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ABSTRACT: When an inverse problem can be formulated so the data are minima of one
of the variational problems of mathematical physics, feasibility constraints can be found for
the nonlinear inversion problem. These constraints guarantee that optimal solutions of the
inverse problem lie in the convex feasible region of the model space. Furthermore, points
on the boundary of this convex region can be found in a constructive fashion. Finally, for
any convex function over the model space, it is shown that a local minimum of the function
is also a global minimum. The proofs in the paper are formulated for definiteness in terms
of first arrival traveltime inversion, but apply to a wide class of inverse problems including

electrical impedance tomography.



I. Introduction

In a series of papers (1-3), the author has developed a stable iterative reconstruction
method for first arrival traveltime inversion. The general theory behind this new approach
and its extensions will be described in the present paper. The principle contribution of this
work is the observation that, when an inverse problem can be formulated so the data are
minima of one of the variational problems of mathematical physics, rigorous physically-
based feasibility (or admissibility) constraints can be found for the corresponding nonlinear
inversion problems. These constraints guarantee that any optimal solution of the inverse
problem found using convex programming techniques lies in a convex feasible region of
the model space. Furthermore, points on the boundary of the feasible set can be found
in a constructive fashion. Also, for any convex function over the model space, a local
minimum of the function is also a global minimum. In light of the structure induced on
the model space by the feasibility constraints, we can also obtain a series of results about

the structure of the solution set that would not possible to establish otherwise.

We have three main goals for the paper: (7) to establish that the idea of using varia-
tional/feasibility constraints for inversion is both rigorous and applicable to a wide class
of physical problems, () to provide elementary proofs that will be accessible to a broad
audience (including physicists, geophysicists, engineers, etc., as well as mathematicians) of
the consequences of this idea, and (74) to present the proofs in an abstract setting so as
to be independent of the particular choice of discretization made in practical algorithms

for solving the inverse problem.

For definiteness, we use first arrival traveltime inversion as our primary example. How-
ever, it will be clear that the methods developed here apply to a wide class of inverse
problems. Whenever the data can be chosen to be the minima of one of the variational
problems of mathematical physics, variational constraints can be introduced and the con-

cepts of feasible set and feasibility boundary follow immediately (2,3).

II. Convexity Properties of Inverse Problems

Our principal example will be first arrival traveltime inversion. The problem is this:
Given the locations of sources and receivers of some type of exciting wave (e.g., acoustic,
seismic, or electromagnetic) and the first arrival traveltimes T; for waves propagated be-
tween the m pairs of sources and receivers (labelled by i = 1,...,m), deduce the wave speed
v(#) in the region probed by these waves. For iterative methods involving the use of least-
squares methods, it is common to solve for the reciprocal of the wave speed s(z) = 1/v(%)
— which is the wave slowness. For practical applications, a rectangular grid is generally

chosen and the wave slowness is discretized either by treating it as constant in the cells
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determined by the grid or by specifying values of slowness at the nodal points and choos-
ing some interpolation scheme (such as bilinear) between the nodes. For either choice of
discretization, the model slowness is determined by a vector sT = (si,...,s,), where n is
respectively either the number of cells or the number of nodes. Thus, in terms of the
practical applications, we can speak of a particular model slowness s as a point, i.e., a
point in the model vector space.

Fermat’s principle says that the first arrival traveltime for the i-th ray path is given by

. (path) __ *
ti(s) = min sdl; = [ sdl[s 1
()= min [ [sarts (1
where 1" is the arc length along any connected path between the source and receiver and

where [7[s] is the arc length along a ray path that minimizes the integral of the traveltime
for the i-th path and wave slowness s. If more than one path minimizes the traveltime, then
I7[s] is any particular choice among those minimizing the traveltime. Since the slowness
is a positive quantity, the traveltime can never vanish unless the source and receiver are
located at the same point. We exclude this case, so the traveltime is also a strictly positive

quantity.

Some easy but important facts follow from the variational definition (1) of the first

arrival traveltime. They are given in these lemmas:

Lemma 1. (Concavity and Homogeneity) The traveltime ¢;(s) is a concave and homo-

geneous function of the model slowness s.

Proof: First, note that, for s; >0, s, >0, and 0 <A <1,

ti(s1) = / s diz[s1] < / sy dlz st + (1= N)ss] 2)

and

ti(s) = / 5 dlZ[s5] < / 52 dliAst + (1= \)ss] 3)

both follow immediately from the definitions in (1). Then, taking the appropriate linear

combination of the inequalities in (2) and (1.3) with 0 < X <1, we have
)\ti(sl) + (]_ - A)ti(SZ) S /[)\51 + (1 - A)Sg] dl:[ASl + (1 - A)Sg] = ti(/\sl + (]. - A)Sg) (4)
thus completing the proof that ¢;(s) is a concave function. That the traveltime is ho-

mogeneous in slowness so t;(ys) = ~t;(s) follows easily from the statement (1) of Fermat’s

principle.
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Lemma 2. (Scale Invariance of Ray Paths) A ray path with arc length I;[s] that
minimizes the traveltime for s also minimizes the traveltime for ys where v is any positive

scalar.

Proof: Lemma 2 follows immediately from the homogeneity property of ¢;(s).

Next we need to introduce the notion of a feasible set of model slownesses and the
associated feasibility boundary. The introduction of these physically-based feasibility con-

ditions is the principle new contribution from which the rest of the present results follow.

The concept of feasibility sets arises commonly in the study of nonlinear programming
techniques (4). Algorithms for practical solution of the inverse problems discussed here fall
into this class — although inverse problems tend to be substantially more difficult than
the optimization problems typically considered (since the constraints are implicit rather
than explicit). Feasibility constraints for inverse problems have been introduced elsewhere

(2,3). We will present only a brief outline of the motivation here.

The inverse problem for first arrival traveltime is to determine a slowness model s given
a set of measured traveltimes T; between pairs (labelled by index i) of sources and receivers
whose locations are known. One method for solving the inverse problem is to guess a model
s, that might have given rise to the measured data, compute the set of traveltimes ¢;(s,) for
the trial model, and then use some method (often based on least-squares fitting) to update
the model and obtain a better fit to the data. However, such programming methods are
generally limited by the fact that it may be computationally difficult to find the exact 1*[s,]

associated with the trial slowness. For this reason, we define a trial traveltime
Tl(pi)(s) = /sdli-'pi) (5)

for arc length 1{7? associated with the trial ray path p;. Then, neglecting experimental
error in the T;s and defining s, as an exact solution of the inverse problem, then s, clearly
satisfies

Ty = ti(s0) < 7" (s0) (6)

for all source-receiver pairs i and any trial ray path p; between them. Thus, in trying to
formulate a constructive method for locating an s,, it is useful to consider splitting the
model space into two parts: (i) a feasible part whose members s are like s, in that they

satisfy the constraints

T; < T}pi)(s) (7)

for all source-receiver pairs i and all ray paths in the trial set and (7)) a nonfeasible part
whose members s violate at least one of the inequalities (7) for some ray and, hence, are

unlike sq.
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With this motivation, we can now distinguish between local (path dependent) feasibility
sets F{r} and the global (path independent) feasibility set F as in other recent publications
(2,3). We will also be able to establish a definite relationship between these two types of
feasibility set.

Definition: The (local) feasible set F{#} of slownesses for the nonlinear traveltime inver-

sion problem is given by F{#} = {s|7*)(s) > Ti,i = 1,...,m} where the T;s are the measured

traveltime data and {p} is a particular set of trial ray paths.

Definition: The (global) feasible set F of slownesses for the nonlinear traveltime in-
version problem is given by F = {s|t;(s) > T},i = 1,...,m} where the T;s are the measured

traveltime data and all the T;s are finite.

Definition: Let © = {s|s > 0} be the physical set of slownesses. Then, we define the
absolute or physical feasible sets as A = FNY and AP} = p{P 0 2. Note that ¥ is a convex

set.
Theorem 1. The (global) feasible set F is a nonempty convex set. All points on the

boundary of F are determined by finding, for each model s > 0, the smallest value of the
scalar v such that ¢;(ys) > T; for all i =1,... ,m.

Theorem 2. The (local) feasible set F{r} is a nonempty convex set. All points on the
boundary of F{#} are determined by finding, for each model s, the smallest value of the

scalar v such that 7?9 (ys) > T; for all i = 1,...,m.

Proof: If s; and s, satisfy the feasibility constraints ¢;(s) > 7; for all : and if 0 < X < 1,
then

ti(Asy + (1= X)sa) > Ati(s1) + (1 = N)ti(s2) > T; (8)

follows from the concave property of the traveltime function. Thus, As; + (1 — X)s, also

satisfies the feasibility constraints and the feasible set F is therefore convex.

The set F is nonempty because for any slowness s we can always find a finite value of the
positive scalar y such that t;(ys) = vt;(s) > T; for all i = 1,...,m. This result follows from the
positivity of ¢; and the finiteness and positivity of the measured traveltimes. Furthermore,

the smallest such scalar is given by
Ymin(s) = maz T; /ti(s), (9)

so we can locate the feasibility boundary in the direction of s which is then given by the

point v,,:n(s)s. This completes the proof of Theorem

The proof of Theorem 2 is completely analogous just replace t;(s) everywhere by



779 (s) and note that
77 (As1 4 (1= N)s2) = AP (s1) + (1= NP (s2), (10)

i.e., that 7*? is a linear function of s.
Corollary 1. The physical feasible sets A4 and A{?} are nonempty convex sets.

Proof: The sets A and A{P} are both the intersections of convex sets and therefore
convex. That the intersection of these convex sets is nonempty is clear from the proofs of

Theorems 1 and 2.

Remark: We would like to avoid cluttering the remainder of the paper with constant
reminders that the physical space is limited to the set ©. All our results on convexity
should be followed by a step finding the intersection of the set under study and ¥. We

assume that, from now on, the reader will supply this step in each case.

Corollary 2. The global feasible set F is the intersection of the local feasible sets Fi{r}
for all possible sets of ray paths.

Proof: First, the intersection of all local feasible sets is a convex set. Let I be the
intersection. Then it is convex if As; +(1—2)s; lies in T for every s; and s, in 7 and 0 < X < 1.
But if s; and s, are in I, then they lie in each individual convex region and, hence, so does

the convex combination.

Second, since it follows from Fermat’s principle for first arrivals that
ti(s) < 7" (s), (11)
we want to consider the values of the scalar v such that
T; < ti(ys) < " (9). (12)
Let 42} be the minimum such ~ for 7 defined by
Tovin(s) = maz T/ (s). (13)
Then, it follows immediately from (12) that

182} (8) < Yimin(5) (14)

for every set of ray paths and every s. Thus, the global feasibility boundary is bounded
below by the local feasibility boundaries for all sets of ray paths {p}. Furthermore, equality

in (14) is achieved when the set of ray paths {p} is one that minimizes the traveltime. So
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the intersection of all the local feasibility sets is convex and has the same extreme points
as F. It follows that the intersection set I and the global feasibility set F must be the
same. This completes the proof of the Corollary.

Next we introduce the concept of feasibility violation number and determine the con-
vexity properties (or lack thereof) to be asssociated with this function. The feasibility
violation number is another useful concept that arises in practical applications. The feasi-
bility boundary bounds the region where the feasiblity violation number is zero everywhere.
By counting the number of violations present as we move away from the feasibility bound-
ary into the infeasible region, we obtain a useful measure of how far a model point is from

the feasibility boundary without doing a prohibitively expensive computation (2,3).

Definition: The feasibility violation number at s for a given set of ray paths {p} is

defined to be
N©® () =37 0(T; - 717 (s)) (15)

P

where the step function 6(z) is defined by

_Jo, forz<o;
0(z) = { 1, forz>o. (16)

Definition: The set V{Pl(n) is given by VIPt(n) = {s|n > N{?}(s)}, where n is a non-
negative integer and {p} is some set of ray paths. The set so defined is the set of all

slowness models s that violate n or fewer than n of the feasibility constraints.

To see that the set ViP}(n) is generally a nonconvex set, suppose s; violates constraint i
but not j, while s, violates j but not i. Then, for some choices of sy, s,, and A, it is possible
for the convex combination to violate both constraints : and j. Unless this point has also
simultaneously ceased to violate some other constraint (which cannot happen for example

if n = 1), the point lies outside the set and V{P}(n) is therefore nonconvex.

On the other hand, if s; and s, satisfy the feasibility constraint Ti(p")(s) > T; for some 1,
then Xs; 4+ (1 — )A)s, also satisfies it from the property (10) of the traveltime trial function.
Thus, Virt(n) is nonempty and includes both the global and local feasible sets which are
also nonempty

F c Fi2} cvipi(n). (17)

Furthermore, if m > ny > ny + 1, then it is clear that

VPt (ny) c VIPH(ny). (18)
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ITI. Convex Programming for Inverse Problems

We will first define convex programming for first arrival traveltime inversion. Then we
present some basic Theorems about convex programming in this context. Finally, we give

a discussion of implications for practical implementations.

Definition: Let ¢(s) be any convex function of s. Then the convex nonlinear pro-
gramming problem associated with ¢ is to minimize ¢(s) subject to the global feasibility

constraints t;(s) > T; for i =1,...,m.

Definition: Let P} (s) = 3, wi(r#?(s) — T;)* for some set of ray paths {p} where the
w;s are some positive weights. Then the convex linear programming problem associated

with ¢{? is to minimize {?!(s) subject to the local feasibility constraints =#*(s) > T; for

1=1,...,m.

Theorem 3. Every local minimum s* of the convex nonlinear programming problem

associated with ¢(s) is a global minimum.

Theorem 4. Every local minimum s* of the convex linear programming problem asso-

ciated with ¥ (s) is a global minimum.

Proof: (Also see Fiacco and McCormick (4).) Let s* be a local minimum. Then, by

definition, there is a compact set C such that s* is in the interior of C N F and

p(s7) = min p(s). (19)

If s is any point in the feasible set F and 0 < X <1 such that As*+ (1 —X)s is in CN F, then

o(As™ + (1 1_—A)>\S) — () 80(3*)1—_’\;0(5*) = p(s%). (20)

o(s) >

The first step of (20) follows from the convexity of ¢ and the second from the fact that s
is a minimum in C N F. Convexity of F guarantees that As* + (1 — )\)s is in the feasible set.

This completes the proof of Theorem 3.

To prove Theorem 4, we first need to establish that 4{?}(s) is a convex function of
s. This fact follows from identity (10), the convexity of the function f(z) = 22, and the

convexity of a sum of convex functions. We see that

[ri(As1 + (1= X)s2) = T = (1) + (1= Nmi(ss) = T3P

(21)
= Ari(s1) = Ti” + (1 = N)[7i(s2) = TiJ* = M1 = N)(7i(s1) = 7i(s2)]”

s0 9P} (s) is a convex function. The remainder of the proof of Theorem 4 follows that of

Theorem 3 with ¢ replacing .
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Finding useful convex functions for the nonlinear programming problem is not easy.
For example, if ¢(s) is chosen to be the convex function — 37, t:(s) (because t;(s) is concave),
or 3, 1/(ti(s)-T;) (because the harmonic mean is bounded above by the arithmetic mean), or
— 3, log(ti(s) = T;) (because the geometric mean is bounded above by the arithmetic mean),
each choice is a convex function of s, but the minima occur for large (actually infinite)
values of s and have nothing to do with the inversion problem. However, many useful
convex functions (including ¥{"(s)) are available for the linear programming problem,
and any convex function available for that problem may also be used in the nonlinear
programming problem. We will now consider some convex and some nonconvex functions

that are important in programming for inversion.

One important nonconvex function of s is the weighted squared error in the traveltime

given by
Yo(s) = D wilti(s) - TP, (22)

where the w;s are some positive weights (1). Techniques that seek to minimize the squared
error are probably the most abundant in the literature, and therefore any new insight
into the behavior of this function relative to the feasibility boundary is of great practical
significance. We can determine the smallest value of v,(ys) for all models with the same
relative distribution of slowness but differing scales by varying the scalar 4 to find the

minimum. Elementary analysis shows that

_ Z,L witi(s)Ti

"l = () )

Note that (23) was obtained using only the homogeneity property of ¢;(s). Substituting
(23) for v in ¢,(ys), we obtain

90(0(9) = tn(s)s) = S wet? - L EL, en

Note that 4(o(s)) is a function of s independent of scale. Thus, (24) provides a scalar that

is characteristic of slowness distributions of the form ~s.

Lemma 3. (Infeasibility of Scaled Least-Squares Points) The scaled least-squares point

o(s) = ys(s)s either solves the inversion problem or lies outside the feasible set F.

Proof: It follows from (23) that

0= sz'ti[ws(S)ti(S) -Ti = Z witi(s)[ti(vis(s)s) — Ti]- (25)
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Since the t;s and w;s are all positive, it follows either that
ti(o(s)) = T; =0 for all ¢ (26)

or that
ti(o(s)) — T; < 0 for some 3. (27)
If (27) is true, then one of the feasibility constraints is violated at the point o(s) so this

point lies outside F. If (26) is true, then o(s) solves the inversion problem.

Since homogeneity is the only property of ¢;(s) used in (22)-(27), we can immediately
prove the corresponding statement for the path dependent problem. In the equations (22)-
(27), let t;(s) — 77 (s), ys(s) — 72 (s), wo(s) — ¥iP(s), and o(s) — oiP}(s). Then it is clear

that the following statement is true.

Lemma 4. (Infeasibility of Scaled Least-Squares Points) The scaled least-squares point

o (P} (s) = y1P}(s)s for a particular set of ray paths {p} either solves the inversion problem or

lies outside the feasible set Fir}.

Then, the next important Theorem is an easy consequence of Lemmas 3 and 4.

Theorem 5. (Infeasibility of Least-Squares Points) If s* is a global minimum of either

¥o(s) or ¢\ (s) for some choice of ray paths {p}, then s* either solves the inversion problem

or lies outside the feasible set F.

Proof: If s* is a global least-squares point, then it is also a scaled least-squares point
for distributions of the form ys*. Thus, Lemmas 3 and 4 apply to s*. Lemma 3 implies
that the Theorem is true for y(s). When Lemma 4 is pertinent, the point s* lies outside
of Fir} and, therefore, outside of F. Thus, the Theorem is true.

In nonlinear programming (4), it is common to distinguish between “interior methods”
and “exterior methods.” As the names imply, interior methods require the trial solutions at
each stage to lie inside the feasible set while exterior methods try to approach the optimal
solution from outside the feasible set. The significance of Theorem 5 is that the many
methods of inversion based on least-squares minimization are all “exterior methods.” This
fact has apparently escaped notice until recently. The minimum of the least-squares error
in the predicted data will virtually always (unless a solution has been attained) lie outside
the feasible set. This fact is important for programming purposes since it suggests steps
that can be taken to improve the current trial model slowness. In particular, to gauge the
merits of models relative to a given set of trial ray paths, the feasibility violation number
(15) may be used effectively to provide a crude but also computationally inexpensive
measure of the distance from the trial model to the feasibility boundary. This technique

has proven very effective in applications to traveltime inversion (2,3).



- 11 -
Note that ¢,(s) is nonconvex, whereas %} (s) is convex (see the proof of Theorem 4).

Another important convex function is

P () = 95" () + plls = sl (28)
where 4 is a non-negative scalar and s, is any point in the slowness model space. Clearly
1P} (s) = i (s) when p = 0. One possible choice of norm is

1
ls=salP = 5 [ (s snedis, (29)
Q

where Q is the volume of the region probed by the experiment and ¢(z) > 0 is a positive
weight that we will call the coverage function (1). The function 3! (s) is convex because

it is the sum of two convex functions of s.

Lemma 5. Let R{P'(5) = {s|¢\"!(s) < ¢\?*(5)}. Then, the set R{?’(5) is convex.
Proof: If 7 (s1) < k and P! (s;) < k, then from the convexity of this function we have
PP (Asy + (1= A)s2) < AP (s1) + (1= Ny lP(s2) < k. (30)
Taking k = ¢#*(5), it follows that the set R}#*(s) is convex.

Remark: An immediate consequence of Lemma 5 is this: The global minima of ¢ (s)

form a convex set. Then we have the following extensions of Theorems 4 and 5.

Corollary 3. The (local-global) minima s* of the convex linear programming problem

associated with ¥{#’(s) form a convex set.

Proof: Theorem 4, Lemma 5, and the fact that the intersection set R (s*)n F{¥} is
convex.

Corollary 4. The global minima of ¢ (" (s) for any choice of ray paths {p} form a convex

set that either contains all solutions of the inversion problem or has no intersection with
the feasible set F.

Proof: Theorem 5, Lemma 5, and the preceding Remark.

The convex sets constituting the minima in Corollaries 3 and 4 are the same only if
they completely solve the inversion problem. Otherwise they are disjoint and distinct sets.
To understand more fully the significance of these sets, we will introduce the concept of
ghosts (5-7).

Definition: A ghost is a nonzero model point g (not in %) in the null space of the

traveltime operator for a particular set of ray paths, i.e., such that

gy =0, foralli=1,...,m. (31)
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Thus, if s; and s, are two distinct models with the same trial traveltimes for all i

P (s1) = 717} (s2), (32)

then clearly
Ti{p}(sl —$2)=0 (33)

for all s and the difference g = s; — s, # 0 is a ghost. The solution of the inversion problem
is therefore unique (7.e., the convex solution set contains one and only one member) iff the
null space of the traveltime operator corresponding to the solution ray paths is empty. If
the convex solution set has two or more distinct members, then there is at least one ghost

and an infinite number of solutions in the set.

To finish clarifying the structure of the solution set, we establish two more results.
Lemma 6. Let H*' = {s|r*(s) = T;}. Then H*! is a convex set.

Proof: If s; and s, are members of H;{p}j then

7P Asi 4 (1= N)s2) = AP (s1) + (1 = N7 (52) = T (34)

Remark: If the slowness space has been discretized into cells of constant slowness as

in (1-3), then each set H* is a hyperplane in the model vector space (2,3).

Theorem 6. Let 1P} = {s|7P)(s) = T}, for i = 1,...,m or for some subset of the is}.

Then the set I{?} is convex.

Proof: The set I?} is the intersection of all the sets H*} or the intersection of some

subset of this collection of sets. Being the intersection of convex sets, I} is convex.

Remarks: For inconsistent data (measured traveltimes 7; with errors) or for poor
choices of ray paths {p}, the set 1?} may be empty. For cells of constant slowness, each

nonempty set I?} consists of overlapping intersections of hyperplanes.

As an example of the application of these results to practical problems, suppose s* is a
point where ¥ (" (s) is minimum. For definiteness, suppose further that r[?}(s*) = T; for all 4.
So the point s* seems to solve the inversion problem for the set of ray paths {p}. However,
{p} may not be the optimal set of ray paths for s*, i.e., we may find t;(s*) < =¥ (s*) for
some or all i. In this situation (which would be fairly typical in practice if we also include
some slight errors due to numerical roundoff in these supposed equalities), the apparent
agreement between the predicted traveltimes and the data is actually spurious to some
degree — often to a large degree.



- 13 -

If there are other models that satisfy the data for the same set of ray paths, Corollary

4 shows that the set of all such models forms a convex set. This convex set either contains
all solutions of the inversion problem and therefore lies exactly on the boundary of the

global feasible set F, or — the more likely situation — this set does not solve the problem
at all and actually is a convex set of infeasible points. The reason this latter situation is
more likely is because in practical implementations we are virtually always working with an
approximate set of ray paths. Thus, in programming for inversion, it will often be true that
it is counterproductive to try to find models that produce optimum fits to the traveltime
data for a given set of (approximate) ray paths. Trying to obtain such optimum fits, as
is often done in least-squares or other inversion techniques based only on the magnitudes
of the traveltime errors regardless of sign. is programming to fit the noise rather than the

signal. This is one of the reasons that such methods so often fail.

IV. Extensions

The methods and results presented here apply to a wide class of inverse problems.
The proofs were given for the sake of definiteness in terms of the first arrival traveltime
inversion problem, but they apply equally to any problem that can be formulated so the

data are minima of the pertinent variational problem.

For example, suppose that we wish to invert electrical boundary measurements to
obtain the interior conductivity distribution of a body (8,9). This problem is commonly
known as electrical impedance tomography. Then, the set of powers — dissipated while
current is injected between pairs i of electrodes {P;} — is the pertinent data set. The

variational formulation (Dirichlet’s principle) states that

pi(c) = min /U|V¢Et”al)|2 d*z = /U|V¢f[a]|2 d*z, (35)

trial)
¢!

where ¢!"?(z) is the trial potential field for the i-th injection pair and ¢;[o](z) is the
potential field distribution that actually minimizes the power dissipation for conductivity

distribution o(z). We define a trial power dissipation by
ﬁgiﬁi) (o) = /U|V¢gt”al)|2 Bz (36)

Then, the correspondence between first arrival traveltime inversion and electrical imped-
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ance tomography is this:

s — 0,
ti(s) — pi(o),

P (s) = 5" (o),

i) |wll P dle,
di7[s] — |V i [o]? d°z,

T, — P;.

All the concepts such as feasibility constraints and feasible sets carry over immediately

since
P; = pi(o0) < pi(00) (37)

must again be true if oy is a solution of the inversion problem.

Another remarkable fact is this: For the electrical impedance tomography problem,
there are actually two different sets of feasibility constraints. One set is for the variational
method (Dirichlet’s principle) outlined above. The other is for its dual (Thomson’s prin-
ciple). The existence of dual variational principles will be a general result whenever the
variational principles involved are true minimum principles. Fermat’s principle is actually
not in this class since it is only a stationary principle; but for first arrival traveltime inver-
sion, it is nevertheless valid to treat this principle as a minimum principle, since the data

are truly minima. This fact was pointed out to the author in a private discussion with R.

V. Kohn.

V. Discussion

If a minimum of an objective function has been attained in programming for nonlinear
inversion, several questions often come to mind: “Is this a local or a global minimum?” “If
more than one local minimum is found, how are the minima related to global minima?”

These issues have been at least partially clarified by Theorems 3-6 and Corollaries 3 and
4.

The observation that variational constraints rigorously imply the existence of feasible
sets of trial models for inversion problems has played a crucial role in the analysis presented
here. Only the proofs of Lemmas 1, 2, 5, and 6 and Theorem 6 are independent of the

definitions of the feasible sets. These constraints are therefore vital in efforts to elucidate
the nature of solution sets for inversion problems. They have also proven to be vital for

improving the behavior of iterative numerical techniques for solving the inversion problems
(2,3).
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