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Abstract

In acoustics of inhomogeneous media, Fermat’s principle of least time is fundamental to forward
modeling; it is the basis of the bending methods of ray tracing often used to find acoustic ray
paths. Fermat’s principle plays an equally important role in the traveltime inversion problem,
i.e., the problem of attempting to estimate the wave velocities in the medium through which a
sound pulse has traveled in a measured time from known source to receiver. Since measured first-
arrival traveltimes are necessarily the minimum traveltimes through the medium whose sound
velocity profile is to be reconstructed, Fermat’s principle allows us to assign all possible wave-
speed profiles to one of two classes: a model is either infeasible or feasible depending on whether
or not there are paths from source to receiver that have less traveltime than that measured.
The feasible set of models is convex and furthermore an exact solution to the inversion problem
(if any) must lie on the boundary between the feasible and infeasible sets. Thus, Fermat’s
principle permits a convexification of the nonlinear traveltime inversion problem, so the only
extrema are global extrema.

1 Traveltime Tomography

A typical problem in seismic traveltime tomography is to infer the (isotropic) compressional-
wave slowness (reciprocal of velocity) distribution of an inhomogeneous medium, given a set
of observed first-arrival traveltimes between sources and receivers of known location within
the medium. This problem is common for borehole-to-borehole seismic tomography in oil
field applications [Bording et al., 1987; Justice et al., 1989]. We also consider the problem of
inverting for wave slowness when the absolute traveltimes are not known, as is normally the
case in earthquake seismology.

1.1 Slowness Models

We consider three kinds of slowness models. Sometimes we allow the slowness to be a general
function of position, s(x). However, we often make one of two more restrictive assumptions
that () the model comprises homogeneous blocks, or cells, with s; then denoting the slowness
value of the jth cell, or (i) the model is composed of a grid with values of slowness assigned
at the grid points with some interpolation scheme to assign the values between grid points. Of
course, we can think of blocks of constant slowness as a special case of continuous models, or
continuous models as a limiting case of blocks as the blocks become infinitesimal.

When it is not important which type of slowness model is involved, we will refer to the
model abstractly as a vector s in a vector space §. For a block model with n blocks we have



S = R™, the n-dimensional Euclidean vector space. A continuous slowness model is an element
of a function space, e.g., S = C(R3), the set of continuous functions of three real variables.

1.2 Fermat’s Principle and Traveltime Functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting the
source and receiver. To make this more precise, we will define two functionals for traveltime.

Let P denote an arbitrary path connecting a given source and receiver in a slowness model
s. We will refer to P as a trial ray path. We define a functional 7 which yields the traveltime
along path P. Letting s be the continuous slowness distribution s(x), we have

P (s) = /P s(x) di”, (1.1)

where dI” denotes the infinitesimal distance along the path P.

Fermat’s principle states that the correct ray path between two points is the one of least
overall traveltime, i.e., it minimizes 7F(s) with respect to path P. [Actually, Fermat’s principle
is the weaker condition that the traveltime integral is stationary with respect to variations in
the ray path, but for traveltime tomography using measured first arrivals it follows that the
traveltimes must truly be minima.]

Let us define 7* to be the functional that yields the traveltime along the Fermat (least-time)
ray path. Fermat’s principle then states

% . P
T = LT ) (12
where Paths denotes the set of all continuous paths connecting the given source and receiver.
The particular path that produces the minimum in (1.2) is denoted P*. If more than one path
produces the same minimum traveltime value, then P* denotes any particular member in this
set of minimizing paths.

To summarize, we have

(s) = /P _s()di”" = min /P s(x) di” = min?(s). (1.3)

The traveltime functional 7*(s) is stationary with respect to small variations in the path P*(s).
Snell’s law is a well-known and easily derived consequence of the stationarity of the travel-
time functional [Feynman et al, 1963; Whitham, 1974].

1.3 Seismic Inversion

Suppose we have a set of observed traveltimes, t1, ..., t,,, from m source-receiver pairs in a
medium of slowness s(x). Let P; be the Fermat ray path connecting the ith source-receiver
pair. Neglecting observational errors, we can write

/s(x)dlp'izti, i=1,...,m. (1.4)
P;
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Figure 1: Schematic illustration of acoustic ray paths through a block velocity model.

Given a block model of slowness, let [;; be the length of the ¢th ray path through the jth
cell:

L = / diP:. 1.5
I Piﬂce]lj ( )

Given a model with n cells, (1.4) can then be written
Elijsj:ti, t=1,...,m. (1.6)
=1

Note that for any given 7, the ray-path lengths [;; are zero for most cells j, as a given ray path
will in general intersect only a few of the cells in the model. Figure 1 illustrates the ray path
intersections for a 2-D block model.

We can rewrite (1.6) in matrix notation by defining the column vectors s and t and the



matrix M as follows:
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Equation (1.6) then becomes
Ms =t. (1.8)

Equation (1.8) is just the discretized form of (1.3).

1.4 Linear vs Nonlinear Tomography

We now define three problems in the context of Eq. (1.8).

In the forward problem, we are given s; the goal is to determine M and t. This entails
computing the ray path between each source and receiver (using a ray tracing algorithm) and
then computing the traveltime integral along each path.

In the linear tomography problem, we are given M and t; the objective is to determine
s. The assumption here is that the ray paths are known a priori, which is justified under a
linear approximation that ignores the dependence of the ray paths on the slowness distribution.
Typically, the ray paths are assumed to be straight lines connecting sources and receivers,
adding a second connotation to the term “linear.” Linear tomography is commonly practiced
in medical imaging and in many geophysical situations as well.

In nonlinear tomography, we are given only t (along with the source and receiver locations);
the goal is to infer both M and s. In this problem, the dependence of the ray paths on
the slowness distribution is acknowledged. Nonlinear tomography is necessary for problems
in which the slowness varies significantly across the medium of interest, which includes many
seismic tomography problems. The ray paths in such media will show significant curvature (i.e.,
be nonlinear) in a way that cannot be known a priori.

The linear tomography problem can be solved with a variety of optimization techniques. In
the least-squares method, for example, the normal solution for s is expressed analytically as

§=M"M) 'MTt, (1.9)

assuming the matrix inverse exists. If the inverse does not exist, then (1.9) must be “regu-
larized.” Typically, regularization is accomplished by adding a positive matrix to MTM and
replacing the singular inverse in (1.9) by the inverse of the modified matrix [Herman, 1980].

In nonlinear tomography, an iterative algorithm is generally needed to find an approximate
solution §. The basic structure of such an algorithm is as follows:

1. Set § to a given initial model (a constant or the previously best-known geological model).
2. Compute the ray-path matrix M and traveltimes t for § and set At =t — t.
3. If At is sufficiently small, stop.

4. Find a model correction As as the solution to the linear tomography problem: MAs = At.



5. Update § to the new model obtained by adding the model correction As to the previous
model s.

6. Go to Step 2.

This algorithm looks very reasonable and in fact sometimes it actually works! But not
always. For models with low slowness contrasts, the algorithm will converge to a sensible
result. When the method fails, the failure mode is usually a divergence to a highly oscillatory
model. Ad hoc procedures to reduce the possible range of slowness values and to guarantee a
high degree of smoothness in the reconstructed model have commonly been introduced to deal
with this instability. Such smoothness constraints come from external considerations (like the
class of models we want the solution to lie in), not from the data. But a really satisfactory
method of stabilizing the iteration scheme based on information in the data itself has been
lacking.

Analyzing the algorithm, we see that there are really only two significant calculations con-
tained in it. Step 2 is just the solution of the forward problem for §. This step should not
introduce any instability, since it can be performed essentially as accurately as desired (if the
computing budget is large enough). Step 4, on the other hand, is a linear tomography step
imbedded in a nonlinear algorithm. We should be skeptical of this step. Linear inversion im-
plicitly assumes that the updated model (after adding the model correction) is not so different
from the previous model that the ray path matrix M should change significantly from one
iteration to the next. If this implicit assumption is violated, then this step is not justified, and
steps 4 and/or 5 in the algorithm must be modified.

Feasibility analysis supplies a set of rigorous physical constraints on the reconstruction
process. Experience has shown that smoothness constraints are usually not needed if feasibility
constraints are applied. The next section develops these concepts in more detail and presents
a few of the consequences that follow from them in traveltime tomography.

2 Feasibility Analysis

The idea of using feasibility constraints in nonlinear programming problems is well established
[Fiacco and McCormick, 1990]. However, it has only recently been realized that physical prin-
ciples such as Fermat’s principle actually lead to rigorous feasibility constraints for nonlinear
inversion problems [Berryman, 1991]. The main practical difference between the standard anal-
ysis in nonlinear programming and the new analysis in nonlinear inversion is that, whereas the
functions involved in nonlinear programming are often continuous, differentiable, and relatively
easy to compute, the functionals in nonlinear inversion (e.g., the traveltime functional) need
not be continuous or differentiable and, furthermore, are very often comparatively difficult to
compute.

We present the rigorous analysis here in a general setting. This analysis is important because
it will help to characterize the solution set for the inversion problem, and it will help to clarify
the questions about local and global minima of the inverson problem.



2.1 Feasibility Constraints

Equation (1.4) assumed that P; is a Fermat (least-time) path. Now let us suppose that P; is
a trial ray path which may or may not be the least-time path. Fermat’s principle allows us to
write

/ s(x)dIP > 1. (2.1)

[3

When we discretize (2.1) for block models, it becomes
Ms > t. (2.2)

Equations (2.1) and (2.2) can be interpreted as a set of inequality constraints on the slowness
model s. When s obeys these m constraints, we say that s is feastble. When even one of these
constraints is violated, we say s is wnfeastble. The set of inequalities collectively will be called
the feasibility constraints.

2.2 Properties of Traveltime Functionals

PROPOSITION 2.1 7% is a linear functional.

The proof of this stems from the fact that integration is a linear functional of the integrand.
Since it is linear, it also follows that 7 is also convex, concave, and homogeneous.

PROPOSITION 2.2 7% is a homogeneous functional.
Proof: Given v > 0 we have

T(78) = mFi,nTP('ys). (2.3)
Using the linearity of 77,
T*(78) = rrgn'y'rp(s) = 'ym}_i,n P(s) = v7*(s). 1 (2.4)
Alternatively, we may say that the ray paths are scale invariant.
PROPOSITION 2.3 7% is a concave functional.

Proof: Given slowness models s; and sy and A € [0,1], let s = As; + (1 — A\)sa. Letting
P*(s) be the Fermat ray path for s, we have

m*(s) = rF7()(s). (2.5)
The linearity of 7¥ then implies
7*(s) = AP O (s1) + (1 = \) 7P () (sy). (2.6)

Since 7* minimizes 7 for any fixed model, it must be the case that 777 (8)(s;) > 7*(s;) and
similarly for sp. Further, A and (1 — )\) are non-negative. Therefore, (2.6) implies

T(s) > At*(s1) + (1 — A)7¥(s2). 1 (2.7)



2.3 Feasibility Sets

Given the set of observed traveltimes, ¢; for ¢ =1, ..., m, we define two sets of models.

DEFINITION 2.1 (LOCAL FEASIBILITY SET) The local feasibility set with respect to a set of trial
ray paths P = {P1,...,Pn} and observed traveltimes ty, ..., ty, is

FP={s|7F(s)>t;, forall i=1,...,m}. (2.8)

DEFINITION 2.2 (GLOBAL FEASIBILITY SET) The global feasibility set with respect to the ob-
served traveltimes t1, ..., ty, s

F*={s|7/(s) > t; forall i=1,...,m}. (2.9)
Now we show that the concavity of 7 and 7} implies the convexity of 7 and F*.
THEOREM 2.1 FF is a convex set.

Proof: Suppose s1,s2 € FF and let sy = As; + (1 — X)s2 where 0 < X < 1. Since, for each

i, 7¥ is a concave (actually linear) functional, we have

P (sy) > A (s1) + (1 — A)7f (s2). (2.10)

(Although equality applies in the present case, the “greater than or equal to” is important in
the next proof.) But 7 (s1), 7 (s2) > t; and A and (1 — \) are non-negative. Therefore,

TZ-P(S)\) > At; + (1 — )\)ti =1,. (2.11)
Thus, sy € FF. 1
THEOREM 2.2 F* is a convez set.

The proof proceeds in analogy with the preceding proof, with 7 replacing 7, but the

2
inequalities come into play this time. We leave this proof to the reader.

THEOREM 2.3 Given any model s, there exists a finite scalar v* > 0 such that ys € F* for all
vz

Proof: Let
t
Y= max ——, (2.12)
kE{l,...,m} Tk (S)
For any 7, 7* is homogeneous, implying
X (v*s) = %7 (s) = 7' (s) m,?x% >, (s)% =t;. (2.13)

We see that v*s satisfies all the feasibility constraints, so it is in 7™, and so is s for any v > ~v*.
]

We can decompose F* into two parts: its boundary and its interior. The boundary of
F*, denoted Bdy F*, comprises feasible models s which satisfy some feasibility constraint with
equality, i.e.,

Bdy F* = {s € F* | 7 (s) = t;, for some i}. (2.14)
Models in the interior of 7*, denoted Int F*, satisfy all constraints with inequality:

Int 7* = {s € F* | 77(s) > t;, for all i}. (2.15)



2.4 Convex Programming and Global Minima

We first define convex programming for first-arrival traveltime inversion, and then present some
basic theorems about it.

DEFINITION 2.3 Let ®(s) be any convez function of s. Then the convex nonlinear programming
problem associated with ® is to minimize ®(s) subject to the global feasibility constraints 7(s) >
ti, fort=1,...,m.

DEFINITION 2.4 Let WP (s) = 37 w;[rF (s) — t;]? for some positive weights {w;} and some set
of ray paths P = {P1,...,Pn}. Then, the convex linear programming problem associated with
UP is to minimize WF (s) subject to the local feasibility constraints ¥ (s) > t;, fori=1,...,m.

THEOREM 2.4 Every local minimum s* of the convezx nonlinear programmang problem associated
with ®(s) is a global minimum.

THEOREM 2.5 FEwvery local minimum s* of the convex linear programming problem assoctated
with WP (s) is a global minimum.

Proof: This proof follows one given by Fiacco and McCormick [1990]. Let s* be a local
minimum. Then, by definition, there is a compact set C such that s* is in the interior of C N F*
and

®(s") = min &(s). (2.16)

If s is any point in the feasible set 7* and 0 < A < 1 such that s} = As* + (1 — A)s is in CNF¥,
then
®) _ * ®) _ *
B(s) > ®(sy) — A®(s¥) > B(s*) — AP(s*)
1-A 1-A

The first step of (2.17) follows from the convexity of ® and the second from the fact that s* is
a minimum in C N F*. Convexity of F* guarantees that the convex combination s} lies in the
feasible set. This completes the proof of the first theorem.

The proof of the second theorem follows that of the first once we have shown that the
function U7 is convex. Consider a term of ¥”

[ (As1+ (1= N)s2) —t:)* = M (s1) + (1 — )71 (s2) — t]?

= /\[Tz-P(sl) — ti]2 +(1- )\)[TiP(SQ) — ti]2
—A1 =N (s1) — 7 (s2))?
A[T,L-P(Sl) — ti]2 +(1- )\)[TiP(SQ) — ti]Q.

= B(s"). (2.17)

IN

Then, if sy = Asy + (1 — A)sa,
UP(sy) < AP (1) + (1 = N TP (sy), (2.18)

so U7 is a convex function. &

Although Theorem 2.4 provides a powerful result, it still requires ingenuity to find a convex
functional appropriate for the nonlinear inversion problem.

Several methods of stabilizing the nonlinear inversion problem based on the feasibility con-
straints will now be discussed.



3 Nonlinear Reconstruction Algorithms

The introduction of feasibility constraints into the traveltime tomography problem [Berryman,
1989b; 1990; 1991; Lu and Berryman, 1990] offers a unique opportunity to develop a variety of
new reconstruction algorithms. A few of the ones that have been explored will be discussed.

3.1 Linear and Nonlinear Programming

From our point of view, linear tomography maps easily into linear programming, and nonlinear
tomography into nonlinear programming [Strang, 1986; Fiacco and McCormick, 1990].
If u” = (1,...,1) is an m-vector of ones and v = (1,...,1) is an n-vector of ones, then

u'M = vTC, (3.1)

where C is the coverage matriz, i.e., the diagonal matrix whose diagonal elements are the
column sums of the ray-path matrix. We will now define the coverage vector as

c=Cv. (3.2)

3.1.1 Duality

The concept of duality in linear programming leads to some useful ideas both for linear and
nonlinear traveltime tomography. We will first define the following:

DEFINITION 3.1 The primal problem for traveltime tomography is to find the minimum of c’'s
subject to Ms > t and s > 0.

DEFINITION 3.2 The dual problem associated with the primal is to mazimize wlt subject to
wIM < cT and w > 0.

The m-vector w has no physical significance, but plays the role of a nonnegative weight
vector. One of the first consequences of this formulation is that, if we multiply the primal
inequality on the left by w” and the dual inequality on the right by s for feasible s and w, then

cl's > wiMs > w't. (3.3)
We introduce a Lagrangian functional

L(s,w) = cT's+wT(t — Ms) (3.4)

= (T —w'M)s + w't. (3.5)
An admissible (feasible) weight vector is w = u. In fact, this is the only weight vector we
need to consider because it saturates the dual inequality, producing equality in all components
following (3.1) and (3.2). Thus, the dual problem in traveltime tomography is really trivial.

We introduced it here because, despite its apparent triviality, there is one interesting feature.

In problems with nontrivial duality structure, it is possible to obtain useful bounds with
inequalities equivalent to (3.3). Here we are left with only the condition

cTs>ult="T, (3.6)
which we could have derived directly from the feasibility conditions Ms > t for s. Equation

(3.6) is not trivial however, and can play an important role in linear and nonlinear programming
algorithms for traveltime tomography.



3.1.2 Relaxed feasibility constraints

Given the set of observed traveltimes, ¢; for : = 1,...,m, we define two more types of feasibility
set.

DEFINITION 3.3 (RELAXED LOCAL FEASIBILITY SET) The relazed local feasibility set with re-
spect to a set of trial ray paths P = {P1,...,Pn} and observed traveltimes ty,...,ty, is

RP ={s| Y 77(s) = D ti}. (3.7)
=1 =1

DEFINITION 3.4 (RELAXED GLOBAL FEASIBILITY SET) The relazed global feasibility set with
respect to a set of observed traveltimes ty,...,t, 1s

R ={s| Y 7(s) = Dt} (3.8)
=1 =1

THEOREM 3.1 RF is a convez set.
THEOREM 3.2 R* 7s a convex set.

Proof: Both theorems follow from the fact that a (nonnegatively) weighted sum of concave

functionals is concave and the fact that the unit-weighted sums in the definitions of the sets

RP and R* are respectively sums of the concave functions 7 (s) and 77(s). I

THEOREM 3.3 Any point s* that lies simultaneously on the boundary of both F¥ and RP solves
the inversion problem.

THEOREM 3.4 Any point s* that lies simultaneously on the boundary of both F* and R* solves
the tnverston problem.

Proof: The boundary of R” is determined by the single equality constraint

Z P(s)=> "t =T (3.9)

The boundary of F¥ is determined by the set of inequality constraints

tF(s) > t;, forall i=1,...,m, (3.10)

2

with equality holding for at least one of the constraints. Summing (3.10) gives
i P
7 (s) 2T, (3.11)
i=1

where the equality applies if and only if TiP (s) = t; for all i. Therefore, any model s* that
satisfies both (3.9) and (3.10) must solve the inversion problem.

10



The proof of the second theorem follows the proof of the first, with 7*(s) replacing 7(s)
everywhere. |

If we have found the correct ray-path matrix for the inversion problem and the data are
noise free, then we expect that the hyperplane defined by ¢”s = T will intersect the feasibility
boundary exactly at the point or points that solve the inversion problem. If we have not found
the correct ray-path matrix or there is uncorrelated noise in our data t, then there will be a
splitting between the hyperplane of constant total traveltime and the feasible region. The point
(or points) of closest approach between the convex feasible set and the hyperplane may then be
defined as the set of points solving the linear programming problem for fixed M. An iterative
nonlinear programming algorithm may then be constructed wherein the updated M is deter-
mined based on the solution of the last linear programming problem. This procedure converges
if the degree of splitting (Euclidean distance) between the feasible set and the hyperplane of
constant traveltime tends to zero from one iteration to the next.

3.2 'Weighted Least-Squares

A good set of weights to use for weighted least-squares has been shown [Berryman, 1989a] to be
L~! (the inverse of the diagonal ray-length matrix) for the traveltime errors and C (the diag-
onal cell-coverage matrix) for the smoothing or regularization term in a damped least-squares
method. The arguments were based on assumptions of small deviations from a constant back-
ground or on the desire to precondition the ray-path matrix so its eigenvalues were normalized
to the range —1 < A < 1.

The methods used to choose these weights were based on linear tomographyideas. We should
now try to see if these ideas need modification for nonlinear tomography. Let s be the latest

estimate of the slowness model vector in an iterative inversion scheme. Then, if u” = (1,...,1)
is an m-vector of ones and vI = (1,...,1) is an n-vector of ones,

Ms = Tu, (3.12)

M%Tu = Cv = Ds, (3.13)

where C is the coverage matrix (diagonal matrix containing the column sums of M) defined
previously and the two new matrices (T and D) are diagonal matrices whose diagonal elements
are Tj;, the estimated traveltime for the ¢th ray path through the model s,

Ti = ljs;, (3.14)
j=1
and Djj where
Djj = Cjj/si = > Lij/sj- (3.15)
=1

For the sake of argument, let the inverse of the diagonal traveltime matrix T~! be the
weight matrix, and compute the scaled least-squares point. The least-squares functional takes
the form

Y(y) = (t = Mys)T T~ (t — Mys), (3.16)

11



which has its minimum at

_ sTMTT !t (3.17)
7T TMITTMs' '
Equation (3.17) can be rewritten using (3.12) as
ult
= . 3.18
7= (3.18)

The factor v that minimizes the least-squares error is therefore the one that either increases or
decreases the total traveltime of the model s so it equals that of the data. If we assume that the
measurement errors in the traveltime data t are unbiased, then it is very reasonable to choose
models that have this property, because the total traveltime u”t = 7" will tend to have smaller
error (by a factor of m_%) than the individual measurements.

We see that requiring the models s to have the same total traveltime as the data is equivalent
to requiring that the models all lie in the hyperplane defined by

u'Ms=vICs=cTs=T. (3.19)

But this is precisely the same hyperplane (3.6) that arose naturally in the earlier discussion of
linear and nonlinear programming.
To carry this analysis one step further, consider the weighted least-squares problem

$u(s) = (t — Ms)" T~} (t — Ms) + (s — 50)7D(s - s0), (3.20)

where we assume that the starting model sq satisfies ¢”sg = 7. Then, the minimum of (3.20)
occurs for s, satisfying

(MPT™'M + uD)(s, — s0) = MTT ™ (t — Msy). (3.21)
Multiplying (3.21) on the left by s?, we find that
(14 p)cT (s, — s0) = ul (t — Msg) =0, (3.22)

so the solution of the weighted least-squares problem (3.21) also has the property that its
estimated total traveltime for all rays is equal to that of the data

cf's,=clsg=T. (3.23)

Our conclusion is that the particular choice of weighted least-squares problem (3.21) has
the unique property of holding the total estimated traveltime equal to the total of the measured
traveltimes, i.e., it constrains the least-squares solution to lie in the hyperplane ¢s = T.
Assuming that the traveltime data are themselves unbiased (i.e., ul At = 0 where At is the
measurement error vector), the result s is an unbiased estimator of the slowness. Moreover,
this property is maintained for any value of the damping parameter p. This result provides a
connection between the linear programming approach and weighted linear least-squares. We
can now use weighted least-squares and the formula (3.21) in a linear program if we like as a
means of moving around in the hyperplane ¢f's = T.

12



A general analysis of the eigenvalue structure of weighted least-squares shows that

LiCjj

A2 3.24
TuDyy = (3.24)

which must hold true for all values of ¢, j. From (3.15), we have Cj;/D;; = s; so

Liisj _ LiiSmin 9
> >\ 3.25
T, 2T, 2 (3.25)
and from the definition of T};; we have
Tii = Y lijsj > LiiSmin. (3.26)
i=1

We find that this choice of weight matrices constrains the eigenvalues to be bounded above by
unity 1 > A2

If the matrix M is very large, it may be impractical to solve (3.21) by inverting the matrix
(MTT~'M + pD). Instead, we may choose to use a method we call “simple iteration.” For

example, suppose that the kth iteration yields the model vector sﬂc). Then, one choice of
iteration scheme for finding the next iterate is
DsFH) = D) + MTT 1 (t — Msg) — (MTT M + uD)(s{) — s0). (3.27)

It is not hard to show that this iteration scheme converges as long as the damping parameter
is chosen so that 0 < p < 1. Furthermore, if we multiply (3.27) on the left by s, we find that

T (st — s(F)) = (1+ p)eT(so — stP). (3.28)
Tt follows from (3.28) that, if cTsg = T and if s\.) = sg, then
Tsth) =1 (3.29)

for all k. Thus, all the iterates stay in the hyperplane of constant total traveltime. If we choose
not to iterate to convergence, then this desirable feature of the exact solution s, proven in

(k)

(3.23) is still shared by every iterate s, ’ obtained using this scheme.

3.3 Stable Algorithm for Traveltime Tomography

Now we combine several ideas into an algorithm for nonlinear traveltime tomography. We recall
that such algorithms are inherently iterative. In the general iterative algorithm posed earlier,
the questionable step was how to update the current model § to obtain an improved model.
Here we propose a method for choosing this step [Berryman, 1989b; 1990].

Let s(*) be the current model. An algorithm for generating the updated model s(*t1) is as
follows:

1. Set s; to the scaled least-squares model:

S]_ = éLS[S(k)] .
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Figure 2: Snapshot of one iteration in a nonlinear tomography algorithm based on feasibility
constraints.

2. Set s2 to the damped least-squares model with respect to si:
S2 = SL3[sy,pu]-
3. Define the family of models
s(A) = (1 — X)s1 + Asa,
where A € [0, 1].

4. Solve for \*, defined so that s(\*) yields the fewest number of feasibility violations. The
number of feasibility violations is defined as the number of ray paths for which t; >

T*(s(})).
5. If \* is less than some preset threshold (say 0.05 or 0.1), reset it to the threshold value.
6. Set skt =s(21*).

The algorithm is illustrated in Fig. 2. The model labeled s3 is a scaled version of s(A\*),
scaled so that s3 is on the boundary of the feasible region (F*). The iteration sequence stops
when the perimeter of the triangle formed by s, so and s3 drops below a prescribed threshold.

This algorithm has been tested on several problems both with real and with synthetic data
[Berryman, 1989b; 1990] and also compared with a traditional damped least-squares algorithm
(i.e., setting A* = 1 on each iteration). The new algorithm was found to be very stable and
avoids the large oscillations in slowness often found in traditional least-squares methods.
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3.4 Earthquake Sources

When we do not have control over the seismic source location and timing as in the case of
earthquakes, the absolute traveltimes are not accurately known and it is important to under-
stand how relative traveltimes may be used in seismic tomography [Aki, Christoffersson, and
Husebye, 1977].

Rigorous application of the feasibility constraints Ms > t requires knowledge of the ab-
solute traveltimes. When such information is sparse or unavailable, we can use the known
gross geological structure of the region to estimate the mean traveltime. Then we remove the
meaningless mean of the relative data T'/m and add back in the geological mean 7.

The remove-the-mean operator R for an m-dimensional vector space is defined as

1
R=I-u—u’, (3.30)
m

where u” = (1,...,1) is an m-vector of ones. Note that RR = R so R is a projection operator.
Then, we see that R applied to the traveltime vector t gives

T
Rt=t— —u, (3.31)
m

where T/m = uTt/m is the mean traveltime of the data set. Applying R to the ray-path
matrix, we have

T T
RM=M-u—~viC=M-u—c”. (3.32)
m m
The standard procedure for this problem is to solve the equation
M's =t', (3.33)

where M/ = RM and t’ = Rt. To apply the feasibility constraints, we must modify the problem
to

Ms > Rt + 7ol,n. (3.34)

Hidden in this analysis is the fact that the earthquake sources are often far from the region to
be imaged, so the “effective” source locations may be placed at the boundaries of the region to
be imaged.

If we have predetermined the mean for the traveltime data, then it is clearly desirable to
use an inversion procedure that preserves this mean, i.e., choosing As so that

ul’M(s + As)

m

= (3.35)

for all As. Preserving the mean is equivalent to preserving the total traveltime along all ray
paths, so
cT'(s+ As) = mr. (3.36)

In other words, vary s so it stays in the hyperplane determined by (3.36). But we have studied
just this problem using linear programming (3.6) and also using weighted least-squares (3.23).
So we do not need to develop any new inversion methods for this special case.
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3.5 Parallel Computation

Traveltime tomography algorithms tend to be parallelizable in a variety of ways. The use of
the feasibility constraints only increases the degree of parallelism that is achievable by these
algorithms.

First, the forward modeling may be parallelized. If the forward problem is solved using
either shooting or bending methods [Prothero et al., 1988; Nelder and Mead, 1965], then it
is straightforward to parallelize the code because each ray may be computed independently of
the others, and therefore in parallel. If the forward problem is solved using a finite difference
algorithm or a full wave equation method, then whether the algorithm is parallelizable or not
depends on the details of the particular algorithm. For example, Vidale’s method [Vidale, 1988;
1990] is not directly parallelizable, but a recent related method by von Trier and Symes [1991]
is.

Second, the use of the feasibility constraints in inversion algorithms suggests that it might
be advantageous to map the feasibility boundary and then use the information gained to search
for improved agreement between the model and the data. Mapping the feasibility boundary
can be done completely in parallel. Each model s may be treated in isolation, computing the
best ray-path matrix for the model, and then finding the scaled model in the direction of s that
intersects the feasibility boundary. The difficulty with this method is that it requires a figure
of merit (in real problems) to help us determine whether (and how much) one point on the
feasibility boundary is better than another. In ideal circumstances (no data error and infinite
precision in our computers), the figure of merit would be the number of ray paths that achieve
equality while still satisfying all the feasibility constraints

Ms > t. (3.37)

When that number equals the number of ray paths, we have found an exact solution and, as the
number increases towards this maximum value during an iterative procedure, the trial models
s must be converging towards this solution. But in real problems, a figure of merit based on
the number of equalities in (3.37) is not useful.

In a series of numerical experiments [joint work with A. J. DeGroot|, we have found that a
useful figure of merit for real problems is the nonlinear least-squares functional

U(s) =Y wilr(s) — t]*. (3.38)
i=1

If we have found an exact solution s* to the inversion problem, (3.38) will vanish at that point
on the feasibility boundary — the global minimum. As we approach this minimum, (3.38)
is evaluated at an arbitrary point on the feasibility boundary and the values in a cluster of
such points are compared, our analysis of convex programming [Berryman, 1991] shows that
the points with the smallest values of (3.38) form a convex set. The smallest value we find
may not actually vanish, in which case no exact solution to our inversion problem has been
found. This procedure has been implemented on a parallel processing machine, and the results
obtained using this algorithm with the figure of merit (3.38) are comparable to those of the
stable algorithm discussed earlier.
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4 Conclusions

We have shown that Fermat’s principle plays an important role in acoustic wave speed recon-
struction via traveltime inversion. Not only does this variational principle determine the ray
paths once a slowness model is given, but it also determines which slowness models are feasible
and infeasible. In light of these results, the inversion problem may be viewed as a nonlinear
programming problem wherein the traveltimes provide nontrivial physical constraints on the
models. These constraints are much like positivity constraints on the wave speeds, but they
are somewhat more difficult to apply because the boundary of the resulting feasible set is de-
termined only implicitly by Fermat’s principle. The explicit determination requires calculation
of the optimum ray paths for the infinite set of models ys(x) that are equivalent to a specified
model s(x), except for a positive scale factor v > 0. Once an optimum set of ray paths is found,
we have shown that a definite choice of the scale factor v* can always be found for the given
model s(x) such that v*s(x) lies exactly on the feasibility boundary, and such that ys(x) is in-
side the feasible set for all ¥ > ~v*. Thus, in principle, the feasibility boundary could be mapped
and the solution to the inversion problem found by using boundary search techniques. Such
a mapping in the high dimensional model space will generally require parallel computational
methods. Robust alternative reconstruction methods have been found that make use of the
feasibility constraints without explicitly mapping the boundary surface. These methods have
been tried on both synthetic and real data, and the results show that the feasibility constraints
provide a simple means of stabilizing inversion algorithms for problems with high contrasts.

We have extended the work on feasibility analysis of traveltime inversion in several ways.
Relaxed feasibility sets were introduced using the sum of all the measured traveltimes as the
constraint. The relaxed constraints are intimately related to certain weighted least-squares
methods developed here which always produce models that lie on the boundary of the relaxed
feasibility set. It was also shown that, when the time of origin of the sound wave is unknown
or poorly known (as in the case of earthquake sources), relative traveltimes may be used in the
inversion and that doing so amounts to finding models that again lie on the boundary of the
relaxed feasibility set. Finally, parallel computing has been employed to map the feasibility
boundary partially for some synthetic examples. It has been found that a figure of merit is
required for such boundary search techniques for practical reasons (finite precision), and that
a nonlinear least-squares functional is one satisfactory choice of this figure of merit.
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