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Abstract

To attempt to represent concrete properly as a composite material, one must consider at least
three phases: matrix, aggregates, and the interfacial transition zone (ITZ), a thin shell of
altered matrix material surrounding each aggregate grain. Assigning each of these phases a
different transport parameter, diffusivity or conductivity, results in a complicated composite
transport problem. Random walk simulations can be performed for this system, but are
time-consuming, hence the anticipated usefulness of effective medium theory. But, previous
applications of differential effective medium theory were plagued by the need to use an
arbitrary parameter chosen to fit the simulation results. A new kind of differential effective
medium theory is presented in this paper that removes this need for a fitting parameter. An
aggregate particle with a surrounding I'TZ is mapped onto an effective particle of uniform
conductivity, which is then treated in regular differential effective medium theory. The results
of this theory are compared to random walk simulations for multi-scale concrete models with

varying aggregate size distributions.



1 Introduction

Concrete is a composite material. It is made up of, at first sight, a cement paste matrix
and aggregate grains of various sizes, ranging from the very smallest sand grains of diameter
100um, to the large aggregates of diameter 10 — 20 mm. However, upon closer examination,
one finds a thin layer of matrix material surrounding each aggregate grain, called the interfa-
cial transition zone (ITZ), where the cement paste matrix is different, usually more porous,
than the bulk of the surrounding cement paste matrix. The I'TZ has an average width of
about the median cement particle size [1], and arises mainly from the “wall effect,” where
cement particles are constrained by the aggregate surface to pack less efficiently in the ITZ.
Typical widths of the I'TZ are in the range 10 — 30 um. Figure 1 gives a 2-D schematic view
of a concrete with two sizes of particles to show the type of microstructure that must be
considered.

So to attempt to represent concrete properly as a composite material, at least three
phases must be considered, consisting of matrix, aggregates, and the ITZ regions. Assigning
each of these phases a different transport parameter, diffusivity or conductivity, then results
in a complicated composite transport problem. By conductivity is meant either thermal or
electrical conductivity. In the diffusivity problem, which is the main problem of interest of
these three to concrete [2], the aggregates have diffusivities of zero, while the ITZ and the
matrix have in general different and non-zero diffusivities. The language of conductivity
will be used throughout the remainder of this paper, but the diffusivity problem is exactly
mathematically analogous, along with other physical problems [3, 4]. The equivalent elastic
problem is of interest as well, but is outside the scope of this paper [5].

Of course, the real problem is more complicated still. The I'TZ region in fact has a gradient
of properties, since the porosity is a gradient from the aggregate surface outwards [6, 7, 8].
The dilute limit, with a single spherical aggregate surrounded by a spherically symmetric
gradient of properties, can be handled exactly [9, 10, 11]. But the real microstructure
of concrete, with a wide size distribution of aggregates each surrounded by overlapping
gradients of properties, is too difficult to treat analytically, by numerical methods, or by
effective medium theory. However, it has been shown that a multi-scale model can be used
in order to map this very complicated microstructure into a simpler, but still complicated,
microstructure, where the I'TZ regions can be treated theoretically as a region of uniform
properties [2, 9, 12]. This multi-scale, multi-step approach [2, 9, 12]. assigns the best value
of ITZ thickness, which is the same for all aggregates, and conductivity, which is the same
for all ITZ regions, to match the real material. Once this multi-scale procedure has been
carried out, one ends up with a system as shown in Fig. 1, where the ITZ regions have
uniform properties.

To compute the overall conductivity of the system shown in Fig. 1, random walk sim-



ulations have been performed [2, 13, 14]. Uncorrelated mathematical walkers (points) are
thrown down at random, and then undergo random walks. Walkers that initially land in the
aggregates do not move, and are not counted. A “clock” is maintained for each walker. The
walkers move at different speeds depending on which phase they are in. The slope of the
average root-mean-squared distance vs. time curve is then used to extract the overall con-
ductivity or diffusivity. These are accurate and simple, but time-consuming, computations.
The hope is to use some kind of effective medium theory (EMT) to replace the random walk
simulations. This is done to reduce the computer time that is necessary to evaluate this step
of the multi-scale model [12], so that the model becomes more widely used. However, the
existence of accurate simulations is still required in order to validate the EMT results.

Previous applications of differential effective medium theory (D-EMT) [12] agreed fairly
well with the random walker computations, but were plagued by having to use an arbitrary
parameter that was fit to the result of simulations. The point of this paper is to derive a new
kind of D-EMT that has no adjustable parameters. After introducing standard D-EMT, and
deriving this new kind of D-EMT, the results of this new D-EMT are compared with the
results of random walk computations on various concrete models [2, 12, 13], and are found
to agree better with the simulations than did the old D-EMT.

2 Differential effective medium theory and effective
particle mapping

Differential effective medium theory (D-EMT) [15] was chosen as the best candidate for the
concrete problem as shown in Fig. 1 for the following reason. The accuracy of an EMT is
often linked to how well its percolation properties match that of the experimental system
being considered [14, 16]. In D-EMT, the inclusions are always discontinous, and the matrix
is always continuous. This is the same situation for concrete, with discontinuous aggregates
embedded in a continuous matrix. So it might be expected that D-EMT would work well
for concrete.

One should note, however, that several modeling studies have shown that in a typical
concrete, the ITZ regions are themselves percolating [17, 18]. The form of D-EMT considered
in this paper will not reflect this fact, although it will take the I'TZ into account. However,
whether or not percolation of a phase matters to the overall properties depends on the
contrast of its properties with the surrounding phases [7, 19]. For the case of diffusion
through concrete, the ITZ property is at most ten times that of the matrix, which is not
enough of a contrast for percolation to matter particularly [7]. So this deficience in D-EMT
should not significantly affect the ability of D-EMT to be accurate for this problem. However,

if the problem of fluid permeability were being considered [7], where the contrast between



ITZ and matrix is on the order of 100, then most likely D-EMT would fail, as the percolation
of the ITZ regions would then matter greatly. Any approach not taking this into account is

unlikely to be accurate.

2.1 Standard D-EMT

In the usual D-EMT, [15], when a particle with conductivity o, is embedded in a matrix
with conductivity opyk, the dilute limit is used to generate an approximate equation that
can be solved for the effective conductivity. In the dilute limit, the value of ¢, the volume
fraction of aggregates, is small enough so that the aggregate grains do not influence each

other. The effective conductivity, o, is then given exactly by [3, 14]:
0 = Opuik + Oparme + O(c?) (1)

where m is a dimensionless coefficient often called the dilute limit slope that is a function

0:””0 The higher order terms in the ¢ expansion
w

come from interactions between aggregate particles, and so are negligible in the dilute limit.

of the shape of the particle, and the ratio

The dilute limit is now used to generate a differential equation for the conductivity
when an arbitrary amount of aggregates is placed in the matrix. Suppose that a non-
dilute volume fraction c of aggregates (of conductivity o,) have been placed in the matrix.
The effective conductivity of the entire composite system is now o. This system of matrix
(volume fraction = ¢ 1 — ¢) plus aggregates (volume fraction = ¢) is thought of as being
a homogeneous material. Suppose then that additional aggregates are added by removing
a differential volume element, dV', from the homogeneous material, and replacing it by an
equivalent volume of aggregates. The new conductivity, o + do, is assumed to be given by
the dilute limit

o+do :0+am(o)g (2)

where V' is the total volume and m(o) is the same as that in eq. (1), but with o — 0.
This is the key approximation that is made in order to generate the D-EMT. When the
volume element dV was removed, only a fraction ¢ was matrix material so that the actual

change in the matrix volume fraction, d¢, is given by

av
do = —9 - 3)
Eq. (2) then reduces to
dp/¢ = —do/(om(0)), (4)
which can be integrated to yield
o do’ ¢ do'
- = [ =) )
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For spherical aggregates of only one size, with conductivity o,, and embedded in a matrix

of conductivity o,
(Op — 0) (6)
(20 + 0,)

The integral in eq. (5) can be done exactly, using eq. (7), with the result

A - G

(Ubulk - Up) Obulk

m(o) =

where ¢’ is the matrix phase conductivity at any point in the D-EMT calculation.

2.2 Including the ITZ in the dilute limit

In the concrete problem, as was mentioned in the Introduction, each aggregate is surrounded
by a thin shell of different material, called the ITZ. Since any D-EMT is built up from the
exact dilute limit, the dilute limit for such a composite particle is now discussed.

Consider an idealized aggregate particle, like those shown in Fig. 1. Real aggregates have
non-spherical shape, but for many kinds of aggregates, a spherical shape is a reasonable
approximation. A spherical shape is used in the multi-scale model [2, 12]. Consider spherical
aggregate particles of conductivity 0,44 and radius b, each surrounded by a concentric shell of
thickness h and conductivity o;7z, a = b+ h, and all embedded in a matrix of conductivity
Opuk- The left side of Fig. 2 shows these parameters pictorially. The volume fraction of
aggregate grains, not counting the ITZ regions, which are only modified (more porous)
matrix material, is still denoted by c. Eq. (1) is still valid, but now the slope m for the linear

term in ¢ is given exactly by [14, 21]

((Oagg — 0172) (20172 + Obuie) + (Cagg + 20172)(O172 — Obuikc)] (8)

m = 3«
[2(0agg — 0172) (0112 — Obuike) + (Cagg + 20172) (0172 + 20401K)]
The parameter « is defined by the radius of the particle and the thickness of the ITZ:

_(b+h)y
o= (9)

When 0,4, = 0, the usual case for concrete, then eq. (8) becomes

3 [2omrz(a—1) = opun(l + 20a)]
2" [o172(0 = 1) + Opuik (1 + 20)]

m = (10)

This slope is negative when
(1+20)

2a—1) (11)

and is positive otherwise. For most concrete cases, the slope m is negative when averaged

orrz <0rrz

over all particle sizes, as is discussed next. In all cases considered in this paper, the slope m
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was always negative, so there were no difficulties with having a zero value in the denominator
of eq. (5).

Concrete has a size distribution of aggregate grain radii {b;}, while the value of h is
essentially fixed [2, 12]. That implies that the slope m; for each kind of particle will be a
function of b;, because the parameter a; = [(b; + h)/b;]* will be different for each particle.
The aggregate size distribution is usually given by a sieve analysis characterized by d;, f;,
1=1,M+1, 5 =1, M, where M is the number of sieves used, d; < d;;; is the endpoint
diameters of the sieves, and f; is the fraction of the total aggregate volume that is taken up
in the j-th sieve (3°; f; = 1). For now assume that all the particles in the j-th interval have
the same radius, b,(d;, d;;+1). Later on, this assumption will be relaxed.

The dilute limit is then defined the same way, but the slope used, (m) = 3, f;m;, is first
averaged over the aggregate particle size distribution (sieve analysis) before being used in
the dilute limit forrgula. The slope m; for the j-th size class is given by eq. (8), but with «

(bj+h)

going to a; = G

2.3 New D-EMT

The standard D-EMT is a two-phase theory. In the present case, the ITZ zone causes
conceptual problems, since it introduces a third phase. To use D-EMT in this case, should
the I'TZ be treated as part of the particle, or should it be considered part of the matrix?
If the ITZ conductivity is given independently of the matrix, then it should stay the same
as the matrix is renormalized in the D-EMT calculation process. However, if it is given
in terms of a ratio with the matrix conductivity, then if the ratio stays the same during
the calculation process, then the absolute value of the ITZ conductivity will change [12].
The form of D-EMT previously used for the concrete problem [12] took a weighted average
between these two cases, with the weights determined by a fit to random walk computations.
The agreement with computations was not spectacular (20%), and there was no guarantee
that the fitted weights would be the same for all concrete systems studied.

An answer to the conceptual dilemma stated above would be to construct a version of
D-EMT in which the ITZ regions were either unambiguously aggregate or matrix. This
would eliminate the need for adjustable parameters. Since the ITZ regions, disregarding
overlaps, are the same shape as the spherical aggregate particles, one is drawn to the option
of making the ITZ regions part of the aggregates. The way this can be done is according
to the following idea: Map each aggregate particle plus its accompanying I'TZ region into a
single effective particle, with an effective uniform conductivity, o,, which is embedded in the
bulk matrix. This idea is illustrated in Fig. 2. The radius of this effective particle will then
be a; = b; + h, rather than simply b;. This procedure can be carried out by equating the

exact result for m;, eq. (8), to the exact result for m; when the particle is uniform.



The dilute limit slope m; for a spherical particle of conductivity o,, radius b; 4+ h, em-

bedded in a matrix of conductivity opyy, is given by

(Up — Ubulk)
204wk + 0p)

*clarify**where c is still the volume fraction of aggregates only (see eq. (1)). If this dilute

mj = 30éj (12)

limit is equated to eq. (8), the value of o, turns out to be

[2(0agg — O177) + j(Cagg + 20177)|0ITZ
[=(Gagg — 0172) + @j(0agg + 20172)]

(13)

O'p:

Therefore, the dilute limit for a particle of radius b; + h, with conductivity o, (which is
a function of j), referred to the volume fraction of aggregate c, is the same as for the
real particle, of radius b; and conductivity o449, and accompanying ITZ of thickness h and
conductivity o;rz. Figure 3 shows this mapping between o, and the ITZ conductivity, for
four different diameter (radius = 2b) aggregate particles, where 0,5, = 0, and A = 20pm.
The dependence on the value of o and thus the particle size can be clearly seen.

This effective particle is then treated in regular differential effective medium theory, as
described above. When an aggregate size distribution is used, the function m(o) is an average
over this size distribution, as was stated above. The integral can be done numerically for
chosen values of o, with the aggregate volume fraction ¢ = 1 — ¢ then treated as being a
function of o. There are a few differences, however, involving the effective aggregate volume
fraction. Each particle is now of radius b; + h, so that the volume fraction of “effective
aggregate” now goes to ¢, not c¢. The value of ¢ must be known in order to perform the
integral in eq. (5).

These differences can be worked out simply by considering the number of particles of a
certain type. If V; is the total volume of the ¢-th kind of particle, and N; is the total number
of this kind of particle, then

4
Ni(6)° =V, (14)
and therefore
Ni 4 3 V;
ST ) = = fic (15)
4
ni?”(b,-)i* — fic (16)

where V is the total volume of the system and n; is the number of particles of type ¢ per
unit volume.

Now the new values of f; and ¢, f] and ¢/, are defined via rewriting the previous equation:



4
=1 -

The values of f] and ¢ can also be defined directly by

C—an b + h)? (18)

fl=
> iz, n(b; + h)3

(19)

By combining the above equations, one can then derive forms for f/ and ¢’ that involve
only f;, ¢, h, and «;:

' GOy

f—__*> 20

fi S fa (20)
M

d=c) fia (21)
7j=1

It should be noted that while the value of ¢ was for non-overlapping aggregate particles,
the value of ¢’ is for the volume occupied by each aggregate particle and its surrounding
ITZ region, where the ITZ regions are assumed to not overlap. In a real concrete, these
ITZ regions do overlap, causing percolation phenomena, as was mentioned earlier. This
treatment of the ITZ volume fraction is another approximation of the D-EMT method.

In summary, a D-EMT calculation is carried out as follows. First the sieve analysis
is used to compute ¢’ and f/. Then the integral in eq. (5) is carried out numerically by
Gaussian quadratures [22], where (m) is numerically averaged over the sieve analysis. Since
the diameter range of each sieve is rather large, the assumption is made that within each
sieve, the particles are uniformly distributed by volume, thus relaxing the assumption made
earlier that all particles in a certain sieve had the same radius (see Sec. 2.2). This enables
an integral to be performed over each bin, and then a summation over all the sieves ( see
Appendix 2 in Ref. [12]). This procedure is also used to compute ¢’ and f; as well. The
actual FORTRAN software used to calculate the D-EMT for an arbitrary sieve analysis is
available on the Internet [23].

3 Results

Random walk simulation data are available for the multi-scale concrete model for several
aggregate size distributions (sieve analyses) and a number of choices of the conductivity

contrast between ITZ and matrix [2, 12]. In these data, the aggregates always had zero
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conductivity (o499 = 0). The random walk simulation data is accurate to within a few
percent, so it can be used to check the results of the new D-EMT. If the new D-EMT is able
to replace these lengthy simulations by achieving an accuracy of 10 — 20%, that would be a
successful application. Experimental measurements, which the multi-scale theory hopes to
predict, are probably only accurate to within a factor of two [2].

Table 1 shows the values ¢; of the four different sieve analyses used (cfce, fffc, ffce, and
cffc, see Ref. [2] for details of these sieve analyses). Figure 4 shows the results of the new
D-EMT, plotted against the data of Table 2, taken from Ref. [2]. Good agreement, 10%
or better, is seen for most of the values, with somewhat higher disagreement but still less
than 20% for some data points. It is interesting to note that most of the D-EMT results are
systematically lower than the simulation results. This is probably at least partly an artifact
of the D-EMT calculation, because even at fairly low contrast, the percolation of the I'TZ
regions will have some effect. It is also possible that the simulation results are a bit high,
which would be the case if the random walkers were not allowed to run long enough. The
random walkers start out diffusing at the matrix diffusivity, and only gradually, through
colliding with many aggregates, does their effective diffusivity and conductivity come down
to the concrete value. Spot checks of some of the random walk data indicate that the random
walk values would become about 5% lower with more random steps being made, which would
significantly improve the agreement with the new D-EMT [20].

A second set of simulation data has recently become available [13], for models with volume
fractions of aggregate of 0.62 and 0.70, and a range of conductivity values for the ITZ region,
with o777 /0puk both less than and greater than unity. The sieve analysis for these systems is
shown in Table 3. Table 4 shows the simulation and D-EMT data for the different concrete
mixtures and parameter choices. Good agreement with simulation is shown for all parameter
values, with the differences well below 10% for most of the data, and only a few differences
as high as 13%.

Figure 5 shows the D-EMT data plotted against the simulation data from Table 4. The
dashed line is the line of equality. The data points are seen to follow the dashed line quite
well. The D-EMT predictions are mostly again seen to err on the small side, being slightly
under the real values. It is interesting to note that even for values of o777 /0pur ~ 20, the
D-EMT still agrees very well with the random walker data.

Figure 6 shows the same data as in Table 4, but now plotted as a function of o7z /opu,
separately for the 0.62 and 0.70 aggregate volume fraction concrete systems. The D-EMT
correctly captures the shape of these curves [13, 21].



4 Discussion and Summary

One should note that the aggregate sieve analyses given in Table 1 involve extremal values of
recommended concrete mixtures [2, 24], while the sieve analysis given in Table 3 is from the
middle of the range recomended for the aggregate size distributions [13, 24]. It is comforting
to note that the D-EMT seems to work somewhat better for the usual concrete mixture
designs, rather than for unusual values.

As was stated in the Introduction, concrete is actually even more complicated than the
three-phase system discussed in this paper, for several reasons. First, aggregates are only
approximately spherical. Second, the I'TZ has a gradient of properties extending out to its
width, and is not a uniform property shell [9]. And third, concrete is an interactive composite,
where the amount of aggregates affects the properties of the matrix [12, 7]. For these
reasons, a multi-scale approach has been taken to model concrete diffusivity/conductivity.
In part of this model, the actual I'TZ microstructure near an aggregate, as well as the global
arrangement of I'TZ regions, is used both to map the I'TZ gradient into a uniform property
region, and to derive an accurate value of the ratio of I'TZ to bulk matrix properties. By doing
this multi-scale procedure carefully, the best value of the ITZ thickness and conductivity are
used. It is known that the I'TZ thickness and conductivity, when mapping onto a uniform
property shell, are not independent of each other [9].

In the multi-scale model, the conductivity of the resulting three-phase effective mi-
crostructure was computed using random walk simulations. The reason for developing an
improved D-EMT was to replace these rather lengthy random walk simulations [12, 2]. The
random walk part is CPU time-intensive, and a fairly simple formula, or algorithm, that
could give 10-20% accuracy for the usual range of concrete mixtures studied would be very
useful. The new D-EMT derived in this paper seems to fit the requirements, and should be
able to serve as a routine replacement for the random walk simulations in the multi-scale

microstructural model for predicting concrete diffusivity.
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Figure 1: A 2-D schematic view of the concrete composite problem. The dark gray is
aggregate, the black is I'TZ, and the light gray phase is the bulk matrix phase. There are
only two sizes of aggregates in this picture. If the width of the I'TZ is 20um, then the
diameters of the particles are about 100pum and 250um.



bulk bulk

Figure 2: The mapping of a real particle with I'TZ into an effective particle whose radius is
the radius of the real particle plus the width of the ITZ. The figure also defines the various
regions and distances used in the paper.
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Figure 5: Showing, for the concrete data given in Table 4, the D-EMT results vs. the
simulation results for o/op,. The dashed line is the line of equality.
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the ratio of ITZ to bulk conductivity, for V,44 equal 0.62 and 0.70.
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Table 1: Definition of four different sieve analyses used for the concrete systems of Table 2.

The numbers given in the table in the four righthand columns are the volume fraction of

total aggregate contained in each sieve (f;). Details are given in Ref. [2].

d; (mm) d;j;; (mm) | cfec fffc ffee  cffe
0.075 0.15 0 004 004 O
0.15 0.30 0.02 0.08 0.08 0.02
0.30 0.60 0.08 0.12 0.12 0.08
0.60 1.18 01 0.1 01 0.1
1.18 2.36 0.12 0.09 0.06 0.15
2.36 4.75 0.06 0.06 0 0.12
4.75 9.525 0.26 0.33 0.24 0.35
9.525 12.7 0.3 0.18 0.3 0.18
12.7 19.05 006 0 006 0

Table 2: Table of parameters for different systems, along with simulation and D-EMT results.

Sieve Analysis c h(pm)  orrz/0wur  0/0pux (simulation) o /opy (D-EMT)  Error(%)
cffc 0.753 0.01 2.95 0.20 0.18 -10
cffc 0.601 0.03 4.22 0.42 0.42 0.0
fifc 0.754  0.03 2.54 0.28 0.29 3.6
fifc 0.594 0.01 5.0 0.42 0.42 0.0
ffcc 0.602 0.01 2.84 0.36 0.33 -8.3
ffcc 0.752  0.03 3.31 0.34 0.37 8.8
cfce 0.675 0.01 1.08 0.23 0.19 -17.4
cfee 0.675 0.01 1.88 0.24 0.21 -12.5
cfce 0.599 0.03 2.24 0.34 0.34 0.0
cfce 0.675 0.01 2.32 0.26 0.22 -15.4
cfcc 0.524 0.01 4.06 0.42 0.39 -7.1
cfce 0.824 0.01 4.14 0.16 0.14 12.5
cfce 0.757  0.01 4.94 0.23 0.21 -8.7
cfee 0.675 0.01 7.53 0.33 0.31 -6.1
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Table 3: Sieve analysis used in the systems of Table 4.

d; (mm) d;;1 (mm) | Vol. Frac. of Agg.
0.075 0.15 0.02
0.15 0.30 0.05
0.30 0.60 0.10
0.60 1.18 0.10
1.18 2.36 0.105
2.36 4.75 0.06
4.75 9.525 0.295
9.525 12.7 0.240
12.7 19.05 0.03
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Table 4: Table of parameters for different systems, along with simulation and D-EMT results.

C UITZ/Ubulk J/Ubulk D-EMT %EI‘I‘OI‘

0.70 0.5 0.168 0.148 -11.8
0.70 0.75 0.184 0.163 -11.4
0.70 1.0 0.198 0.176 -11.1
0.70 1.25 0.214 0.189 -11.7
0.70 1.5 0.218 0.201 -7.8
0.70 2.0 0.237 0.224 -5.5

0.70 2.5 0.257 0.245 -4.7
0.70 3.0 0.278 0.264 -5.0
0.70 4.0 0.305 0.301 -1.3
0.70 7.0 0.393 0.397 1.0

0.70 10.0 0.486 0.480 -1.2
0.70 12.0 0.531 0.531 0.0

0.70 17.5 0.643 0.660 2.6

0.70 21.0 0.744 0.735 -1.2
0.62 0.5 0.243 0.216 -11.1
0.62 0.75 0.258 0.231 -10.5
0.62 1.0 0.275 0.244 -11.3
0.62 1.25 0.279 0.257 -7.9
0.62 1.5 0.290 0.269 -7.2
0.62 2.0 0.305 0.292 -4.3
0.62 2.5 0.337 0.312 -7.4
0.62 3.0 0.346 0.332 -4.0
0.62 4.0 0.386 0.368 -4.7
0.62 7.0 0.450 0.460 2.2

0.62 10.0 0.541 0.538 -0.6
0.62 12.0 0.591 0.586 -0.8
0.62 15.0 0.664 0.651 -2.0
0.62 21.0 0.773 0.769 -0.5
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