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S U M M A R Y
Differential effective medium (DEM) theory is applied to the problem of estimating the physical
properties of elastic media with penny-shaped cracks, filled either with gas or liquid. These
cracks are assumed to be randomly oriented. It is known that such a model captures many
of the essential physical features of fluid-saturated or partially saturated rocks. By making an
assumption that the changes in certain factors depending only on Poisson’s ratio do not strongly
affect the results, it is possible to decouple the equations for bulk (K ) and shear (G) modulus,
and then integrate them analytically. The validity of this assumption is then tested by integrating
the full DEM equations numerically. The analytical and numerical curves for both K and G
are in very good agreement over the whole porosity range. Justification of the Poisson ratio
approximation is also provided directly by the theory, which shows that as porosity tends to
unity, Poisson’s ratio tends towards small positive values for dry, cracked porous media and tends
to one-half for liquid-saturated samples. A rigorous stable fixed-point is obtained for Poisson’s
ratio, νc, of dry porous media, where the location of this fixed-point depends only on the shape
of the voids being added. Fixed-points occur at νc = 1

5 for spheres and νc � πα/18 for cracks,
where α is the aspect ratio of penny-shaped cracks. These theoretical results for the elastic
constants are then compared and contrasted with results predicted by Gassmann’s equations and
with results of Mavko and Jizba, for both granite-like and sandstone-like examples. Gassmann’s
equations do not predict the observed liquid dependence of the shear modulus G at all. Mavko
and Jizba predict the observed dependence of the shear modulus on the liquid bulk modulus for
a small crack porosity and a very small aspect ratio, but fail to predict the observed behaviour at
higher porosities. In contrast, the analytical approximations derived here give very satisfactory
agreement in all cases for both K and G. For practical applications of this work, it appears that
the ratio of compliance differences is approximately independent of the crack porosity for a
given rock, but the constant is usually greater than 4

15 for granites, while general statements
concerning sandstones are more difficult to make.

Key words: cracks, differential effective medium theory, granite, liquid saturation, rock
mechanics, sandstone.

1 I N T R O D U C T I O N

The elastic moduli of rocks are dependent on: the mineral prop-
erties and distribution; porosity type, magnitude and distribution;
and the state of saturation. Two major theoretical approaches have
been developed to address the problem of estimating elastic moduli
from knowledge of the rock constituents and the microstructure:
(1) effective medium theory, which assumes separate pores and
cracks that may or may not be connected and (2) poroelastic theory,
which assumes that significant portions of the pores and cracks are
connected. Effective medium theories, which include the classical
bounds of Voigt (1928) and Reuss (1929) and Hashin & Shtrikman

(1961, 1962) as well as estimates obtained from self-consistent the-
ories (e.g. Budiansky 1965; Hill 1965; Berryman 1980a,b), require
parameters characterizing the pore shape and distribution. Alter-
natively, poroelastic constitutive equations (Biot 1941; Gassmann
1951) are phenomenological and do not require characterization of
matrix and pore space geometry. However, they contain the funda-
mental result, sometimes in disagreement with experiment (Coyner
1984; Coyner & Cheng 1985; Mavko & Jizba 1991; Berryman &
Wang 2001; Berryman et al. 2002), that the shear modulus is always
independent of the saturation state (Berryman 1999). Although the
lack of a shear dependence on the saturating fluid bulk modulus
can be correct for special but real microgeometries (such as purely
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spherical pores) and very low modulation frequencies, this predicted
lack of dependence is often contradicted by high-frequency experi-
ments (above ∼1 kHz), and especially so in rocks with crack poros-
ity. As a result, Biot’s theory has been modified in various ways.
For example, Mavko & Jizba (1991) partition porosity into ‘soft’
and ‘stiff ’ porosity fractions to account for the change of both bulk
modulus and shear modulus with fluid saturation.

A large literature has developed to address the many issues related
to cracked elastic and poroelastic media, in the dry, saturated, and
partially saturated cases. Recent comprehensive reviews of the liter-
ature on the analysis of cracked elastic materials include Kachanov
(1992), Nemat-Nasser et al. (1993) and Kushch & Sangani (2000),
as well as the textbook by Nemat-Nasser & Hori (1993). Some of
the notable work on dry cracked solids using techniques similar
to those that will be employed here includes Zimmerman (1985),
Laws & Dvorak (1987), Hashin (1988) and Sayers & Kachanov
(1991). Pertinent prior work on both dry and saturated cracked
rocks includes Walsh (1969), Kuster & Toksöz (1974), Budiansky &
O’Connell (1976), O’Connell & Budiansky (1974, 1977), Walsh &
Grosenbaugh (1979), Hudson (1981, 1986, 1990), Henyey
& Pomphrey (1982), Mavko & Jizba (1991), Berryman (1992),
Hudson et al. (1996) and Pointer et al. (2000). Among the most
popular effective medium approaches are the two implicit schemes:
(1) the self-consistent (Budiansky 1965; Hill 1965; Korringa et al.
1979; Berryman 1980a,b) and (2) the differential effective medium
(Bruggeman 1935; Cleary et al. 1980; Norris 1985; Avellaneda
1987). Other than their relative ease of computation, the main rea-
son for their popularity is that they are the only ones known to
be realizable (i.e. they correspond to an actual microgeometry),
and therefore have the property that they can never violate rigorous
bounds—unlike some of the popular explicit schemes such as that
of Kuster and Toksöz, which is known to violate bounds in some
cases. Berryman & Berge (1996) summarize the status of the most
commonly used explicit schemes, and conclude that while they can
be used, they also must be carefully restricted to sufficiently low
volume fractions of inclusions. Of the two implicit and realizable
methods, the differential effective medium theory has some unique
advantages for analysis that have not been stressed previously, and
that we will develop more fully here.

The purpose of this paper is to obtain approximate analytical re-
sults for the elastic moduli of dry and fully saturated cracked rock
based on differential effective medium (DEM) theory (Bruggeman
1935; Cleary et al. 1980; Walsh 1980; Norris 1985; Avellaneda
1987). Penny-shaped cracks have been used extensively to model
cracked materials (Walsh 1965, 1969; Willis 1980; Kachanov 1992;
Smyshlyaev et al. 1993), but the penny-shaped crack model is it-
self an approximation to Eshelby’s results (Eshelby 1957; Wu 1966;
Walsh 1969) for oblate spheroids having a small aspect ratio. In or-
der to obtain some analytical formulae that are then relatively easy to
analyse, a further simplifying assumption is made here that certain
variations in Poisson’s ratio with the change of crack porosity can
be neglected to first order. The consequences of this new approx-
imation are checked by comparison with numerical computations
for the fully coupled equations of DEM. The agreement between
the analytical approximation and the full DEM for cracked rock is
found to be quite good over the whole range of computed porosities.
Justification for the approximation is provided in part by an analysis
of the actual variation of Poisson’s ratio, and some further technical
justifications are also provided in two of the three appendices.

For simplicity, the main text of the paper treats materials having
only crack porosity, and we consider these models to be granite-like
(by which term we mean to imply only the presence of a fairly uni-

form host material with cracks and do not imply anything regarding
other aspects of diagenesis) idealizations of rock. A third appendix
shows how the results of the main text change if the model is treated
instead as a sandstone-like material (again implying only that the
composite certainly has some large aspect ratio pores present as well
as the small ones that most concern us here, with no other intended
implications of the terminology) having finite stiff, nearly spherical
porosity in addition to the soft, crack porosity.

2 D I F F E R E N T I A L E F F E C T I V E
M E D I U M T H E O R Y

Differential effective medium theory (Bruggeman 1935; Cleary
et al. 1980; Walsh 1980; Norris 1985; Avellaneda 1987) takes the
point of view that a composite material may be constructed by
making infinitesimal changes in an already existing composite. As
mentioned in the introduction, there are only two effective medium
schemes known at present that are realizable, i.e. that have a def-
inite microgeometry associated with the modelling scheme. The
differential scheme is one of these (Cleary et al. 1980; Norris 1985;
Avellaneda 1987)—and one version of the self-consistent approach
(Korringa et al. 1979; Berryman 1980a,b; Milton 1985) is the other.
This fact, together with the associated analytical capabilities (in-
cluding ease of computation and flexibility of application), provide
a strong motivation to study the predictions of both of these schemes
and the differential scheme in particular. We can have confidence
that the results will always satisfy physical and mathematical con-
straints, such as the Hashin–Shtrikman bounds (Hashin & Shtrikman
1961, 1962).

When the inclusions are sufficiently sparse that they do not form
a single connected network throughout the composite, it is appro-
priate to use the DEM to model their elastic behaviour (Berge et al.
1993). We assume that the host material has moduli Km and Gm .
The inclusion material has moduli Ki and Gi . Then, the effective
bulk and shear moduli of the composite are parametrized by K ∗(y)
and G∗(y) when the volume fraction of the inclusion phase is y. The
equations governing the changes in these constants are then well
known to be

(1 − y)
d K ∗(y)

dy
= [

Ki − K ∗(y)
]
P∗i (1)

and

(1 − y)
dG∗(y)

dy
= [

Gi − G∗(y)
]
Q∗i , (2)

where the scalar factors P∗i and Q∗i , will be explained in the fol-
lowing paragraph, y is porosity, which equals the inclusion volume
fraction here, and the subscript i again denotes the inclusion phase.
We assume that the reader is somewhat familiar with this approach,
and will therefore not dwell on its derivation, which is easily found
in many places including, for example, Berryman (1992). These
equations are typically integrated starting from porosity y = 0 with
values K ∗(0) = Km and G∗(0) = Gm , which are assumed here to be
the mineral moduli values for the single homogeneous solid con-
stituent. Integration then proceeds from y = 0 to the desired highest
value y = φ, or possibly over the whole range to y = 1. When in-
tegrating in this way, we imagine the result is simulating cracks be-
ing introduced slowly into a granite-like solid. The same procedure
can be used for a sandstone-like material, assuming this medium
has a starting porosity y = φ0 with K ∗(φ0) = Ks and G∗(φ0) = Gs .
Integration then proceeds from y = φ0 to 1. This introduction of
crack (or soft) porosity into a material containing spherical (or stiff)
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porosity is conceptually equivalent to the porosity distribution model
of Mavko & Jizba (1991). For simplicity, we will treat the granite-
like case here, but the changes needed for other applications are not
difficult to implement, and are treated in Appendix A.

The factors P∗i and Q∗i appearing in (1) and (2) are the so-called
polarization factors for bulk and shear modulus (Eshelby 1957; Wu
1966). These depend, in general, on the bulk and shear moduli of
both the inclusion, the host medium (assumed to be the existing
composite medium ∗ in DEM), and on the shapes of the inclusions.
The polarization factors usually have been computed from Eshelby’s
well-known results (Eshelby 1957) for ellipsoids, and Wu’s work
(Wu 1966) on identifying the isotropically averaged tensor based
on Eshelby’s formulae. These results can be found in many places
including Berryman (1980b, 1995) and Mavko et al. (1998).

The special case of most interest to us here is that of penny-shaped
cracks, where

P∗i = K ∗ + 4
3 Gi

Ki + 4
3 Gi + παγ ∗ (3)

and

Q∗i = 1

5

[
1 + 8G∗

4Gi + πα(G∗ + 2γ ∗)
+ 2

Ki + 2
3 (Gi + G∗)

Ki + 4
3 Gi + παγ ∗

]
,

(4)

where α (0 < α < 1) is the crack (oblate spheroidal) aspect ratio,

γ ∗ ≡ G∗[(3K ∗ + G∗)/(3K ∗ + 4G∗)], (5)

and where the superscript ∗ identifies constants of the matrix ma-
terial when the inclusion volume fraction is y. This formula is a
special limit of Eshelby’s results not included in Wu’s paper, but ap-
parently first obtained by Walsh (1969). Walsh’s derivation assumes
Gi/Gm 
 1 and allows Ki/Km 
 1, with these approximations be-
ing made before any assumptions concerning the smallness of the
aspect ratio α. By taking these approximations in the opposite order,
i.e. letting the aspect ratio be small first and then making assump-
tions concerning smallness of the inclusion constants, we would
instead obtain the commonly used approximation for discs. How-
ever, this latter approximation is actually quite inappropriate for the
bulk modulus when the inclusion phase is a gas such as air (since
then the ratio Ki/Km 
 1) or for the shear modulus when the inclu-
sion phase is any fluid (since then Gi ≡ 0), as the formulae become
singular in these limits. This is why the penny-shaped crack model
is commonly used instead for cracked rocks.

In general the DEM eqs (1) and (2) are coupled, as both equations
depend on both the bulk and shear modulus of the composite. This
coupling is not a serious problem for numerical integration. Later
in the paper, we will show results obtained from integrating the
DEM equations numerically. However, the coupling is a problem in
some cases if we want analytical results to aid our intuition. We will
now present several analytical results for first the bulk and then the
shear moduli, and then we will compare these results with the fully
integrated DEM results later on.

2.1 Some analytical results for K∗

We now assume that the inclusion phase is a fluid so that Ki = K f

and Gi = G f = 0. The fluid can be either a liquid or a gas. We
consider three cases: (1) liquid inclusions, K f � παγm ; (2) gas
inclusions: K f 
 παγm ; and (3) general inclusions, K f � παγm .
Case 1 corresponds to liquid inclusions, case 2 to gas inclusions and
case 3 to a circumstance in which we do not want to limit ourselves

to the assumptions of either of the previous two cases, or in which
the crack aspect ratio is tuned to the fluid modulus.

2.1.1 Liquid inclusions: K f � παγm

In this limit, it is somewhat more convenient to rewrite the DEM
equations in terms of compliances, rather than stiffnesses, so we
have

(1 − y)
d

dy

(
1

K ∗(y)

)
= [

K ∗(y) − K f

]
P∗ f

/
(K ∗)2

=
(

1

K f
− 1

K ∗

)
. (6)

The only terms that couple the equations for bulk to shear modulus
have been readily neglected in this case, since P∗i � K ∗/K f . Thus,
we expect little if any deviation between the analytical results and
the full DEM for the liquid-saturated case. We are treating here the
granite-like case such that the limit of zero inclusion volume fraction
corresponds to K ∗(0) = Km , i.e. the bulk modulus of the pure solid.
Then, integrating eq. (6) from y = 0 to φ (φ is the resulting porosity
in the composite medium) gives directly(

1

K f
− 1

K ∗

)
=

(
1

K f
− 1

Km

)
(1 − φ), (7)

which may be rearranged as(
1

K ∗ − 1

Km

)
=

(
1

K f
− 1

Km

)
φ. (8)

Eq. (8) can also be obtained as the small-φ limit of Gassmann’s
equation when the saturating fluid is a liquid. Gassmann’s result for
the bulk modulus (Gassmann 1951) is expressible as

1

K ∗ = 1 − θ B

Kdry
, (9)

where θ = 1− Kdry/Km is the Biot–Willis parameter (Biot & Willis
1957) and B is Skempton’s coefficient (Skempton 1954)

B = θ/Kdry

θ/Kdry + φ(1/K f − 1/Km)
. (10)

Expanding eq. (9) for small φ gives eq. (8) to first order in φ. Note,
however, that Gassmann’s full eq. (9) has the further advantage that
it is valid for all values of K f (right down to zero), not just for values
in the liquid range.

Eq. (8) is also the result of Mavko & Jizba (1991) for a granite-
like material under a high confining pressure so that the crack-like
pores are closed. Their result is stated for a sandstone-like material
including both crack-like pores and other pores. However, since we
have not considered the presence of any other pores except the crack-
like pores in this argument, the correct comparison material is just
the mineral matrix.

Appendix A shows how to obtain the result of Mavko & Jizba
(1991) from a modified DEM scheme.

2.1.2 Gas inclusions: K f 
 παγm

For this limit, the stiffness form and the compliance form of the DEM
equations are of equal difficulty to integrate, and a further compli-
cation arises owing to the presence of shear modulus dependence in
the term γm in P. We are going to make an approximation (only for
analytical calculations) that γ ∗ � K ∗[3(1−2νm)/4(1−ν2

m)], so the
effect of variations in Poisson’s ratio away from νm for the matrix
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material is assumed not to affect the results significantly (i.e. to first
order) over the range of integration. Without this assumption, the
DEM equations for bulk and shear moduli are coupled and must be
solved simultaneously (and therefore numerically in most cases).

With this approximation, the equation to be integrated then
becomes

(1 − y)
d K ∗(y)

dy
= 1

b

[
K f − K ∗(y)

]
, (11)

where

b = 3πα(1 − 2νm)

4
(
1 − ν2

m

) . (12)

(Note that b � O(α) since νm will be in the range 0.05–0.4 for most
minerals.) The result of the integration is

K ∗ − K f = (Km − K f ) (1 − φ)1/b. (13)

This result seems to show a very strong dependence of K ∗ on the
aspect ratio and Poisson’s ratio through the product α(1−2ν). How-
ever, we show in Appendix B that there exists a special (or critical)
value of Poisson’s ratio νc that serves as a point of attraction during
the integration so that ν → νc � πα/18. This result implies that
only the dependence on α is significant for gas inclusions.

It seems that this decoupling approximation might have a large
effect for a dry system, but an exact decoupling can be achieved in
this case (see Appendix B). The result shows that the only significant
approximation we have made in eq. (12) is one of order 2(νc − νm)
and this term is of the order of 20 per cent of b, and usually much
less, for all the cases considered here.

2.1.3 General inclusions: K f and παγm arbitrary

Making the same approximations as in the previous case for γm , but
making no assumption concerning the relative size of K f and the
aspect ratio, we find that DEM gives(

K ∗ − K f

Km − K f

)(
Km

K ∗

)1/(1+b)

= (1 − φ)1/(1+b), (14)

which can be rewritten in the form(
1

K f
− 1

K ∗

)(
K ∗

Km

)b/(1+b)

=
(

1

K f
− 1

Km

)
(1 − φ)1/(1+b). (15)

It is now easy to check that eq. (15) reduces to eq. (7) when b → 0
and that eq. (15) reduces to eq. (13) when K f → 0.

2.2 Analytical results for G∗

We now consider the same three cases for application of DEM to
estimating the shear modulus G∗.

2.2.1 Liquid inclusions: K f � παγm

In this limit, the polarization factor for shear is given by

Q∗ f � 1

c
+ 4G∗

15K f
, (16)

where

1

c
≡ 1

5

[
3 + 8(1 − νm)

πα(2 − νm)

]
. (17)

In this case, we have approximated γ ∗ � G∗/2(1 − νm) in order to
decouple the G∗ equation from that for the bulk modulus K ∗. Note

that as y → 1, we anticipate ν∗ → 0.5, so for ν∗ in the usual range
from 0 to 0.5 the factor (1 − ν) varies by at most a factor of 2.
Therefore, the condition on K f is not affected. The parameter c
depends on a factor (1 − ν)/(2 − ν), which changes at most by a
factor of 3

2 . Thus, we expect some small deviations between the
analytical formula and the full DEM for G∗ in the liquid-saturated
case.

Also note that we could argue, in this limit, that the first term
on the right-hand side of eq. (16) is dominant (since c ∼ α 
 1),
and therefore the second term should be neglected. However, for
purposes of comparison with Mavko & Jizba (1991), it will prove
helpful to retain the second term.

Integrating the DEM equation, we have

1

G∗ + 4c

15K f
=

(
1

Gm
+ 4c

15K f

)
(1 − φ)−1/c. (18)

In the limit of small c (i.e. small α) and φ → 0, we have

1

G∗ − 1

Gm
=

(
4

15K f
+ 1

cGm

)
φ + · · · , (19)

which should be contrasted with the result of Mavko & Jizba (1991)
for the same problem

1

G∗ − 1

Gdry
= 4

15

(
1

K ∗ − 1

Kdry

)
. (20)

Because we need some other results to permit the analysis to pro-
ceed, a thorough comparison of the present results with the Mavko
and Jizba formula will be postponed to Section 4 on the ratio of
compliance differences.

2.2.2 Gas inclusions: K f 
 παγm

In this second limit, the equation for G∗ is especially simple, since

Q∗ f = 1

5

[
1 + 8(1 − νm) (5 − νm)

3πα(2 − νm)

]
≡ 1

d
(21)

is a constant (under our constant Poisson’s ratio approximation).
Again note that d ∼ O(α). The DEM equation is then integrated to
obtain

G∗ = Gm(1 − φ)1/d , (22)

which should be compared with eq. (13). Within the analytical ap-
proximation, we will use eq. (22) as our defining equation for Gdry,
and note that we can then replace the volume fraction factor 1 − φ

by

(1 − φ) =
(

Gdry

Gm

)d

(23)

whenever it is convenient to do so.
Our decoupling approximation for the shear modulus in this case

turns out to be somewhat better than the corresponding one for
the bulk modulus. The result in Appendix B shows that the only
significant approximation we have made in eq. (21) is one of order
0.7(νc −νm) and this term is of the order of 7 per cent of d or less for
all the cases considered here. The relative error is therefore about
one-third of that made in the case of the bulk modulus.

2.2.3 General inclusions: K f and παγm arbitrary

In this more general case, we have

Q∗ f = 1

c
+ 2G∗(2 − 3g)

15(K f + gG∗)
, (24)
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where

g ≡ πα

2(1 − νm)
. (25)

Again, the DEM equations can be easily integrated and yield

(
G∗/Gm

) (
1/G∗ + cg/d K f

1/Gm + cg/d K f

)1−c/d

= (1 − φ)1/d , (26)

where c is defined in eq. (17) and d is defined in eq. (21). Then, it is
easy to check that the two previous cases are obtained when α → 0
and K f → 0, respectively.

3 T H E O R E T I C A L E X A M P L E S

We now consider some applications of these formulae. We take
quartz as the host medium, having Km = 37.0 GPa and Gm =
44.0 GPa. Poisson’s ratio is then found to be νm = 0.074.

For liquid saturation, the shear modulus goes to zero as the crack
volume fraction increases, while the bulk modulus approaches the
bulk modulus of the saturating liquid, which we take as water here
(K f = 2.2 GPa). This means that the effective value of Poisson’s ratio
increases towards ν∗ = 0.5 as the crack volume fraction increases,
and thus the approximation that ν∗ is constant clearly does not hold
for this case. We therefore expect that the greatest deviations of
the analytical approximation should occur for the case of liquid
saturation.

In contrast, for the dry case, both the shear modulus and the bulk
modulus tend towards zero as the crack volume fraction increases.
Thus, since the trends for both moduli are similar, the approximation
of constant Poisson ratio might hold in some cases, depending on
whether bulk and shear moduli go to zero at similar or very different
rates with increasing crack volume fraction.

Hadley (1976) found that Westerly granite has crack aspect ratios
ranging from about 0.0001 almost up to 1.0, with a mode around
α = 0.001. We will therefore restrict our choice of examples to a
subset of this range, picking discrete values of α = 0.1, 0.01, 0.001
and, when we want to show overall trends, we consider 0.001 ≤ α ≤
1 for oblate spheroids.

We show three cases in Figs 1–6: (1) α = 0.1 for Figs 1 and 2.
(2) α = 0.01 for Figs 3 and 4. (3) α = 0.001 for Figs 5 and 6. The first
two cases are easily integrated for DEM. We use two Runge–Kutta
schemes from Hildebrand (1956): eqs (6.13.15) and (6.14.5). When
these two schemes give similar results to graphical accuracy, we can
be confident that the step size used is small enough. If they differ or
if either of them does not converge over the range of crack volume
fractions of interest, then it is necessary to choose a smaller step size
for integration steps. We found that a step size of �y = 0.01 was
sufficiently small for both α = 0.1 and 0.01, while it was necessary to
decrease this step size to �y = 0.001 for the third case, α = 0.001.
(Still smaller steps were used in some of the calculations to be
described later.)

The results show that our expectations for the agreement between
the analytical and numerical results are in concert with the results
actually obtained in all cases. The analytical approximation gives
a remarkably good estimate of the numerical results in nearly all
cases, with the largest deviations occurring—as anticipated—for
the intermediate values of crack volume fraction in the cases of
liquid saturation for the bulk modulus estimates. We consider that
the results of Figs 1–6 are in sufficiently good agreement that they
provide cross-validation of both the numerical and the analytical
methods.

Figure 1. The bulk modulus for dry and liquid-saturated cracked porous
media with α = 0.1. A full DEM calculation is shown as a solid line for
the saturated case and as a dot-dashed line for the dry case. The analytical
approximations in the text are displayed as a dashed line for both dry and
saturated cases. Agreement between the full DEM calculations and the an-
alytical approximation is excellent in both cases. Gassmann’s prediction is
shown by the dotted line.

Figure 2. The shear modulus for dry and liquid-saturated cracked porous
media with α = 0.1. A full DEM calculation is shown as a solid line for
the saturated case and as a dot-dashed line for the dry case. The analytical
approximations in the text are displayed as a dashed line for both dry and
saturated cases. Agreement between full DEM calculations and the analytical
approximation is again excellent in both cases. The prediction of Mavko &
Jizba (1991) is shown by the dotted line. Gassmann (1951) predicts Gdry

and Gsat are the same at all porosities for very low frequency responses.

For the saturated case, we anticipated little if any deviation for
the bulk modulus between the analytical results and the full DEM,
as is observed for α = 0.1 and 0.01. Larger deviations are found
for α = 0.001. We also observed the anticipated small deviations
for the shear modulus between the analytical formula and the full
DEM.
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Figure 3. Same as in Fig. 1 for α = 0.01.

Figure 4. Same as in Fig. 2 for α = 0.01. Note that the Mavko–Jizba agree-
ment is poor except at low porosities (<∼2 per cent).

Note that Gassmann’s predictions for bulk modulus are in very
good agreement with the numerical DEM results for saturated cracks
and α = 0.001. However, the predictions of Gassmann for shear
modulus (i.e. that the shear modulus does not depend on the fluid
bulk modulus) are clearly violated in all cases.

For the dry case, we anticipated that the analytical shear modulus
formula would be a somewhat better approximation of the full DEM
than that for the bulk modulus. Both approximations were expected
to be quite good. These results are also observed in the figures.

3.1 On improvements

The analytical results obtained here for the dry case could be im-
proved somewhat in several different ways. Instead of replacing ν∗

by νm , we could have replaced it by the fixed-point value νc ob-
tained in Appendix B. Since the fixed-point is an attractor and the
values rapidly approach νc for small but finite volume fractions, this
approximation would guarantee an improved approximation over

Figure 5. Same as in Fig. 1 for α = 0.001. The results of Gassmann (1951)
are in very good agreement with DEM for this case.

Figure 6. Same as in Fig. 2 for α = 0.001. Again, note that the Mavko–
Jizba prediction is in poor agreement except at very low porosities (<∼0.2
per cent).

most of the range of crack volume fraction. However, it will make
the approximation a little worse in the very small-volume-fraction
region. It has been and will continue to be a significant advantage for
our analysis to have formulae valid in the small-φ limit, so we have
chosen not to do this here. Alternatively, instead of choosing either
of the extreme values of ν∗, we could use their mean, their harmonic
mean or their geometric mean, etc., with similar benefits and draw-
backs. Or, we could make direct use of the results from Appendix
B for the decoupled equation for Poisson’s ratio. This approach will
improve the results over the whole range of volume fractions, but
will complicate the formulae considerably. We want to emphasize,
however, that our goal here has not been to achieve high accuracy in
the analytical approximation, but rather to gain an insight into what
the equations were computing and why. Having accomplished this
even with the simplest approximation ν∗ � νm , we do not think it
fruitful to dwell on this issue and we will therefore leave this part
of the subject for now. For the interested reader, some additional
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technical justifications of the analytical approximation are provided
in Appendix C.

Next, we want to make more detailed comparisons between these
results and those of Gassmann (1951) and of Mavko & Jizba (1991)
in the remainder of the paper.

4 R A T I O O F C O M P L I A N C E
D I F F E R E N C E S

We have already seen that there are several advantages of the differ-
ential scheme presented here for the purposes of analysis. Another
advantage will soon become apparent when we analyse the ratio of
the compliance differences

R(y) = 1/Gdry − 1/G∗

1/Kdry − 1/K ∗ . (27)

This ratio is of both theoretical and practical interest. It is of prac-
tical interest because it is often easier to measure bulk moduli, and
it would therefore be possible to estimate the shear behaviour from
the bulk behaviour if the ratio R were known to be either a universal
constant, or a predictable parameter. Mavko & Jizba (1991) show
that this ratio is given by R(0) � 4

15 when the differences between
the dry and the starred quantities are caused by a small amount of
soft (crack-like) porosity that is liquid filled for the starred moduli.
The derivation of this ratio makes it clear that the value of 4

15 is ac-
tually an upper bound on R(0), i.e. a value that cannot be exceeded
for such systems, but also a value that clearly is not achieved for
many systems lacking such soft porosity. In particular, it was already
known by Mavko & Jizba (1991) that R(0) � 0 when the micro-
geometry of all the porosity is spherical. The crack-like porosity in
Mavko and Jizba’s model has finite compressibility normal to its
plane and is incompressible in the plane of the crack. Thus, their
soft porosity can be thought of as cracks for which the aspect ratios
approach zero. Goertz & Knight (1998) have also made a parameter
study, showing that a related ratio (RGm/Km) is generally less than
4
15 for oblate spheroids and it tends to zero as the aspect ratios of
the oblate spheroids approach unity. It would be helpful to see this
behaviour directly in the equations.

The purpose of this section is twofold: (1) to derive the Mavko–
Jizba result for R(0) analytically and (2) to show, furthermore, that
something definite can be said concerning how R(y) changes for
small but finite values of y > 0. The second goal is achieved by
considering the Taylor series expansion R(y) � R(0)+ y dR(0)/dy,
for small values of y.

4.1 Derivation of R(0)

Each of the four material constants appearing in eq. (27) can be
computed/estimated using the DEM. However, R is normally defined
only in the limit of very small values of soft porosity, in which case
both the numerator and the denominator tend to zero. This type of
limit is well known in elementary calculus, and the result is given
by L’Hôpital’s rule:

R(0) = d
(
1/Gdry − 1/G∗)/dy

d
(
1/Kdry − 1/K ∗)/dy

. (28)

From this form of R, it is now quite easy to relate the ratio to P and
Q discussed earlier. In particular, we find that

(1 − y)
d

dy

(
1/Gdry − 1/G∗) = 2K f

15Gm

2Gm − 3παγm

παγm(K f + παγm)
(29)

and

(1 − y)
d

dy

(
1/Kdry − 1/K ∗)

= K f

παγm(K f + παγm)

[
1 + 3πα(1 − 2νm)

/
4
(
1 − ν2

m

)]
, (30)

and therefore that

R = 4

15

[
1 − 3πα

4(1 − νm)

][
1 + 3πα(1 − 2νm)

/
4
(
1 − ν2

m

)]−1
.

(31)

(For sandstones, we could instead evaluate eq. (31) at y = φ0 and
ν(φ0) = νs . It is only the soft, crack-like porosity that needs to be very
small for eq. (31) to be applicable.) Eq. (31) is an exact expression for
the ratios of these two slopes when the calculation starts at y = 0 and
ν(0) = νm . It depends only on the aspect ratio α and Poisson’s ratio
νm of the mineral. It shows a sublinear decrease of R with increasing
α, and the value of R reaches zero when αc = 4(1−νm)/3π . Because
the formulae used for the penny-shaped crack model are valid only
for very low aspect ratios, this latter behaviour should not be taken
literally. We do expect R to decrease as the aspect ratio increases,
and the trend should be to zero, but this null value should only
be achieved at α = 1. This is the type of behaviour observed, for
example, by Goertz & Knight (1998). We will check the quantitative
predictions by making a numerical study here for oblate spheroids
as a function of the aspect ratio. The results will be similar to those
obtained by Goertz & Knight (1998), but not identical for several
reasons: (1) Goertz and Knight plot RGm/Km (instead of R) for the
Mori–Tanaka method (Benveniste 1987); (2) the R values presented
here are for an infinitesimal change in soft porosity; and (3) the
present calculation is (therefore) actually not dependent on the type
of effective medium approximation used, only on the Eshelby (1957)
and Wu (1966) polarization factors P and Q.

The appropriate expressions for P and Q for oblate spheroids can
be found in Berryman (1980b). We repeat the analysis given above in
eqs (28)–(31) step by step for oblate spheroids. The results are shown
in Fig. 7, together with the results obtained using the penny-shaped

Figure 7. The small porosity limit R(0) of the ratio of compliance differ-
ences as a function of the aspect ratio for oblate spheroids and for the penny-
shaped crack approximation to oblate spheroids. Note that the asymptotic
value for small α is R(0) = 4

15 in both cases, in agreement with Mavko &
Jizba (1991).
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cracks as presented already in eq. (31). We see that the results agree
completely for α smaller than about 0.001, and are in qualitative
agreement over most of the rest of the range. As already discussed,
the penny-shaped crack model is a limiting approximation for the
oblate spheroids, and deviations from the curve for oblate spheroids
do not have physical significance; they merely indicate the degree of
error inherent in this choice of approximation scheme. The results
for oblate spheroids should be considered rigorous.

4.2 Derivation of dR/dy|y=0

The result so far is quite limited because it tells us about the value of
the ratio in eq. (27) only for extremely small values of soft porosity.
This result would be of more practical value to us if we also knew
something concerning the general behaviour of R(y) for finite values
of y. The desired information is contained in the first derivative
dR/dy|y=0, which can also be computed analytically, as we now
show.

The correct expression for dR/dy at y = 0 must be obtained care-
fully, since the numerator and denominator are again both vanishing
at the same rate with y → 0. Then, by using either L’Hôpital’s rule
as before, or equivalently by taking a Taylor series expansion of the
numerator and denominator around y = 0, we find that

d R

dy
= d2

(
1/Gdry − 1/G∗)/dy2 − R(0)d2

(
1/Kdry − 1/K ∗)/dy2

2d
(
1/Kdry − 1/K ∗)/dy

,

(32)

at y = 0.
A complete calculation of all the terms in the numerator of eq. (32)

is not necessary if we choose to restrict our attention to the leading-
order terms. It is clear that d R/dy ∼ O(1/α), and—since the de-
nominator is itself of O(1/α)—we need to track only those terms
in the numerator that are of O(1/α2).

We find

d2

dy2

(
1

Kdry
− 1

K ∗

)
= d

dy

{
1

1 − y

[
1

παγdry

K f

K f + παγ ∗

+ γ ∗ − γdry

γdry

(
K f + παγ ∗)

]}
+ O(1/α) (33)

and

d2

dy2

(
1

Gdry
− 1

G∗

)
= 4

15

d

dy

{
1

1 − y

[
1

παγdry

K f

K f + παγ ∗

+ γ ∗ − γdry

γdry(K f + παγ ∗)

]}
+ 8

5πα

× d

dy

{
1

1 − y

[
1 − νdry

Gdry(2 − νdry)

− 1 − ν∗

G∗(2 − ν∗)

]}
+ O(1/α). (34)

Because of the difference in the numerator of eq. (32) and the fact
that to the order (in powers of α) at which we are now working
R(0) = 4

15 , we find that the expression for the second derivative of
the bulk compliance difference in eq. (33) exactly cancels the first
group of terms in eq. (31). So it is only the second group of terms
in eq. (34) that survives (to this order) in the numerator of d R/dy.

The computation has therefore been reduced to finding a conve-
nient expression for

d

dy

{
1

1 − y

[
1 − νdry

Gdry(2 − νdry)
− 1 − ν∗

G∗(2 − ν∗)

]}

= 1 − νm

2 − νm

d

dy

(
1

Gdry
− 1

G∗

)

− 1

Gm(2 − νm)2

d

dy
(νdry − ν∗) + O(1), (35)

valid at y = 0. To simplify matters further, we note that (in this
limit) because of eq. (28) we can replace the derivative of the shear
compliance difference by that of the bulk compliance difference
times 4

15 , and it is most convenient to do so because of the same
factor in the denominator of eq. (32). With this goal in mind, the
only remaining calculation we need now is an expression for d(νdry−
ν∗)/dy in terms of derivatives of compliance differences. It follows
from formulae such as eq. (B1) in Appendix B that

d

dy

(
νdry − ν∗) = − (1 + νm) (1 − 2νm)Km

3

×
[

1 − 2(1 − 2νm)

5(1 + νm)

]
d

dy

(
1/Kdry − 1/K ∗)

= − (1 − 2νm) (1 + 3νm)Km

5

d

dy

(
1/Kdry − 1/K ∗).

(36)

Combining eq. (36) with the previous expressions, we have

d

dy

(
1

1 − y

[
1 − νd

Gd (2 − νd )
− 1 − ν∗

G∗(2 − ν∗)

])

= 16

75πα

[
1 + 1 + 2νm + 4ν2

m

(2 − νm)2

]
d

dy

(
1/Kdry − 1/K ∗) + O(1/α).

(37)

Thus, the final expression for the desired quantity is

dR

dy

∣∣∣∣
y=0

= 8

75πα

[
1 + 1 + 2νm + 4ν2

m

(2 − νm)2

]
+ O(1). (38)

The result eq. (38) is compared with our numerical results for
the ratio of the compliance differences with α = 0.001 in Fig. 8.
Agreement is excellent for the slope in the vicinity of y = 0.

Figure 8. The derivative dR/dy evaluated at y = 0 gives the slope of the
ratio of compliance differences R(y) for small values of y with aspect ratio
α = 0.001. See eq. (38).
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Our discussion of these results is presented at the end of the final
section. The next section will provide some preliminary compar-
isons with experiment.

5 S O M E C O M P A R I S O N S
W I T H E X P E R I M E N T

Although the main thrust of this paper is to present some new theo-
retical results, we will nevertheless make some preliminary compar-
isons with known experimental results on rocks in order to clarify
the status of the theory and how it is to be used.

5.1 Qualitative analysis

The data that are most commonly used in this context are the data
of Coyner (1984) and Coyner & Cheng (1985). For example, these
data are the main ones used in the comparisons between theory and
experiment by Mavko & Jizba (1991). Qualitatively it is straight-
forward to see that predictions of Mavko and Jizba for shear wave
velocity in Westerly granite (data from Coyner (1984)), although
significantly better than the Biot–Gassmann predictions, are also
consistently below the data. This trend is entirely consistent with
the results determined here. Assuming that the main effects of inter-
est here in the Westerly granite are a result of the presence of small
aspect ratio cracks, the corrections to R = 4

15 coming from eq. (31)
can be neglected, and then eq. (38) shows that the leading corrections
to the Mavko and Jizba results are positive corrections to the ratio
R = 4

15 . This fact translates into an anticipated underprediction of
the shear wave velocity; it is not difficult to verify from the equa-
tions that if the value of R ≡ 4

15 is used instead of the correct, higher
value, then the results are always underpredicted. On the other hand,
for sandstones, Mavko and Jizba find that the predicted values of
shear wave velocity vary from below to above the measured data.
This variation is also expected from the present results since, for
sandstones, we expect a larger range of aspect ratios to contribute to
the results. In this case, formula (31) is important because it implies
that the larger aspect ratios will tend to decrease the value of R,
whereas eq. (38) implies that the smaller aspect ratios will tend to
increase the R value. The tradeoff between these two effects will be
complicated in sandstones, and therefore it is not surprising that the
observed results are mixed.

5.2 Quantitative analysis

To provide a more quantitative comparison with data, we now use
Coyner’s data (Coyner 1984; Coyner & Cheng 1985) to compute
values of the ratio of compliance differences directly. From such an
analysis, we can then see by how much the measured R differs from
the nominal value 4

15 � 0.267 and whether the trend is in agreement
with the more detailed predictions given here. We have performed
this analysis for both Westerly granite and for Chelmsford granite,
as the data for these two cases are expected to be most consistent
with the theory presented in this paper, and in particular we expect
the formula (38) to be relevant to both these cases.

To make use of eq. (38) for a real granite, we need to consider
how it should be modified when there is a distribution of aspect
ratios present in the rock. Recall now that the derivation makes
explicit use of an assumption that 1/α is a large number (such as
100 or higher) and that 1/α2 is a very large number (such as 104 or
higher). So we can consider a distribution of aspect ratios having
as its largest member α � 0.01. For the sake of argument, we will

assume that these aspect ratios constitute the majority of the porosity
in the system. If this is not the case, the results we show here do
not really change, but the notation becomes cumbersome as we then
have to keep track of the difference between total porosity and the
porosity associated only with these small aspect ratio cracks. With
this limitation in mind, our result is

R(φ) � 4

15

{
1 + 2

5π
[1 + f (νm)]

∑
i

φi

αi

}
, (39)

where f (νm) = (1 + 2νm + 4ν2
m)/(2 − νm)2, and the sum is

only over small aspect ratio cracks. As stated, we are assum-
ing here that φ = ∑

i φi . Recall that for penny-shaped cracks,
φi = Ni (4π L3

i /3V )αi , where Li and Ni are, respectively, the ra-
dius of the penny-shaped crack and the number of cracks having
that aspect ratio and radius, while V is the total volume. We see that
the ratio φi/αi = Ni (4π L3

i /3V ), is independent of the aspect ratio
itself, but not of the number and size of the cracks. (This fact is very
useful if we have data collected over a range of external pressures,
because then according to Walsh’s analysis (Walsh 1965), the as-
pect ratio should be a linear function of the applied pressure, so φi

and αi both decrease linearly and their ratio is virtually constant.)
Another way of looking at this is to treat the sum over ratios φi/αi

as a measure of an effective aspect ratio, being given specifically by

φ

αeff
≡

∑
i

φi

αi
. (40)

Thus, the effective aspect ratio αeff is the harmonic mean of the
pertinent individual aspect ratios, when weighted by porosity in this
way. Thus, by measuring R using Coyner’s data, we can invert the
data for such an effective aspect ratio, without needing to know any
of the φi and αi values explicitly, but we would need to know φ.

In Fig. 9, we display a range of the measured data from Coyner
(1984) and Coyner & Cheng (1985) for R(y) of Westerly granite and
Chelmsford granite, using the theory to determine the corresponding
value ofφ/αeff. This step is required since other data are not currently
available to determine this ratio independently. The important points

Figure 9. A plot showing the range of R values found in Coyner’s data for
Westerly granite and Chelmsford granite. Since the appropriate values of the
ratio φ/α are not known, the theoretical expressions (39) and (40) are used
to determine the effective ratio φ/α for each measurement, which is also the
reason for the apparently perfect fit to the theory. The data presented lie in
the differential pressure range 5–50 MPa.
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Figure 10. A plot showing the correlation of R values with those of Pois-
son’s ratio ν for dry samples in Coyner’s data for Westerly granite and
Chelmsford granite. The data presented lie in the differential pressure range
5–50 MPa. While Poisson’s ratio is a fairly smooth function of differential
pressure, R is more sensitive since it is computed from the ratios of differ-
ences of measured values. The main conclusion from this figure seems to be
that Chelmsford granite has a relatively constant R � 0.6 while Westerly has
the value R � 0.3, both of which are above the predicted value of R = 4

15
of Mavko & Jizba (1991).

to notice are: (1) that most of these data points lie significantly above
R(0) = 4

15 , as is anticipated by the present analysis and (2) that, for
the differential pressure range displayed here (5–50 MPa), the points
for each rock tend to cluster in a fairly narrow range of values for
both R and φ/αeff, especially so considering that these data do not
always have the precision we would like for the present calculations.

To complete our data comparisons, next we show a cross-plot
of the ratio of compliance differences R versus Poisson’s ratio for
the dry samples of Westerly granite and Chelmsford granite from
Coyner’s data again in Fig. 10. As before, the data presented lie
in the differential pressure range 5–50 MPa. While Poisson’s ra-
tio is a fairly smooth function of differential pressure, R is more
sensitive since it is computed from the ratios of the differences of
measured values. There does not appear to be any significant cor-
relation between Poisson’s ratio and R, judging by this figure. The
main conclusion seems to be that Chelmsford granite has a rela-
tively constant R � 0.6, while Westerly has the value R � 0.3, both
of which are above the predicted value R = 4

15 of Mavko & Jizba
(1991).

We will now return to our main line of argument in the final
section. Except for results on Poisson’s ratio mentioned earlier and
presented in Appendix B, we must now leave further analysis of the
data to future work.

6 D I S C U S S I O N A N D C O N C L U S I O N S

6.1 Discussion

We began the paper by pursuing the differential effective medium
predictions for the bulk and shear moduli in a cracked material
in which the cracks can be either gas-saturated (dry) or liquid-
saturated. The DEM equations can be integrated numerically with-
out serious difficulty for the exact model of oblate spheroids of

arbitrary aspect ratio, but the full formulae for oblate spheroids are
rather involved. In order to make progress on analytical expressions,
part of the effort was directed towards studying the penny-shaped
crack model of Walsh (1969). This model is not too difficult to anal-
yse if an additional approximation is entertained. The problem for
analysis is that the ordinary differential equations for bulk and shear
moduli are coupled. If they can be decoupled either rigorously or
approximately, then they can be integrated analytically. We accom-
plished the decoupling for the penny crack model by assuming that
changes in Poisson’s ratio occurring in those terms proportional to
the aspect ratio are negligible to first order. This permits the de-
coupling to occur and the integration to proceed. We subsequently
checked the analytical results against the full DEM integration for
penny-shaped cracks, which showed that the analytical results were
in quite good agreement with the numerical results.

Then, trying to understand why the analytical results worked so
well, we studied the behaviour of Poisson’s ratio for the same sys-
tem, and found that, as the porosity increases, for the dry systems
Poisson’s ratio tends to a small positive value of the order of πα/18,
where α is the aspect ratio, and for liquid-saturated systems it tends
towards 1

2 in all cases. These results permit more detailed error es-
timates for the analytical formulae showing that errors will always
be less than about 5–20 per cent, depending on the aspect ratio and
the porosity value.

We have also shown that the Mavko & Jizba (1991) proportion-
ality factor of 4

15 relating the differences in shear compliances to
the differences in bulk compliances for cracked systems with small
amounts of soft porosity is indeed an upper bound on R(0) and that
this upper bound is approximately achieved for α ≤ 0.001. This pro-
portionality factor decreases monotonically with increasing aspect
ratio for oblate spheroids, and vanishes identically for spheres at
α = 1.

On the other hand, when the amount of soft porosity is not van-
ishingly small, our results show that dR/dy is always positive and
proportional to 1/α. Fig. 8 shows that R(y) starts at 4

15 and increases
by about 50 per cent when the soft porosity is φ � 5πα/4 � 0.0039.
So 0.4 per cent soft porosity makes a substantial difference to this
proportionality factor. Furthermore, the ratio is clearly not bounded
above universally by the value 4

15 , as one might have supposed prior
to the present work.

6.2 Conclusions

The analytical approximation made in this paper seems to be very
effective at capturing the first-order behaviour of the bulk and
shear moduli for the differential effective medium approximation
to cracked porous media in both the dry and saturated cases. The re-
sulting formulae may not be rigorous in all cases, unlike Gassmann’s
formulae for low-frequency behaviour, but these formulae neverthe-
less have a wider range of approximate validity (considering both
porosity and frequency ranges) than either Gassmann’s (1951) or
Mavko & Jizba’s (1991) results. We believe these results will at the
very least provide some helpful insight into the behaviour of these
complex systems, and may also provide a stepping stone towards
more general formulae in the future.

Some of the results, including those of Section 4 and Appendix B,
are essentially exact (for α ≤ 0.001, which is required so that P and
Q for penny-shaped cracks are in accurate agreement with Eshelby’s
results for oblate spheroids) and independent of the DEM scheme.
Any result obtained here at a single value of porosity and for which
derivation makes direct use of Eshelby’s formulae for ellipsoidal
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inclusions is not influenced at all by the implicit microgeometry
associated with DEM, and therefore has general validity.

A major result of the paper is contained in Section 4, where
we show that the ratio of compliance differences R(y), defined in
eq. (27), can be expanded about y = 0. Combining the results for
the values of R(0) and d R(0)/dy when α is small, we have obtained
the two-term Taylor expansion

R(y) � 4

15

{
1 + 2

5πα
[1 + f (νm)]y

}
, (41)

where f (νm) = (1 + 2νm + 4ν2
m)/(2 − νm)2. In order for the

truncated expansion to be valid, we must have the condition that
y/α ∼ O(1) or equivalently y ∼ O(α). This result is true for any
effective medium theory based on penny-shaped cracks, not just the
DEM theory presented here. Although R(0) [defined as the limit of
R(y) for very small amounts of soft porosity] does indeed take the
value of 4

15 found by Mavko & Jizba (1991), the slope dR/dy|y=0 is,
however, positive and inversely proportional to the aspect ratio α.
Thus, for small α, the first correction term in the Taylor series expan-
sion can be very significant, and furthermore, when α is very small,
these corrections are significant for similarly very small soft poros-
ity values. The Mavko & Jizba (1991) result therefore appears not
to be a bound at all, but rather a mid-range estimate, being too large
for hard and/or spherical porosity (see Fig. 7) and too small when
significant amounts (say φ � 0.004) of soft porosity are present (see
Fig. 8).

For practical applications of this work, the first-order result ap-
pears to be that the ratio of compliance differences R is approxi-
mately constant for a given rock, but the constant is usually greater
than 4

15 for granites. We will need to do a separate, and more de-
tailed, data analysis for sandstones since their results appear to be
mixed, both in theory and in practice.
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A P P E N D I X A : S A N D S T O N E - L I K E
S A M P L E C A L C U L AT I O N S

The main focus of the paper is on the effects of the addition of cracks
to pre-existing materials. When the cracks are added to a homoge-
neous background, we think of this as being a granite-like material.
This case has been treated in the main text. To show the generality
of the method, we want to give a brief treatment in this appendix
of the sandstone-like situation of a material having a pre-existing
porosity φ0. This porosity may itself be either liquid-saturated or
gas-saturated (dry). For simplicity, we will assume here that φ0 is
liquid-saturated when liquid-saturated cracks are to be added and
dry when dry cracks are to be added. A key assumption for the liquid-
saturated, sandstone-like material is that there is no local fluid flow
between the pre-existing porosity and the newly introduced cracks
by the DEM procedure.

There are two further alternatives to be considered. First, cracks
may be added randomly to the pre-existing material. Secondly,
cracks may be added preferentially to the porosity-free host ma-
terial. We discuss these two cases in turn.

Random addition of cracks

Random addition of inclusions is the case considered in the main
text, so the DEM equations themselves do not change. We use (1)
and (2) as before, but the range of integration changes to the interval
starting at y = φ0 up to y = φ = φ0 + φcrack. The only differences
in the resulting formulae are that: (a) everywhere the factor (1 − φ)
appeared before it is now replaced by the ratio (1 −φ)/(1 −φ0) and
(b) everywhere Km and Gm appeared these material constants are
replaced by K (φ0) and G(φ0). So, for example, eq. (7) becomes

1

K f
− 1

K ∗ =
[

1

K f
− 1

K (φ0)

] (
1 − φ

1 − φ0

)
. (A1)

When φcrack 
 (1 − φ0), we can rewrite this expression as

1

K ∗ − 1

K (φ0)
=

[
1

K f
− 1

K (φ0)

] (
φcrack

1 − φ0

)
. (A2)

This formula still differs from the result of Mavko & Jizba (1991),
but the difference is nevertheless expected because their derivation
does not assume random placement of cracks. We can resolve this
discrepancy when we make use of an assumption of preferential
addition of cracks in the next subsection.

Preferential addition of cracks

The factor of (1 − y) on the left-hand sides of both eqs (1) and (2)
arises from the need to account for the fact that, when an inclusion
is placed in a composite, the volume of the inclusion replaces not
only host material, but also some of the other inclusion material
previously placed in the composite. When y is the inclusion volume
fraction, the remaining host volume fraction is (1 − y). So random
replacement of dy of the composite medium only replaces (1−y) dy
of the host material. Replacing instead dy/(1 − y) of the composite
then gives the correct factor of dy host replacement; thus, the factor
of (1 − y) is required in (1) and (2) for random inclusion placement
at finite values of y.

If we now assume instead that the inclusions are placed preferen-
tially in pure host material (and this becomes progressively harder to
do in practice for larger integrated overall inclusion fractions y), then
the DEM equations must be modified to account for this situation.
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For example, with preferential addition of inclusions, it is clear
from the preceding considerations that DEM eq. (6) is replaced by

d

dy

(
1

K ∗

)
� 1

K f
− 1

Km
. (A3)

Integrating eq. (A3) gives

1

K ∗ − 1

K (φ0)
=

(
1

K f
− 1

Km

)
φcrack. (A4)

The validity of this result clearly depends on φ0 being sufficiently
small so that it is possible to find enough pure host material to which
cracks can be added ‘randomly’. Taking φ0 → 0 guarantees satis-
faction of the requirement, but the approximation must eventually
breakdown as φ0 → 1.

Eq. (A4) is almost the corresponding result of Mavko & Jizba
(1991). Mavko & Jizba use as their comparison state the dry porous
material, assuming that no cracks are present or that, when present,
they are closed owing to applied external pressure. We can also
obtain the same result using eq. (A3), but now K ∗(φ0) = Kdry(φ0),
so the integration has a different starting value from that in the
previous paragraph. Then, we find

1

K ∗
MJ

− 1

Kdry(φ0)
=

(
1

K f
− 1

Km

)
φcrack. (A5)

Eq. (A5) is exactly the corresponding result of Mavko & Jizba
(1991). Although the right-hand sides of eqs (A4) and (A5) are
identical, the results differ, i.e. K ∗ �= K ∗

MJ, since the assumed host
material is fluid-saturated in the first case and dry in the second
case.

A P P E N D I X B : P O I S S O N ’ S R AT I O
F O R D RY C R A C K S

When the cracks are taken to be dry, so that Ki = Gi = 0 in (1) and
(2), it turns out that an elegant decoupling of the DEM equations is
possible (also see Zimmerman 1985; Hashin 1988). If we consider
the parameter ratio G∗/K ∗ = 3(1 − 2ν∗)/2(1 + ν∗), we find that it
satisfies the equation

(1 − y)
d ln(G∗/K ∗)

dy
= − 3(1 − y)

(1 + ν∗) (1 − 2ν∗)

dν∗

dy
= P∗i − Q∗i .

(B1)

Furthermore, it is generally true for dry inclusions (not just for
penny-shaped cracks) that both P∗i and Q∗i are functions only of
the same ratio G∗/K ∗, or equivalently of Poisson’s ratio ν∗. Thus,
we can solve eq. (B1) for either ν∗ or the ratio of moduli, without
considering any other equation.

We notice that the dimensionless polarization factors P and Q
are both often close to unity, and furthermore it may happen that,
for special values of Poisson’s ratio, these terms are equal, so P∗i =
Q∗i . If this occurs for some critical value ν∗ = νc, then eq. (B1)
guarantees that this value of Poisson’s ratio will be preserved for all
higher values of porosity, since the right-hand side vanishes initially,
and therefore always thereafter in the integration scheme. Such a
critical value is usually called a fixed-point of the equations, and such
fixed-points can be either stable or unstable. If they are unstable, then
a small deviation from the critical point causes a rapid divergence of
Poisson’s ratio from the fixed-point. If they are stable, then a small
deviation produces a situation in which the value of Poisson’s ratio
gradually (asymptotically) approaches the critical value. When this
happens, we say the fixed-point is an attractor. For the DEM eq. (B1),

a fixed-point that is an attractor will only be reached in the limit
φ → 1, but the value of Poisson’s ratio will change fairly rapidly
in the direction of the attractor when the first cracks are added to
the system. Such behaviour of Poisson’s ratio has been noted before
by Zimmerman (1994) and by Dunn & Ledbetter (1995), among
others.

For dry penny-shaped cracks, we have

P∗i − Q∗i = 4(1 − ν∗2)

3πα(1 − 2ν∗)
− 1

5

[
1 + 8(1 − ν∗) (5 − ν∗)

3πα(2 − ν∗)

]
,

(B2)

which has a fixed-point approximately (using one step of a Newton–
Raphson iteration scheme) at

νc = 2πα

36 + 5πα
. (B3)

This shows that, when α is very small, Poisson’s ratio for the dry
cracked material tends toward small positive values. For somewhat
larger values of α, Poisson’s ratio approaches a value proportional
to α and of the order of πα/18.
For comparison, consider spherical void inclusions (see Berryman
(1980) for the general expressions for P and Q). Then, we have

P∗i − Q∗i = 1 + ν∗

2(1 − 2ν∗)
− 2(4 − 5ν∗)

7 − 5ν∗ , (B4)

which has a fixed-point at

νc = 1

5
= 0.200. (B5)

This result has been remarked upon previously by Zimmerman
(1994). Similarly, considering needle-shaped void inclusions, we
have

P∗i − Q∗i = 2(1 + ν∗)

3(1 − 2ν∗)
− 1

5

[
7

3
+ 2(3 − 4ν∗)

]
, (B6)

which has a fixed-point at

νc = 1

8

(
7 −

√
29

) � 0.202. (B7)

Dunn & Ledbetter (1995) have shown that all the prolate spheroids
have critical Poisson’s ratios close to that for spheres. Since needles
are the extreme limit of prolate spheroids, we see that eqs (B5) and
(B7) are in agreement with their results.

Dunn & Ledbetter (1995) have shown that disc-shaped inclusions
(which are achieved by taking oblate spheroids to the α = 0 limit)
have a critical Poisson’s ratio of νc = 0. This result and the others
obtained above are collected for comparison in Table B1.

To clarify the behaviour of the solution of eq. (B1), we will do
an approximate analysis by expanding the right-hand side around
ν = 0 and also note that for small ν, G∗/K ∗ � 3(1 − 3ν∗)/2. Then,
eq. (B1) becomes

Table B1. Fixed-points of equation (B1) for commonly
considered inclusion shapes. Also listed for comparison
are the ratios of compressional (vp) and shear (vs ) wave
velocity, where vp/vs = √

2(1 − νc)/(1 − 2νc).

Shape νc vp/vs

Needle ∼0.202 ∼√
2.68

Sphere 1
5

√
8/3

Penny ∼ 2πα
36+2.245πα

∼√
2(1 + πα/18)

Disk 0
√

2
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Figure B1. Asymptotic behaviour of Poisson’s ratio as a function of the
crack volume fraction for three values of α: 0.1, 0.01, 0.001. The asymptotic
value for saturated samples is always νc = 1

2 . For dry samples, the asymptotic
value depends on the geometry of the inclusion, and therefore on α for cracks.
The limiting value νc � πα/18 is a stable attractor of the DEM equations,
as is observed in this figure.

Table B2. Typical values of Pois-
son’s ratio for various solid mate-
rials contained in rocks. See, for
example, Mavko et al. (1998).

Mineral νm

Quartz 0.06–0.08
Corundum 0.24
Dolomite 0.20–0.30
Calcite 0.29–0.32
Feldspar 0.32–0.35
Clays 0.10–0.35

(1 − y)
dν∗

dy
� 1

15
− 6ν∗

5πα
, (B8)

which can be integrated easily to yield(
πα

18
− ν∗

)
�

(
πα

18
− νm

)
(1 − φ)1/h, (B9)

where νm is the starting, or in our case the mineral, value of Poisson’s
ratio, and

h = 5πα/6. (B10)

A more precise, and therefore more tedious, analysis of the right-
hand side of eq. (B2) gives the improved approximation eq. (B3) for
the asymptotic value of νc.

In Fig. B1, we show the actual results for Poisson’s ratio from
the full DEM in the same three examples shown in Figs 1–6 . The
starting value of Poisson’s ratio for quartz is νm = 0.0742. For com-
parison, Table B2 contains a listing of various Poisson’s ratios for
minerals that could be important in rocks in order to show the range
of behaviour observed in nature. Except for different starting loca-
tions, we expect the qualitative behaviour of the curves for Poisson’s
ratio to follow closely that observed in Fig. B1 and eq. (B9) for all
cases.

(Technical notes concerning the dry case. (1) For α = 0.1, the
Runge–Kutta scheme used to solve the coupled DEM equations for

Figure B2. Poisson’s ratio fixed-point νc as a function of α found numer-
ically for oblate spheroids and penny-shaped cracks, and also for penny-
shaped cracks using the analytical expression νc = 2πα/(36.0 + 2.245πα).
The two curves for penny-shaped cracks are nearly indistinguishable on the
scale of this plot. The correct fixed-point for spheres (α = 1) is νc = 1

5 , and
this value is attained in the α → 1 limit by the curve for oblate spheroids.

K ∗ and G∗ was sufficiently accurate that ν∗ could be computed
from these values. However, for α = 0.01 and 0.001, the accuracy
obtained was not sufficient, so we instead used the same Runge–
Kutta scheme but applied it directly to eq. (B1). This approach gave
very stable results. (2) The approximations used here assume that the
resulting bulk and shear moduli are always much larger than those
of gas or air, so that taking Kair � 0 is a sensible approximation.
When this is not true, i.e. when the effective moduli are so weak
that they become comparable in magnitude to Kair, then the results
revert back to those for saturated media and the asymptotic result
approaches νc = 0.5.)

Fig. B2 compares the results for oblate spheroids with those for
penny-shaped cracks; both curves were obtained by finding the ze-
ros of P − Q numerically. To provide additional insight, the curve
ν = 2πα

36+2.245πα
(which was obtained using the functional form of

eq. (B3) and fitting the coefficient in the denominator at α = 1) is
also shown. We see that the results for penny-shaped cracks deviate
substantially from those of oblate spheroids as α → 1, but they come
into agreement at lower values of α ≤ 0.001. The deviations from
the results for oblate spheroids, again, are not physical and should
simply be viewed as artefacts introduced by the very low aspect ra-
tio limiting procedure used to obtain the approximate formulae for
penny-shaped cracks.

Some data analysis

It is commonly stated that it is not possible to determine actual values
of aspect ratio distributions from compressibility data alone (Walsh
1965; Mavko & Nur 1978). This is probably true in general, owing
to the observed (here as well as elsewhere) relative insensitivity of
K to α. However, the present results show a strong sensitivity of G
to α, and therefore of ν to α. Eqs (B1) and (B2) can thus be used to
show directly just how strongly ν∗ should depend on α.

Assuming as in the main text that 1/α is a large number so terms
of O(1) (independent of 1/α) can be neglected, we find that eqs (B1)
and (B2) imply
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Figure B3. Plot showing the range of ν values found in Coyner’s data for
dry samples of Westerly granite and Chelmsford granite. Since the appro-
priate values of the ratio φ/α are not known independently, the theoretical
expression (B12) is used to determine the effective ratio φ/α for each mea-
surement, which is also the reason for the apparently perfect fit to the theory.
The data presented lie in the differential pressure range 5–50 MPa.

(1 − y)
dν∗

dy
� −4ν∗(1 − ν∗2) (3 − ν∗)

5πα(2 − ν∗)
. (B11)

(Compare eq. (B11) with eq. (B8).) Although this equation has a
form that can be integrated explicitly analytically, it will be more
useful to us to make a small porosity φ approximation and then
easily arrive at the result

ν∗ = νm

[
1 − 4

5π
g(νm)

φ

α

]
, (B12)

where g(νm) = (1 − ν2
m) (3 − νm)/(2 − νm) and the ratio φ/α has

the same significance as in eqs (40) and (39) of the main text.
The useful properties of eq. (B12) are that the right-hand side

depends only on the pure host material Poisson ratio νm , and the left-
hand side is determined by measuring vp and vs for dry samples of
the rock. This means that there are fewer variables than there are in
the determination of R and so we imagine that it should be possible to
find estimates of the ratio φ/α from data by making use of eq. (B12).

Again considering Coyner’s data (Coyner 1984; Coyner & Cheng
1985), we find ν results for dry samples of Westerly granite and
Chelmsford granite in the range 5–50 MPa. These results are shown
in Fig. B3. It is not clear why the predicted values of φ/α found in
this way differ from those found in Fig. 9 using R as the estimator.
Nor is it clear which estimates are likely to be more correct. Since the
R values are found by taking the ratio of two differences of measured
quantities and since the R values are, in fact, observed to be a bit
erratic (whereas the ν values are generally smoothly varying as the
differential pressure changes), it seems likely that the values found
here using the ν measurements are more trustworthy, but clearly
more work is needed to confirm this.

A P P E N D I X C : T E C H N I C A L
J U S T I F I C AT I O N O F T H E
A P P RO X I M AT I O N F O R γ

It is inherent in the mathematical form of all DEM schemes that they
always give correct values and slopes of the curves for small values
of the inclusion volume fraction, and that they always give the right
values (but not necessarily correct slopes) at high volume fractions.
We see that these expectations are fulfilled in all the examples shown
here.

The approximations made in the text to arrive at analytical results
were chosen as a convenient means to decouple the equations for
bulk and shear moduli, which are normally coupled in the DEM
scheme. For the liquid-saturated case, the approximations for bulk
modulus are very good for all values of aspect ratio, but for shear
modulus the exponent determined by eq. (17) can deviate as much
as a factor of 2

3 . The value chosen is the maximum value possible,
guaranteeing that the analytical approximation will always be a lower
bound for this case.

In contrast, for the case of dry cracks, the approximations for the
shear modulus are expected to be somewhat better than those for
the bulk modulus. The analytical approximation is again expected
to be a lower bound for the full DEM result for the shear modulus.
Analysis for the bulk modulus is more difficult in this limit as it
requires checking that the ratio G∗/K ∗ remains finite as the porosity
φ → 1, and this would be difficult to establish if Poisson’s ratio were
going to ν = 1

2 , as it does for the liquid-saturated case. However,
Appendix B shows that Poisson’s ratio actually tends to a value of
about νc � πα/18, so there is no singularity in the K ∗ behaviour for
this case. This feature is also confirmed by the numerical results.
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