note that (6) may be rewritten as

uTp
= . 16
50 uT Ru (16)
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Now, neglecting a possible (but clearly irrelevant) arbitrary scale factor in the weight

matrix Wi, we see that (15) will agree with (16) if
W3 Ru = u, (17)

i.e., if » is a right eigenvector of W3R with unit eigenvalue. Of course, (17) does not

uniquely determine W3R since we see easily that two possible choices are given by
WsR =1, (18)
where I is the n x n identity matrix, and by
WsR=R'KC'K”. (19)

In either case, the resulting W; is real and symmetric as required. Although other choices

clearly exist, the simplest choice for W3 appears to be the one determined by (18), i.e.,
Ws; =R (20)

With this choice, (15) and (16) are identical. On the other hand, (19) leads to a weight

matrix that may not be positive definite — an undesirable property for a weight matrix.

The special background value of ¢ for our analysis of (4) in the remainder of this section
will be taken to be
op = SV, (21)

where s is determined by (16).

B. Weighted least-squares error

Next we consider (4) with g =0. Then, the error functional
(o) = (p — Ko)TWi(p — Ko) (22)

should be minimized with respect to . The standard result is that the minimum occurs
for o satisfying
KTW,Ko = KTW;p. (23)

If the square matrix KW, K is nonsingular, i.e., has no zero eigenvalues, then (23) is easily
solved by inverting the matrix; this result is just the well-known solution associated with
the Gauss-Markov theorem [7]. However, in many cases of practical interest, this matrix
is singular and some method from the theory of generalized inverses will be required [11].
One particularly simple method to analyze involves the iterative solution of (23) [9,12-14].

However, the success of this method requires that the matrix whose pseudoinverse is to
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be approximated in this way must have its eigenvalues X restricted to the unit interval
0 < X < 1. We can precondition the matrix by multiplying (23) by some positive definite,

diagonal matrix D! and reassociating matrix factors so that
(DKWL KD ')Do = D *KTW;p. (24)

The diagonal elements of D are chosen so that the eigenvalues of the matrix in parentheses

lie in the unit interval. We define an n-vector z

z= Do (25)

and, since the matrix in parentheses in (24) is clearly symmetric, a matrix A can always

be found such that
ATA =D 'KTW,KD™". (26)

Then, (23) may be rewritten as

ATAz =D 'K™Wp (27)
which can be solved by iteration according to

20 = DUKTW,p, (28)

25D = O (1 AT 4)5P), (29)

It is well-known [15,16] that the :*) sequence converges to the solution of (27) obtained
from the Moore-Penrose generalized inverse as k — co. We will develop this result in more
detail by examining the eigenvalue (singular value) decomposition of ATA in a manner
similar to that of Aki and Richards [17].

Now using a method of Lanczos [18] that we call “completing the square”, we will

introduce the (m +n) x (m + n) real, symmetric square matrix # determined by K

g=(gr §) (30)

and the corresponding eigenvalue problem

0 K Uy _ R 0 (15N
(e ) (2)=2(8 &) () 2
In (31), the vectors u, and v, are of length m and n respectively. We see in particular that
(13) and (14) are of the form (31) so that the vector (u7,vT) = (1,...,1) is an eigenvector of

H with eigenvalue unity. This fact is significant, and provides the motivation for studying

the eigenvalue problem (31), as we shall show.
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We will now proceed to manipulate (31) into a more illuminating form. First, we invert

the diagonal matrix on the right side of (31) and multiply through, obtaining

<C—10KT R01K> (Z:\\) = (Zi) : (32)

[Note that, if («T,+7)7 is an eigenvector of (32) with eigenvalue A, then (u7,,—vT,)T is also

an eigenvector with eigenvalue —\.] Next we square the matrix on the left side of (32) to

find
R 'KC KT 0 uN ) (5%
( 0 C_lKTR_lK) <7)A) - )‘2 <’UA) ' (33)

Finally, we multiply (33) by the matrix

Rz 0
0 C3
(these square root matrices are well-defined since R and C both have only real, positive,

diagonal elements) and then reassociate some terms to reach the desired result
R 3KC'KTR™3 0 Riuy) _ 2 (R7us (34)
0 CPKTRIKC 3 ) \Cluy ) =7 \Ciuy )’

Comparing (34) and (26), we see that, if the following choices are made for the weight
matrix
W, =R (35)

(note that this is the same choice that was made for W) and the preconditioning matrix

NI

D=C5, (36)
then the matrix A becomes
A=RIKC"3 (37)

and (34) may be rewritten as

AAT 0 w ) 2 w )

( 0 ATA) (wA) =2 zy )’ (38)
where wy = Riuy and z, = Civ,. That the positive eigenvalues of A all lie in the range
[0,1] as desired follows from the fact that, by construction, the matrices KC~* and KTR™!
have all their column sums equal to unity. Furthermore, since (uT,+T)T is a strictly positive

eigenvector with eigenvalue A =1 from (28) and (29), we know that this eigenvalue is both

maximal and simple from the Perron-Frobenius theory of non-negative matrices [19,20].
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[A technical point arising here is this: The matrix ATA must be “primitive,” 7.e., some
positive power of it must have all positive matrix elements. This condition will often be
satisfied for problems in tomography. If it is not satisfied, we separate ATA into subma-
trices for which it is satisfied and proceed with the analysis as presented for each of the
submatrices.| In addition, we know that the eigenvectors =z A B for distinct eigenvalues
A%,2% are orthogonal, and we may assume that those eigenvectors which share a common

eigenvalue have been orthogonalized.

Returning to the iterative scheme (28)-(29) now that we have an explicit representation
for A, we find that

Z(O) = ATRi%p = chw/\j’ (39)
j=1
where
G = ATR by (10)

assuming that the eigenvectors have been normalized so that z{z, = 1. Furthermore, the

eigenvalue decomposition of ATA is given by

ATA=) oy Vo] . (41)
j=1
Thus, we have in general that
(I - ATAPZO =3 " (1= X2)P(jzs,. (42)
j=1

It follows easily from (29) that the k-th iterate may be expressed as

k

28 =3 (11— AT AP (43)
p=1
so from (42) we find that
n k
A9 =35 (1 - N, (44)
j=1p=0

Let the eigenvalues be ordered in decreasing magnitude so that
]-:AI>A22---2A7‘>)‘7‘+1:---:An:0, (45)

where r is the rank of ATA. Then, (44) may be rewritten as

r k
P = oy + 3 Y (1 - AP, (46)

j:Z p=0
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Using the fact that (for ); #0)

N 2\N+1 2\N+1
1— (1= AN+ 1 (1= A2)N+
(1-2%)P = ! = —, (47)
p; ’ = (1-33) A
we see that
9 ot w
j=2 "

Clearly, the rate of convergence of z*) to 2(><) depends only on the value of the lowest
nonzero eigenvalue A, since the term (1-22)* is the most slowly decreasing factor appearing
in (46) as k — co. Eq. (48) gives the eigenvector decomposition of the solution of (27) that

would be obtained using the Moore-Penrose generalized inverse of AT A.

Two important facts should now be noted about (46). First, since the right null spaces
of A and ATA are the same, (46) is orthogonal to the null space of ATA for all k. This
fact follows immediately from (40), since ¢; = 0 for any j such that Az,, =0. This is also a
very useful fact because it means that the solution 2(> is the unique solution of minimum
norm 2Tz consistent with the data; thus, any other » for which (22) has a minimum will
be equal to 2(>) plus some terms from the null space of ATA. Second, the coefficient of the

eigenvector z,, is the same for all k.

Eq. (46) provides a solution to the problem of finding the conductivity with minimum
error for (22) when W, = R~!. Interestingly, it does more that. Consider the term ¢z,
which has constant coefficient (as k£ — oo) starting from the initial iterate (' of (28). We

see that
G= :L'iz\qlATRf%p = vTKTR_lp/(vTC’v)% (49)

and, using (13) together with the fact that v7Cv =T Ru, we therefore find that
Gz, = 5003 (50)

where sy is given by (16). Recalling that sov is the optimum homogeneous background,
we see that this result is quite remarkable. Eq. (50) shows that, by transforming into
this particular vector space using the conditioning matrices R and C, we have found a
solution of a weighted least-squares problem that automatically has minimum (weighted)
norm consistent with the data — but that also has exactly the right value of the coefficient
for the optimum constant background. This latter property is guaranteed to be satisfied
at any stage of the iterative process for obtaining the solution of (27). Furthermore, the
weighted least-squares criterion (22) with Wy = R~! is the only one with all these properties

for the constant background problem this fact follows by running through the steps of the
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derivation of (31)-(34) backwards assuming that R and C are arbitrary diagonal matrices
and then noting that (31) can only be consistent with (13), (14), and (16) for this unique
choice of R and C.

A similar weighting technique for traveltime tomography appears in an unpublished
manuscript of Burkhard [16]. The goal of obtaining a convergent iterative method moti-
vated Burkhard to make choices corresponding to (35) and (36). The choice for weight
matrix W; = R~! is also similar to one in traveltime tomography, discussed by Frank and
Balanis [10]. Their arguments for such weights are: () Signal to noise ratio is expected
to be better on shorter ray paths than on longer ones, since the overall attenuation will
typically be smaller. (7) Shorter trial ray paths are more likely to correspond to real paths
that remain completely in the image plane for two-dimensional reconstruction problems.
These arguments carry over, with some modification due to the substantial differences in
the physics of the two problems, to electrical impedance tomography: (i) Large gradients
imply large currents and the largest of these are anticipated to occur close to the injection
electrodes; thus, nonlinear effects such as contact impedance are most likely to contam-
inate the power measurements when the gradients are large. Weighting against a large
E-square integral emphasizes measurements taken using smaller currents, and so towards
those presumably less corrupted by nonlinear effects. In addition it emphasizes electrode
placements that are far apart over placements that are close together. These points can be
seen by examining the closed form solution to the E-square integral in three dimensions for
a point current source and sink pair of current I a distance L apart in a uniform conductor

of infinite extent
1'2
47o?L’ (51)

R= RS

Volume

So weighting by R~ emphasizes smaller currents and larger separations. (77) Smaller
gradients imply smoother potential field distributions. Furthermore, the minimum E-
square integral occurs when the potential field satisfies the Laplacian V?¢ = 0. Thus,
weighting against large gradients is most desirable when the conductivity distribution is
either constant or fairly smooth with low contrasts, consistent with the linear least-squares

approach under discussion here.

C. Minimum variation from background

Now consider the second term in (4)
B(o) = (0 — )T Wa(o — 03). (52)

The motivation for using (52) as a criterion is that, although there may be many “solutions”

to (3), the ones with least deviation from some prescribed (smooth) background are most
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likely to have no spurious structure. It is not desirable to have a reconstruction method that
produces “interesting” features that are not real. High frequencies in the reconstruction
should therefore be damped by some means. A stationary point of (52) occurs when o
satisfies
Wa(o — 03) = 0, (53)
1.€., when o — oy is in the null space of W,. If the weight matrix is positive definite, then
(53) implies that
o =0y, (54)

We could choose W, = I, but this choice ignores the fact that some of the cells have
significantly more coverage than others. The cells with most coverage ought to be given
the most weight in (52) and clearly any cell with no coverage should have no influence on

the final result. The simplest choice of weight matrix satisfying these requirements is

Wy = C. (55)
Then, we see that (52) becomes
(0 —a)TClo—ap) = (2 — z)T (2 — 2) (56)
where z = C3o and
2y = (1T, - (57)

Criteria based on minimum variance from some background such as (52) are appropri-
ate only as secondary criteria [9]. Forcing o to the value ¢ = oy, at the absolute minimum of
(52) is too strong a constraint. A more reasonable constraint to impose is that the solution
should have its component in the direction of ¢, equal in magnitude to o, but other compo-
nents orthogonal to this direction should also be allowed, i.e., zI (2 —z) = 0. In other words,
the solution should be restricted to a hyperplane whose projection along the direction of z,
has the correct magnitude. We see that (46) has precisely this property. So it is possible
to find a conductivity vector achieving the absolute minimum of (22) consistent with the

data, while also satisfying a sensible minimum variance criterion.
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D. Minimizing the general objective function

Now consider minimizing the full objective function (4) with the particular choices of

weight matrices motivated in the preceding analysis
au(0) = (p— Ko)"R7}(p — Ko) + p(0 — 04)"C(0 — o). (58)
Using (37) and z = C7o, (58) may be transformed to
0u(2) = (3 — A2)T(y — A2) + (z — 2)7(= — ) (59)
where A is again given by (37) and y = R~7p. The minimum of (59) occurs when z satisfies
AT(Az —y) + p(z — ) =0, (60)
or equivalently (since ATAz, = z),
(ATA 4 u)(z — z) = ATy — 2, (61)
Using (39) and (57), we notice immediately that
F(ATy — z) =0, (62)

which means that the right-hand side of (61) is orthogonal to z,. Notice further that the

eigenvectors of ATA are also eigenvectors of ATA + ul, since
(ATA+ pD)zy, = (A} + p)z),. (63)

Therefore, the solution of (61) with

Az =z — z, (64)
and
Az = ATy — z, (65)
has the form
7 CJ
Az = T, (66)
j=2 A.% + K
where for 2<j <r

are precisely the same numbers given by (40). For finite p > 0, (66) is the unique solution

of (61) since the matrix on the left-hand side of (61) is nonsingular.
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The complete “solution” of (3) is now ¢ = C~7z, with z being the solution of (61), plus
some conductivity vector from the null space of the E-square matrix K. In the absence of
additional information to constrain the final result, the vector from the null space may be

omitted.

Eq. (61) has some clear computational advantages over (27). In particular, if the small-
est nonzero eigenvalue ), is very small [on the order of the round off error for computations
of O(1)], then the computation of (46) and (48) will be numerically unstable, while the
presence of a small but finite x in (61) will stabilize the computation of (66).

Note that the result (61) has much in common with Marquardt’s [21,22] algorithm for
solving such problems using damped least-squares. In the presence of severe nonlinearity —
which may often be the case for tomographic reconstruction of conductivity data — it may
be advisable to use the damped algorithm with an optimum constant p < 1 found through
trial and error as suggested by Aki and Richards [17]. Various alternative methods for
choosing p have been considered and many of these are summarized in the review by
Titterington [23].

Finally, note that p may be viewed as an interpolation parameter. As p — 0, (66) —
(48); as p — oo, (66) — (54). For finite but small x, (66) interpolates between (48) and (54)

while providing a stable approximation to (48).

Inhomogeneous Background

We will now generalize the discussion of the preceding section to the problem of finding
appropriate minimization functionals of the form (4) when o4 is not a constant conductivity
vector. This situation will generally arise in the later stages of a comprehensive nonlinear

inversion algorithm [4,5].

A. Functional design

If o} is not constant, then (13) and (14) no longer play an important role in the design
of the least-squares functional. The question arises as to whether some vectors other
than » and v can play a similar role. The main issue is whether a vector (a,sT)T can be

constructed that has unit eigenvalue for some problem of the form

0 K\ [z (R 0\ (u
(e ) ()2 (0 &) (5) ®
It turns out that such a vector can always be found. Furthermore, there is sufficient

freedom in the choice of the vector that an additional condition may be placed on the

minimization functional if desired.



Define
v =op/s (69)

where s is some positive constant conductivity value chosen for convenience to make
dimensionless [one reasonable choice would be s = s, where s, is given by (16)], and let

% = u for now. Then
Kv=Ru (70)

implies that the diagonal components of R satisty

Ri=Y kij(0n)i/s = (m)ifs, (71)

j=1

where (p;); is the predicted power dissipation for the i-th current probe. Similarly,

where the diagonal components of C satisty

Cj = sC;i/(03);- (73)

A derivation analogous to the one leading to (38) then gives

(6 aa) (2)=7(2) (74)

A=R iKC™

8 &
i
i

where

(NI

(75)

with @5 = Rza; and z; = C755. Because our design of the eigenvalue problem begins by first
constructing a strictly positive vector (a”,#7)T with eigenvalue unity, it again follows from
the Perron-Frobenius theory of nonnegative matrices [19,20] that this eigenvalue is simple
and that it is the maximum eigenvalue of ATA and AAT, and also A. The only caveat is
that ATA must be assumed “primitive” as defined in Section 2. Thus, by construction, the

eigenvalues A? lie in the range [0,1].

An additional degree of freedom arises in the problem with inhomogeneous background,
since no constraint analogous to (16) applies. The choice @ = » is the simplest, but it is
not required. In fact, we are free to specify either @ or R in (70) — once one is specified
the other is determined. The choice is constrained only by the requirements that all the
components of  must be positive, and that the diagonal components of R must be positive
(the off-diagonal components vanish). A different choice for @ also leads to a different

choice of C in (72), i.e., simply replace C; in (73) by the j-th component of the vector
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KTu. This additional degree of freedom implies that some other constraint on the final
results can be forced by an appropriate choice of these weights. Although not required, the
particular choices given by (71) and (73) have several features in common with the choices
made in Section 2 which may be enough to recommend them generally: For example,
(73) still has the desirable property that the elements of the weight matrix C are directly
proportional to the elements of the cell coverage matrix C, and therefore tend to weight the
cells with the most coverage most heavily. Similarly, (71) leads to a weighting favorable to
current probes with the least power dissipation — which has similar logic to recommend it
as that used by Frank and Balanis [10] for the shortest path-length weighting in traveltime
tomography.

The analysis of (74) exactly parallels that of (38). Furthermore, if we make the choices
W, = R (76)

and
Wy=0C (77)

in (4), then all of the analysis of Section 2 applies to the inhomogeneous background

problem with barred quantities replacing unbarred.

We conclude that the analysis of the nonconstant background problem is virtually

identical to that for constant background once the weight matrices have been determined.



—18 =
B. Nonlinear inversion

A general nonlinear iterative inversion algorithm based on the preceding analysis may
be summarized as follows: Given power dissipation data but no a prior: knowledge of a
sensible background conductivity model, first assume a constant background and compute
the best estimate of the model conductivity using (28)-(29) with the weights (35) and
(36). If the resulting least-squares error is too large, use the new model conductivity as
the background and repeat the calculation. Continue until the resulting least-squares error
is comparable to the error in the measured power dissipation data. Note that, except for the
particular choices of weight matrices and an as yet unspecified algorithm for computing
the squared magnitude of the electric field for the background model, this algorithm is
analogous to that used by Lytle and Dines [24] in the case of traveltime tomography.

Discussion

Tomographic reconstruction of a conductivity model from power dissipation data based
on Eq. (3) implicitly assumes that a background conductivity o}, is known: the squared
magnitude of the electric field used to determine the E-square matrix K should be based
on the application of Laplace’s equation to the construction of a sensible potential field
through such a model. The background conductivity model should be expected to play
a special (and explicit) role in the reconstruction process. The methods developed in
this paper show that weighted least-squares criteria can always be found that map the
reconstruction problem into a vector space where the contribution to the inversion from
the background conductivity remains invariant; meanwhile the reconstruction proceeds to
find optimum contributions in orthogonal directions. The resulting algorithm produces a
hybrid conductivity model both consistent with the data in the least-squares sense and

possessing the least possible variance from the background.

A problem that has not been addressed in this paper is that of obtaining the necessary
power dissipation measurements. Obtaining power dissipation measurements is a problem
because it is difficult to measure the voltages across the current injection electrodes reliably
— partially because a substantial contact impedance develops at the interface between the
region being probed and the electrodes. As the contact impedance is a function of the
current magnitude, the data collection process can be nonlinear. If the application makes
it possible, the effects of contact impedance can be eliminated or reduced to some extent
by using electrodes with large surface areas [25]. In any case, we may be limited to using

power dissipation measurements with substantial inaccuracy.

Applications and extensions of these methods to nonlinear conductivity inversion will

be presented elsewhere.
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